Références
« The Ipocamp Pressure Incubator For Deep-Sea Fauna ». J Mar Sci Technol 22 (1): 97-102. doi:10.6119/JMST-013-0718-3 . https://pdfs.semanticscholar.org/0804/23beebe022c1f0a644738e3ade83632322e8.pdf.
. 2014. « Acute Combined Pressure And Temperature Exposures On A Shallow-Water Crustacean: Novel Insights Into The Stress Response And High Pressure Neurological Syndrome. ». Comp Biochem Physiol A Mol Integr Physiol 181: 9-17. doi:10.1016/j.cbpa.2014.10.028.
. 2015. « Behavioural Study Of Two Hydrothermal Crustacean Decapods: Mirocaris Fortunata And Segonzacia Mesatlantica, From The Lucky Strike Vent Field (Mid-Atlantic Ridge) ». Deep Sea Research Part Ii: Topical Studies In Oceanography 121: 146 - 158. doi:https://doi.org/10.1016/j.dsr2.2015.04.008. http://www.sciencedirect.com/science/article/pii/S0967064515001113.
. 2015. 
« Characterising Multi-Level Effects Of Acute Pressure Exposure On A Shallow-Water Invertebrate: Insights Into The Kinetics And Hierarchy Of The Stress Response ». Journal Of Experimental Biology 218 (16): 2594 - 2602. doi:10.1242/jeb.125914. http://jeb.biologists.org/cgi/doi/10.1242/jeb.125914.
. 2015. « Is The Deep-Sea Crab Chaceon Affinis Able To Induce A Thermal Stress Response? ». Comp Biochem Physiol A Mol Integr Physiol 181: 54-61. doi:10.1016/j.cbpa.2014.11.015.
. 2015. « Long-Term Maintenance And Public Exhibition Of Deep-Sea Hydrothermal Fauna: The Abyssbox Project ». Deep Sea Research Part Ii: Topical Studies In Oceanography 121: 137 - 145. doi:https://doi.org/10.1016/j.dsr2.2015.05.002. http://www.sciencedirect.com/science/article/pii/S0967064515001460.
. 2015. 
« The Potential For Climate-Driven Bathymetric Range Shifts: Sustained Temperature And Pressure Exposures On A Marine Ectotherm, Palaemonetes Varians ». Royal Society Open Science 2 (11): 150472. doi:10.1098/rsos.150472. https://royalsocietypublishing.org/doi/10.1098/rsos.150472.
. 2015. « Relative Abundances Of Methane- And Sulfur-Oxidizing Symbionts In Gills Of The Deep-Sea Hydrothermal Vent Mussel Bathymodiolus Azoricus Under Pressure ». Deep Sea Research Part I: Oceanographic Research Papers 101: 7 - 13. doi:10.1016/j.dsr.2015.03.003. https://linkinghub.elsevier.com/retrieve/pii/S0967063715000576.
. 2015. « Development Of An Ecotoxicological Protocol For The Deep-Sea Fauna Using The Hydrothermal Vent Shrimp Rimicaris Exoculata ». Aquatic Biology 175: 277-285. doi:https://doi.org/10.1016/j.aquatox.2016.03.024.
. 2016. 
« Estimating Symbiont Abundances And Gill Surface Areas In Specimens Of The Hydrothermal Vent Mussel Bathymodiolus Puteoserpentis Maintained In Pressure Vessels ». Frontiers In Marine Science 3. doi:10.3389/fmars.2016.00016. http://journal.frontiersin.org/Article/10.3389/fmars.2016.00016/abstract.
. 2016. « Plasticity And Acquisition Of The Thermal Tolerance (Upper Thermal Limit And Heat Shock Response) In The Intertidal Species Palaemon Elegans ». Journal Of Experimental Marine Biology And Ecology 484: 39 - 45. doi:https://doi.org/10.1016/j.jembe.2016.07.003. http://www.sciencedirect.com/science/article/pii/S0022098116301125.
. 2016. 
« Comparative Study Of Chemosensory Organs Of Shrimp From Hydrothermal Vent And Coastal Environments ». Chemical Senses doi:10.1093/chemse/bjx007: 1-13.
. 2017. 
« Identifying Toxic Impacts Of Metals Potentially Released During Deep-Sea Mining—A Synthesis Of The Challenges To Quantifying Risk ». Frontiers In Marine Science 4: 368. doi:10.3389/fmars.2017.00368. https://www.frontiersin.org/article/10.3389/fmars.2017.00368.
. 2017. 
« Are Shallow-Water Shrimps Proxies For Hydrothermal-Vent Shrimps To Assess The Impact Of Deep-Sea Mining? ». Marine Environmental Research 151: 104771. doi:10.1016/j.marenvres.2019.104771. https://linkinghub.elsevier.com/retrieve/pii/S0141113619303216.
. 2019. « Assessing A Species Thermal Tolerance Through A Multiparameter Approach: The Case Study Of The Deep-Sea Hydrothermal Vent Shrimp Rimicaris Exoculata ». Cell Stress And Chaperones 24 (3): 647 - 659. doi:10.1007/s12192-019-01003-0. http://link.springer.com/10.1007/s12192-019-01003-0.
. 2019. « High Rates Of Apoptosis Visualized In The Symbiont-Bearing Gills Of Deep-Sea Bathymodiolus Mussels ». Plos One 14 (2): e0211499. doi:10.1371/journal.pone.021149910.1371. http://dx.plos.org/10.1371/journal.pone.0211499.
. 2019. « Is It First The Egg Or The Shrimp? – Diversity And Variation In Microbial Communities Colonizing Broods Of The Vent Shrimp Rimicaris Exoculata During Embryonic Development ». Frontiers In Microbiology 10. doi:10.3389/fmicb.2019.00808. https://www.frontiersin.org/article/10.3389/fmicb.2019.00808/full.
. 2019. « Protein Expression Profiles In Bathymodiolus Azoricus Exposed To Cadmium ». Ecotoxicology And Environmental Safety 171: 621 - 630. doi:10.1016/j.ecoenv.2019.01.031. https://linkinghub.elsevier.com/retrieve/pii/S0147651319300399.
. 2019. « Lipidome Variations Of Deep-Sea Vent Shrimps According To Acclimation Pressure: A Homeoviscous Response? ». Deep Sea Research Part I: Oceanographic Research Papers: 103285. doi:10.1016/j.dsr.2020.103285. https://linkinghub.elsevier.com/retrieve/pii/S096706372030073X.
. 2020.