@article {7020, title = {The mathematical influence on global patterns of biodiversity}, journal = {Ecology and Evolution}, volume = {10}, year = {2020}, pages = {6494-6511}, abstract = {Although we understand how species evolve, we do not appreciate how this process has filled an empty world to create current patterns of biodiversity. Here, we conduct a numerical experiment to determine why biodiversity varies spatially on our planet. We show that spatial patterns of biodiversity are mathematically constrained and arise from the interaction between the species{\textquoteright} ecological niches and environmental variability that propagates to the community level. Our results allow us to explain key biological observations such as (a) latitudinal biodiversity gradients (LBGs) and especially why oceanic LBGs primarily peak at midlatitudes while terrestrial LBGs generally exhibit a maximum at the equator, (b) the greater biodiversity on land even though life first evolved in the sea, (c) the greater species richness at the seabed than at the sea surface, and (d) the higher neritic (i.e., species occurring in areas with a bathymetry lower than 200\ m) than oceanic (i.e., species occurring in areas with a bathymetry higher than 200\ m) biodiversity. Our results suggest that a mathematical constraint originating from a fundamental ecological interaction, that is, the niche{\textendash}environment interaction, fixes the number of species that can establish regionally by speciation or migration.}, keywords = {Biodiversity, ecological niche, large-scale patterns in species richness, models, theory}, doi = {10.1002/ece3.6385}, url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.6385}, author = {Gr{\'e}gory Beaugrand and Kirby, Richard R and Goberville, Eric} } @article {8449, title = {Passive rewilding may (also) restore phylogenetically rich and functionally resilient forest plant communities.}, journal = {Ecol Appl}, volume = {30}, year = {2020}, month = {2020 01}, pages = {e02007}, abstract = {

Passive rewilding is increasingly seen as a promising tool to counterbalance biodiversity losses and recover native forest ecosystems. One key question, crucial to understanding assembly processes and conservation issues underlying land-use change, is the extent to which functional and phylogenetic diversity may recover in spontaneous recent woodlands. Here, we compared understorey plant communities of recent woodlands (which result from afforestation on agricultural lands during the 20th century) with those of ancient forests (uninterrupted for several centuries) in a hotspot of farmland abandonment in western Europe. We combined taxonomic, functional, and phylogenetic diversity metrics to detect potential differences in community composition, structure (richness, divergence), conservation importance (functional originality and specialization, evolutionary distinctiveness) and resilience (functional redundancy, response diversity). The recent and ancient forests harbored clearly distinct compositions, especially regarding the taxonomic and phylogenetic facets. Recent woodlands had higher taxonomic, functional and phylogenetic richness and a higher evolutionary distinctiveness, whereas functional divergence and phylogenetic divergence were higher in ancient forests. On another hand, we did not find any significant differences in functional specialization, originality, redundancy, or response diversity between recent and ancient forests. Our study constitutes one of the first empirical pieces of evidence that recent woodlands may spontaneously regain plant communities phylogenetically rich and functionally resilient, at least as much as those of ancient relict forests. As passive rewilding is the cheapest restoration method, we suggest that it should be a very useful tool to restore and conserve native forest biodiversity and functions, especially when forest areas are restricted and fragmented.

}, keywords = {Biodiversity, Ecosystem, Europe, Forests, Phylogeny}, issn = {1051-0761}, doi = {10.1002/eap.2007}, author = {Morel, Lo{\"\i}s and Barbe, Lou and Jung, Vincent and Cl{\'e}ment, Bernard and Schnitzler, Annik and Fr{\'e}d{\'e}ric Ysnel} } @article {LeGuen2019, title = {Assessing the ecological status of an estuarine ecosystem: linking biodiversity and food-web indicators}, journal = {Estuarine, Coastal and Shelf Science}, volume = {228}, year = {2019}, note = {cited By 0}, publisher = {Academic Press}, abstract = {During the last decades, the highly-anthropized Seine estuary has been impacted by modification of its habitats (building of a major extension of Le Havre harbour, i.e. Port2000) and a significant natural decrease in freshwater discharge. A Before/After analysis, using a toolbox of indicators, was applied to characterize the effects of both events on the estuarine ecosystem status. We selected from existing tool boxes several indicators derived from food web modelling or community composition data, such as biodiversity indicators, a guild-based index (i.e. Estuarine and Lagoon Fish Index ELFI) and ecological network analysis (ENA) indices. ENA and biodiversity indicators were applied on six spatial boxes describing the Seine estuary and its outlet. Results showed an increase in taxonomic and functional richness over time, mainly due to marinisation, and significant changes in food-web properties in relation to Port2000. ENA indices appeared as a promising method in ecological status assessment, especially for estuaries considered as inherently disturbed. {\textcopyright} 2019 Elsevier Ltd}, keywords = {Biodiversity, bioindicator, community composition, ecological approach, ecological modeling, ecosystem function, ecosystem health, environmental assessment, estuarine ecosystem, food web, France, habitat management, health status, human activity, Le Havre, Normandie, Seine Estuary, Seine Maritime}, issn = {02727714}, doi = {10.1016/j.ecss.2019.106339}, url = {https://www.sciencedirect.com/science/article/abs/pii/S0272771419300484}, author = {Le Guen, Camille and Samuele Tecchio and Jean-Claude Dauvin and De Roton, G. and Lobry, Jeremy and Lepage, Mario and Morin, Jocelyne and G{\'e}raldine Lassalle and Raoux, Aurore and Nathalie Niquil} } @article {Thorel2017192, title = {Nutrient ratios influence variability in Pseudo-nitzschia species diversity and particulate domoic acid production in the Bay of Seine (France)}, journal = {Harmful Algae}, volume = {68}, year = {2017}, note = {cited By 15}, pages = {192-205}, publisher = {Elsevier B.V.}, abstract = {The population dynamics of different Pseudo-nitzschia species, along with particulate domoic acid (pDA) concentrations, were studied from May 2012 to December 2013 in the Bay of Seine (English Channel, Normandy). While Pseudo-nitzschia spp. blooms occurred during the two years of study, Pseudo-nitzschia species diversity and particulate domoic acid concentrations varied greatly. In 2012, three different species were identified during the spring bloom (P. australis, P. pungens and P. fraudulenta) with high pDA concentrations (\~{}1400 ng l-1) resulting in shellfish harvesting closures. In contrast, the 2013 spring was characterised by a P. delicatissima bloom without any toxic event. Above all, the results show that high pDA concentrations coincided with the presence of P. australis and with potential silicate limitation (Si:N \< 1), while nitrate concentrations were still replete. The contrasting environmental conditions between 2012 and 2013 highlight different environmental controls that might favour the development of either P. delicatissima or P. australis. This study points to the key role of Pseudo-nitzschia diversity and cellular toxicity in the control of particulate domoic acid variations and highlights the fact that diversity and toxicity are influenced by nutrients, especially nutrient ratios. {\textcopyright} 2017 Elsevier B.V.}, keywords = {analogs and derivatives, analysis, Bay, Bays, Biodiversity, chemistry, Diatom, Diatoms, Domoic acid, France, Geography, kainic acid, Nitrates, nitric acid derivative, particulate matter, phosphate, Phosphates, Physiology, Phytoplankton, Principal Component Analysis, season, Seasons, species difference, Species Specificity, time factor, Time Factors}, issn = {15689883}, doi = {10.1016/j.hal.2017.07.005}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028543709\&doi=10.1016\%2fj.hal.2017.07.005\&partnerID=40\&md5=def23b37b0d16a1ae7ab65a7ef2b940b}, author = {Thorel, Maxine and Pascal Claquin and Mathilde Schapira and Romain Le Gendre and Riou, Philippe and Didier Goux and Bertrand Le Roy and Raimbault, V and Deton-Cabanillas, A.-F. and Bazin, Pauline and Kientz-Bouchart, Val{\'e}rie and Juliette Fauchot} } @article {3252, title = {Global imprint of historical connectivity on freshwater fish biodiversity.}, journal = {Ecol Lett}, volume = {17}, year = {2014}, month = {2014 Sep}, pages = {1130-40}, abstract = {

The relative importance of contemporary and historical processes is central for understanding biodiversity patterns. While several studies show that past conditions can partly explain the current biodiversity patterns, the role of history remains elusive. We reconstructed palaeo-drainage basins under lower sea level conditions (Last Glacial Maximum) to test whether the historical connectivity between basins left an imprint on the global patterns of freshwater fish biodiversity. After controlling for contemporary and past environmental conditions, we found that palaeo-connected basins displayed greater species richness but lower levels of endemism and beta diversity than did palaeo-disconnected basins. Palaeo-connected basins exhibited shallower distance decay of compositional similarity, suggesting that palaeo-river connections favoured the exchange of fish species. Finally, we found that a longer period of palaeo-connection resulted in lower levels of beta diversity. These findings reveal the first unambiguous results of the role played by history in explaining the global contemporary patterns of biodiversity.

}, keywords = {Animals, Biodiversity, Environment, Fishes, Fresh Water, Models, Biological}, issn = {1461-0248}, doi = {10.1111/ele.12319}, author = {Dias, Murilo S and Thierry Oberdorff and Bernard Hugueny and Leprieur, Fabien and J{\'e}z{\'e}quel, C{\'e}line and Cornu, Jean-Fran{\c c}ois and Brosse, S{\'e}bastien and Grenouillet, Gael and Pablo Tedesco} }