Cell size changes linked to life cycle may influence toxin (DA) production in three *Pseudo-nitzschia* species

Introduction
- Three diatoms that produce a neurotoxin, domoic acid (DA): *Pseudo-nitzschia australis*, *Pseudo-nitzschia pungens* and *Pseudo-nitzschia fraudulenta*.
- Responsible for the ASP syndrome in humans (Amnesic Shellfish Poisoning).
- Severe sanitary and socio-economic consequences for shellfisheries or fisheries.
- Life cycle: reduction in cell size during vegetative multiplication and obligatory sexual reproduction to restore large size cells.

Objectives and methods
- Characterization of *Pseudo-nitzschia* cell size changes during life cycle (gametangia* and initial cell).
- Mating experiments
 - 76 for *P. australis*, 61 for *P. pungens* and 120 for *P. fraudulenta* at different cell sizes.
 - Before each experiment:
 - Acclimation to experimental conditions
 - Parental strains size measurement
 - During experiment:
 - Microscopic observations to detect the different sexual stages
 - When sexual reproduction succeeded:
 - Initial cells size measurement

Cells were considered at the « gametangia stage » when they were able of sexual reproduction.

Cell size characteristics of life cycle stages

<table>
<thead>
<tr>
<th>Pseudo-nitzschia australis</th>
<th>Pseudo-nitzschia pungens</th>
<th>Pseudo-nitzschia fraudulenta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell apical length (µm)</td>
<td>Cell apical length (µm)</td>
<td>Cell apical length (µm)</td>
</tr>
<tr>
<td>Vegetative cells</td>
<td>Vegetative cells</td>
<td>Vegetative cells</td>
</tr>
<tr>
<td>Gametangia</td>
<td>Gametangia</td>
<td>Gametangia</td>
</tr>
</tbody>
</table>

- Sexual size range narrower in *P. australis* and *P. pungens*
 - Possible consequences on the timing of sexual reproduction in natural population and thus on population dynamics during blooms (D’Alelio et al. 2010).

Cell size and/or age of strain influence growth rate

- *P. australis*: influence of cell size
 - \(\mu = 0.3228 \pm 0.003534 \) Size \((p < 0.05)\)
- *P. fraudulenta*: influence of age
 - \(\mu = 0.6093 \pm 0.00481 \) Age \((p < 0.001)\)
- *P. pungens*: influence of cell size and age
 - \(\mu = 0.4563 \pm 0.0051 \) Age + 0.0014 Size \((p < 0.001)\)

Life cycle stages influence toxin (DA) production in *P. australis*

- 9 *P. australis* strains, 14 *P. pungens* strains and 11 *P. fraudulenta* strains at different cell sizes
- cDA concentration in *P. australis* can be predicted from the cell size by a **Gaussian model** \((p < 0.001)\)
- This model predicts max cDA concentration at 71 µm
- *P. australis* is particularly more toxic in the size range where cells are capable of sexual reproduction
- *P. australis* gametangia size range

Conclusions
- Sexual reproduction during blooms may influence their toxicity.
- Modification of cellular metabolism that favors DA production when cells are capable of sexual reproduction.
- Link DA = sexual reproduction?

Study of the influence of cell size (linked to life cycle) and age of strain on growth rate and DA production

- **Batch experiments**
 - 16 for *P. australis*, 32 for *P. pungens* and 30 for *P. fraudulenta* at different cell sizes.
 - Silicate or phosphate limitation
 - To induce DA production in stationary phase

On the second day of the stationary phase:
- Cellular DA (cDA) measurement by ASP EUSA kit (Biosemse)

**We thank Bertrand Le Roy for his help with *Pseudo-nitzschia* cultures. We are most grateful to Dr. Michael Le Gac (Ifremer, DYNECO/PELAGOS, Brest, France) and to Dr. Amandine Caruana (Ifremer, Laboratoire Phycotoxines, Nantes, France) for *P. australis* parental strains. The authors thank the BOREA laboratory staff for help with the experiments. The authors thank the organizers of this congress.

This thesis is funded by ministerial allowance of EdNBISE and by Agence de l’eau Seine-Normandie in the context of the PseudoPhy project (2015-2019).