Invalidity of Gasterosteus gymnurus (Cuvier, 1829) (Actinopterygii, Gasterosteidae) according to integrative taxonomy

by
Gaël P.J. DENYS* (1), Matthias F. GEIGER (2), Henri PERSAT (3), Philippe KEITH (1) \& Agnès DETTAI (4)

Received: 14 Oct. 2014 Accepted: 20 Jan. 2015 Editor: R. Causse

Abstract

The three-spined stickleback Gasterosteus spp. is a model organism largely used in biology. Four species have been described in Europe: G. aculeatus, G. gymnurus, G. islandicus and the extinct G.crenobiontus. Our integrative taxonomy study, including 194 specimens, demonstrates that these taxa are distinguishable neither with the mitochondrial COI marker nor the morphological characters like lateral plates, supposed to differentiate them. Thus, we invalidate Gasterosteus gymnurus, and we consider it as junior synonym of Gasterosteus aculeatus. The taxonomical status of Gasterosteus islandicus still needs to be clarified.

Résumé. - Invalidité de Gasterosteus gymnurus (Cuvier, 1829) (Actinopterygii, Gasterosteidae) confirmée par la taxonomie intégrative.

L'épinoche Gasterosteus spp. est un organisme modèle utilisé en biologie. Quatre espèces sont connues en Europe : G. aculeatus, G. gymnurus, G. islandicus et G.crenobiontus qui est éteinte. Notre étude de taxonomie intégrative, comprenant 194 spécimens, démontre que ces taxons ne peuvent être distingués ni avec le marqueur mitochondrial COI, ni avec les données morphologiques comme les plaques latérales. Nous invalidons donc l'espèce Gasterosteus gymnurus, et nous la considérons comme synonyme junior de Gasterosteus aculeatus. Le statut taxonomique de Gasterosteus islandicus nécessite d'être clarifié.

Gasterosteidae

Gasterosteus aculeatus

Gasterosteus gymnurus Gasterosteus islandicus Integrative taxonomy Cytochrome C oxidase subunit 1

The three-spined stickleback Gasterosteus aculeatus Linnaeus, 1758 (Actinopterygii, Gasterosteidae) has for decades been a model organism for evolutionary, behavioural, developmental and ecological research, which qualified it as "supermodel" (Merilä, 2013). It inhabits sea or freshwater, and has a very large distribution in circumarctic and temperate regions (Froese and Pauly, 2014). Its taxonomy has often been discussed as it is very polymorphic, especially regarding plate morphs. 47 species were described throughout the world (Eschmeyer, 2014), and have been mainly considered to be synonyms to the species present in Western Europe, G. aculeatus and Gasterosteus gymnurus Cuvier, 1829 (Kottelat, 1997). Four other species are currently considered valid: Gasterosteus wheatlandi Putnam, 1867, Gasterosteus islandicus Sauvage, 1874, Gasterosteus crenobiontus Bacescu and Mayer, 1956 (extinct), and Gasterosteus nipponicus Higuchi et al., 2014, respectively endemic to North-West America, Iceland, Central of Europe and Japan. Considering morphological and molecular studies
(e.g. Münzing, 1962; Mäkinen and Merilä, 2008), Kottelat and Freyhof (2007) changed the assignation of West European sticklebacks into G. gymnurus, because of the low plate numbers on the flanks and the absence of a keel on the caudal peduncle. Keith et al. (2011) considered it to be the only species of three-spined stickleback in France, whereas Iglésias (2012) recognized both species. However, several sticklebacks "forms" in France, especially in the coastal basins of the Channel (North-West of France), display a variability in their lateral plate numbers, as already noted by Bertin (1925). This is of particular importance, as G. gymnurus was described solely on the character "presence of plates only on pectoral region" (translated from French: "G. gymnurus (...) n'a de ces plaques que dans la région pectorale"; Cuvier 1829). A morphological and morphometric study (Woltmann and Berg, 2013) on more than 5000 German individuals belonging to both forms found no difference between G. aculeatus and G. gymnurus.

The aim of this study is to verify the status of G. aculeatus and G. gymnurus using DNA taxonomy sensu Tautz et al. (2003), combining morphological characters and the mito-

[^0]chondrial gene coding for cytochrome C oxidase subunit 1 (COI) on a large circumpolar sampling, in order to evaluate both species in an integrative taxonomy approach (Padial et al., 2010). It occurs in a context where the taxonomy of European ichthyofauna undergoes many discoveries and changes (Kottelat and Freyhof, 2007; Denys et al., 2014; Geiger et al., 2014).

MATERIALS AND METHODS

Sampling

Samples were collected between 2003 and 2013 with collaborations of the FREDIE program (http://www.fredie.eu), the French National Agency for Water and Aquatic Environments (Onema), and the Fédération nationale de la pêche en France (FNPF). A total of 174 specimens were caught, mainly by electrofishing, in 30 locations in the major French drainages. Ninety-five individuals from 37 other European sites were added (Fig. 1; Annexe 1). Specimens were fixed in $95 \% \mathrm{EtOH}$ for later fin clipping. We did all morphological identification (juveniles excepted): G. aculeatus has a complete series of 29-35 bony scutes covering the trunk and the caudal peduncle (Fig. 2A), whereas G. gymnurus has only 2-10 scutes on the anterior part of the trunk (Fig. 2B), and G. islandicus has a deep notch on the anterior margin of the pelvic girdle (vs. straight or rounded for the other taxa) (Kottelat and Freyhof, 2007). One hundred sixty two specimens were used for DNA analyses.

DNA extraction, PCR, sequencing and quality control were performed according to Geiger et al. (2014) and for French samples Denys et al. (2014), yielding a dataset
of partial COI sequences (627 bps). It was completed by sequences from other Gasterosteus species with locality and photo vouchers available on the Barcode of Life database (BOLD, www.boldsystems.org; Ratnasingham and Hebert, 2007) and GenBank. Several other gasterosteid species were used as outgroups (Fig. 1; Annexe 1). All new COI sequences were deposited in the EUEPI project folder in the BOLD with their voucher information. Alignment was performed manually, as neither marker includes indels. Phylogenetic analyses were performed with Bayesian inference (MrBayes 3.2, Ronquist et al., 2012), with the GTR $+\mathrm{I}+\mathrm{G}$ model selected by JModelTest 2.1.1 (Darriba et al., 2012). Two runs of two analyses with 10 million generations and sampling every 200 generations were performed, and 10% of trees were eliminated as burnin after checking for convergence. Intra- and inter-specific distances (p-distances) were calculated with MEGA 6 (Tamura et al., 2013).

RESULTS

The morphological identification according to Kottelat and Freyhof (2007) of the 159 non-juvenile three-spined sticklebacks (i.e. over 30 mm SL) placed G. islandicus (one population, four specimens) in Iceland, G. gymnurus (40 populations, 100 specimens) from Portugal to Turkey including United Kingdom and Mediterranean drainages, and G. aculeatus (28 populations, 51 specimens) from Channel coast and east of Europe to Alaska and Canada. Mediterranean and all French populations were determined as G. gymnurus, except one from Taute stream in Normandy (MNHN 2013-1299), which was identified as G. aculeatus. The pop-

Figure 1. - Geographical distribution of the vouchers used in the analysis in polar view. Gasterosteus aculeatus (black squares), G. gymnurus (white squares), G.islandicus (white circle), G. wheatlandi (white stars) and unidentified morphologically specimens (grey squares). Asterisks mean approximative locations.

ulations from the North Sea (ZFMK:ICH:55427), Acheron in Greece (ZFMK:ICH:55875 to 55879), and the Japanese specimen (UW 41883) were also identified as G. aculeatus.

Genetic analyses were performed on 194 individuals for the COI marker. Twenty-four specimens belonging to G. aculeatus have identical sequences to specimens identified as G. gymnurus.

In the Bayesian phylogenetic tree reconstruction (Fig. 2), a deep divergence (12.62% mean pairwise divergence) separates G. wheatlandi from the strongly supported (1 ppv) clade including G.aculeatus, G. gymnurus and G. islandicus. The clade is a large polytomy; the variability within it is 0.36% pairwise divergence, and it has no taxonomical structure. Two G. gymnurus individuals from the United Kingdom (North Sea: Ex70G2 and Ex70G4) are included into a Canadian subclade of G.aculeatus supported by one synapomorphy (A in position 401). However, several subclades are geographically homogeneous, like a Western Mediterranean subclade from France to Italy (except for Brague stream) supported by two synapomorphies (G in positions 14 and 547), with moderate support (0.87 ppv) and mean divergence from the others of 0.5%. On the other hand, some localities from surrounding areas or even areas within the geographic areas of these subclades, have different haplotypes.

DISCUSSION

Münzing (1962) drew a map of Europe with the repartition of the different plate morphs. He distinguished clearly the plateless morph "leiurus" in the West part of Europe, whereas the morph with plates "trachurus" occurs from Channel to Baltic Sea. Our morphological identifications demonstrate globally the same pattern. But one population in Channel drainage is fully plated; other French and English populations have just the lower part of the flank covered.

Bertin (1925) noticed that "forms" covered by plates "trachura" occurred only in costal basin of Channel, but during their growth, they passed by the other forms having less plates: "hologymna", "gymnura" and "semiarmata" (see Bakker and Sevenster, 1988 for the terminology review). This is why care must be taken to compare only adults, which is the case of our specimens. Moreover, one Greek population (Acheron drainage) is fully plated, whereas all other Mediterranean populations have a few plates. Thus, the morphological identification demonstrates that the species distinction between G.aculeatus and G. gymnurus using plate numbers and arrangement as key character does not lead to a clear biogeographic pattern.

The lateral plate number is controlled by the ectodyspla-sin-A Eda gene, with a stronger expression in adults than juveniles (see Barrett, 2010). Plate presence is strongly correlated to the habitat: marine specimens are totally covered with plates, whereas freshwater populations are less shielded (Barrett 2010; Merilä 2013). A coastal-inland gradient as positive relationship between salinity and plate numbers was documented (Raeymaekers et al., 2007), activating firstly the anterior plates development, followed by posterior plates and finally middle plates (Bell, 2001). So plate reduction probably constitutes an adaptation to freshwater habitat (Le Rouzic et al., 2011) colonized by fully plated ancestral marine populations, and often occurring in numerous cases through allelic substitution in the Eda gene (Leinonen et al., 2012). The main explanation for these phenotypes is that lateral plates serve as defensive structures against the teeth of predatory fish in marine environments, but they alter the escape capacity in freshwater (Barrett, 2010).

Density of plates is therefore not an appropriate taxonomical criterion for European three-spined sticklebacks, but represents an intraspecific polymorphism induced by habitat, contrary to G. nipponicus, which has a characteristic plate morph and is supported by ecological, chromosomal

Figure 2. - A: Gasterosteus aculeatus, MNHN 2013-1299, FFFtag12285, 35 mm SL, Taute (Douve drainage) at Tribehou, France, 17 Sep. 2013; B: G. gymnurus, MNHN 2014-0010, FFFtag 12314, 42 mm SL , Blaise (Seine drainage) at Saint-Ange-et-Torçais, France, 24 Sep. 2013.

Figure 3. - Bayesian tree of the cytochrome c oxidase subunit I (COI) for 194 individuals of Gasterosteus spp. and other gasterosteids. The mean a posteriori values of the parameters are: $\mathrm{TL}=38.329096$; alpha $=0.076817$; pinvar $=0.308267$. As a reminder, G. aculeatus is full plated, whereas G. gymnurus has two to 10 lateral plates on both sides.
and reproduction data (Higuchi et al., 2014). Besides, the plateless morph has been observed from Norway to Alaska via Iceland (Barrett, 2010), and is not characteristic to any European area. "Presence of plates only on pectoral region" is the sole character in the original description of G. gymnurus. Moreover, as no type specimen is currently known (Kottelat, 1997), no taxonomical review on a reference individual is possible.

The DNA taxonomy analysis with the COI marker does not differentiate G. aculeatus from G. gymnurus and G. islandicus. Geographically, a few divergences were observed on the mitochondrial cytochrome b and control region markers between European, American and Japanese populations, because of recent colonisations estimated at 90,000 to 260,000 years from Alaska and British Columbia to Atlantic (Ortí et al., 1994; Mäkinen and Merilä, 2008). Several transatlantic exchanges have taken place during this period (Mäkinen and Merilä, 2008). In addition, Mäkinen et al. (2006) demonstrate the absence of a relationship between phylogeny and habitat. While this lack of differentiation could be due to insufficient variability of the marker, it is here combined to the lack of morphological characters other than the highly plastic plate numbers.

Mediterranean populations are distinct from West European populations, however the dataset is not well representative of the area (Mäkinen et al., 2006; Cano et al., 2008). Consequently, Bianco (2014) proposed that Mediterranean populations constitute another lineage. Our results also recover a Western Mediterranean subclade, but it does not include all Mediterranean specimens. Furthermore, the type locality of G. gymnurus is in England and North of France (Cuvier, 1829).

In consequence, we consider Gasterosteus gymnurus Cuvier, 1829 as a junior synonym of G. aculeatus Linnaeus, 1758.
G. islandicus is endemic to Iceland, and is recognizable by its notch in pelvic girdle (Kottelat and Freyhof, 2007). The four specimens in our dataset are also included in the same cluster as G. aculeatus and G. gymnurus. As some populations possibly belonging to this species were found in Norway and Finland (in sympatry with G. aculeatus; Kottelat and Freyhof, 2007), the presence of the notch in pelvic girdle might also be a polymorphic character. More investigations are needed in order to clarify this species delineation.

Acknowledgements. - This work was supported by the Muséum national d'Histoire naturelle (MNHN), the UMR BOREA 7208, the UMR 5023 LEHNA Lyon 1 University, the French Office de l'eau et des milieux aquatiques (ONEMA) and the FREDIE program (http://www.fredie.eu) financed in the SAW program by the Leibniz Association (SAW-2011-ZFMK-3). We are particularly grateful to N. Poulet. We thank the Fédération de la pêche of Pas-de-Calais and all the Onema agents (especially S. Besson, F. Laval, O. Ledouble, S. Manné, M. Thiret, J.C. Reverdy, and F. Villette) for fish samplings. The ichthyology curators of MNHN, Claude Bernard

Lyon 1 University (UCBLZ), Zoologisches Forschungsmuseum Alexander Koenig, Bonn (ZFMK), Fischsammlung Jörg Freyhof (FSJF), Naturhistoriska riksmuseet (NRM), Royal Ontario Museum (ROM), Národní Museum, Prague (NM), Zoological Institute of the Russian Academy of Sciences, St. Petersburg (ZIN) and the University of Washington (UW), gave access to the specimens and provided the photo of vouchers. Laboratory access and assistance was provided by the "Service de systématique moléculaire" of the Muséum national d'Histoire naturelle (CNRS UMS 2700).

REFERENCES

BAKKER T.C.M. \& SEVENSTER P., 1988. - Plate morphs of Gasterosteus aculeatus Linnaeus (Pisces: Gasterosteidae): comments on terminology. Copeia, 3: 659-663.
BARRETT R.D.H., 2010. - Adaptative evolution of lateral plates in three-spined stickleback Gasterosteus aculeatus: a case study in functional analysis of natural variation. J. Fish. Biol., 77: 311-328.
BELL M.A., 2001. - Lateral plate evolution in the threespine stickleback: getting nowhere fast. Genetica, 112: 445-461.
BERTIN L., 1925. - Recherches bionomiques, biométriques et systématiques sur les épinoches (Gastérostéidés). Ann. Inst. Océanogr. Monaco, 2: 1-204.
BIANCO P.G., 2014. - An update on the status of native and exotic freshwater fishes of Italy. J. Appl. Ichthyol., 30: 62-77.
CANO J.M., MÄKINEN H.S., LEINONEN T., FREYHOF J. \& MERILÄ J., 2008. - Extreme neutral genetic and morphological divergence supports classification of Adriatic three-spined stickleback (Gasterosteus aculeatus) populations as distinct conservation units. Biol. Conserv., 141: 1055-1066.
CUVIER G., 1829. - Le Règne animal, distribué d'après son Organisation, pour servir de base à l'Histoire naturelle des Animaux et d'Introduction à l'Anatomie comparée. 406 p. Paris: Deterville.
DARRIBA D., TABOADA G.L., DALLO R. \& POSADA D., 2012. - jModeltest 2: more models, new heuristics and parallel computing. Nat. Methods, 9: 772.
DENYS G.P.J., DETTAI A., PERSAT H., HAUTECOEUR M. \& KEITH P., 2014. - Morphological and molecular evidence of three species of pikes Esox spp. (Actinopterygii, Esocidae) in France, including the description of a new species. C. R. Biol., 337: 521-534.
ESCHMEYER W.N. (ed)., 2014. - Catalog of Fishes: genera, species, references. (http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp). Electronic version accessed 15 Apr. 2014.
FROESE R. \& PAULY D., 2014. - FishBase. World Wide Web electronic publication (www.fishbase.org). Version accessed Jun. 2014.
GEIGER M.F., HERDER F., MONAGHAN M.T. et al. [33 authors], 2014. - Spatial heterogeneity in the Mediterranean biodiversity hotspot affects barcoding accuracy of its freshwater fishes. Mol. Ecol. Res., 14: 1210-1221.
HIGUCHI M., SAKAI H. \& GOTO A., 2014. - A new threespine stickleback, Gasterosteus nipponicus sp. nov. (Teleostei: Gasterosteidae), from the Japan Sea region. Ichthyol. Res., 61: 341351.

IGLÉSIAS S.P., 2012. - Actinopterygians from the North-eastern Atlantic and Mediterranean (A natural classification based on collection specimens, with DNA barcodes and standardized photographs), Volume I (plates), Provisional version 08, 01 Apr. 2012.245 p.http:/www.mnhn.fr/iccanam.

KEITH P., PERSAT H., FEUNTEUN E. \& ALLARDI J., 2011. Les Poissons d'eau douce de France. 552 p. Collection Inventaires et Biodiversités. Mèze: Biotope Éditions, Paris: Publications scientifiques du Muséum.
KOTTELAT M., 1997. - European freshwater fishes. An heuristic checklist of the freshwater fishes in Europe (exclusive of former USSR), with an introduction for non-systematists and comments on nomenclature and conservation. Biol. Brat. Section Zool., 52(suppl. 5): 1-271.
KOTTELAT M. \& FREYHOF J., 2007. - Handbook of European Freshwater Fishes. 646 p. Cornol: Publication Kottelat.
LE ROUZIC A., ØSTBYE K., KLEPAKER T.O., HANSEN T.F., BERNATCHEZ L. SCHLUTER D. \& VØLLESTAD L.A., 2011. - Strong and consistent natural selection associated with armour reduction in sticklebacks. Mol.Ecol., 20: 2483-2493.
LEINONEN T., McCAIRNS R.J.S., HERCZEG G. \& MERILÄ J., 2012. - Multiple evolutionary pathways to decreased lateral plate coverage in freshwater threespine sticklebacks. Evolution, 66: 3866-3875.
MÄKINEN H.S. \& MERILÄ J., 2008. - Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe - Evidence for multiple glacial refugia. Mol. Phylogenet. Evol., 46: 167-182.
MÄKINEN H.S., CANO J.M. \& MERILÄ J., 2006. - Genetic relationships among marine and freshwater populations of the European three-spined stickleback (Gasterosteus aculeatus) revealed by microsatellites. Mol.Ecol., 15: 1519-1534.
MERILÄ J., 2013. - Nine-spines stickleback (Pungitius pungitius): an emerging model for evolutionary biology research. Ann. N.Y. Acad. Sci., 1289: 18-35.
MÜNZING J., 1962. - The evolution of variation and distributional patterns in European populations of the three-spined stickleback, Gasterosteus aculeatus. Evolution, 17: 320-332.

ORTÍ G., BELL M.A., REIMCHEN T.E. \& MEYER A., 1994. Global survey of mitochondrial DNA sequences in the threespine stickleback: evidence for recent migrations. Evolution, 48(3): 608-622.
PADIAL J.M., MIRALLES A., DE LA RIVA I. \& VENCES M., 2010. - The integrative future of taxonomy. Front. Zool., 7: 1-16.
RAEYMAEKERS J.A.M., VAN HOUDT J.K.J., LARMUSEAU M.H.D., GELDOF S. \& VOLCKAERT F.A.M., 2007. - Divergent selection as revealed by P_{ST} and QTL-based F_{ST} in threespined stickleback (Gasterosteus aculeatus) populations along a coastal-inland gradient. Mol.Ecol., 16: 891-905.
RATNASINGHAM S. \& HEBERT P.D.N., 2007. - BOLD: The Barcode of Life Data System (www.barcodinglife.org). Mol. Ecol. Notes, 7: 355-364.
RONQUIST F., TESLENKO M., VAN DER MARK P., AYRES D.L., DARLING A., HÖHNA S., LARGET B., LIU L., SUCHARD M.A. \& HUELSENBECK J.P., 2012. - MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Syst. Biol., 61: 539-542.
TAMURA K., STECHER G., PETERSON D., FILIPSKI A. \& KUMAR S., 2013. - MEGA6: Molecular evolutionary genetics analysis Version 6.0. Mol. Biol. Evol., 30: 2725-2729.
TAUTZ D., ACTANDER P., MINELLI A., THOMAS R.H. \& VOGLER A.P., 2003. - A plea for DNA taxonomy. Trends Ecol. Evol., 18, 2: 70-74.
WOLTMANN I.A. \& BERG M., 2013. - Morphologie, Morphometrie und Verbreitung von Gasterosteus spec. in Nordwestdeutschland. 10. Tagung der Gesellschaft für Ichthyologie (GfI), Bonn, conference abstract: 46 .
Annexe 1 - List of vouchers used with BOLD and GenBank Accession numbers.

Morphological identification	Country	Locality (Drainage)	Collection Number	BOLD samples Ids (for new sequences)	GenBank accession numbers	Presence of plates
Gasterosteus aculeatus	Alaska	Chuckchi Sea	CAS 230129-01 and 230129-02		HQ712384-712385	yes
Gasterosteus aculeatus	Arctic	Barents Sea	ZMUB20544, 20547 and 20548			yes
Gasterosteus aculeatus	Canada	Red Cape (Saint Lawrence)	ROM-80233		$\underset{\text { EU524631, EU524633, EU524634, }}{\text { EU5 }}$	yes
Gasterosteus aculeatus	Canada	Malbaie (Saint Lawrence)	ROM-80264		EU524636, EU524637, EU524638, EU524639	yes
Gasterosteus aculeatus	Canada	Trinite	ROM-80256		EU524066	yes
Gasterosteus aculeatus	Canada	Gulf Saint Lawrence	ARC 26106 and 26590		KC015395, KC015397	yes
Gasterosteus aculeatus	Canada				KC015396, KC015398	yes
Gasterosteus aculeatus	Czech Republic			IFCZE1046-1048, 1386		yes
Gasterosteus aculeatus	Denmark	Baltic Sea	ZFMK:ICH:53588	Ex67B2		no
Gasterosteus aculeatus	France	Taute (Douve)	MNHN 2013-1299	FFFtag 12285-12286, 12321- 12322		yes
Gasterosteus aculeatus	Germany	Rhine	ZFMK:ICH:58260	SCEx01E12		yes
Gasterosteus aculeatus	Germany	Elbe	FSJF:1215	Ex32H1		yes
Gasterosteus aculeatus	Japan	Tanfilyeva Island	UW 41883		GU440325	yes
Gasterosteus aculeatus	Latvia	Baltic Sea	ZFMK:ICH:50541-50542	Ex64C2-3		yes
Gasterosteus aculeatus	Lithuania	Minja	ZFMK:ICH:59256-59257	Ex87G12, Ex87H1		yes
Gasterosteus aculeatus	Netherlands	North Sea	ZFMK:ICH:50077 to 50080	Ex64A1; Ex64A2; Ex64A3; Ex64A4		no
Gasterosteus aculeatus	Poland	Vistula	ZFMK:ICH:P124	Ex63D8		yes
Gasterosteus aculeatus	Poland	Vistula	ZFMK:ICH:P123	Ex63D9		no
Gasterosteus aculeatus	Poland	Baltic Sea	ZFMK:ICH:53736 to 53738	Ex67F6-8		yes
Gasterosteus aculeatus	Russia	Karelia	ZFMK:ICH:53254	Ex66F9		yes
Gasterosteus aculeatus	Sweden	Atlantic Ocean	NRM52018, NRM52283	NRM52018, 52283		yes
Gasterosteus aculeatus	UK	North Sea	ZFMK:ICH:55427	Ex70G2, Ex70G3		yes
Gasterosteus aculeatus	United States	Columbia River	UW 49025		JQ354102	yes
Gasterosteus aculeatus	Greece	Acheron	ZFMK:ICH:55875 to 55879		KJ553335, KJ553404, KJ5534499, KJ553568, KJ553654	yes
Gasterosteus gymnurus	Croatia	Mirna	FSJF:198		KJ553426	no
Gasterosteus gymnurus	Croatia	Neretva	FSJF:2258 and 2261		KJ553312, KJ553538, KJ553600	no
Gasterosteus gymnurus	France	Sorgues (Rhone)	MNHN 2013-1303	EPI7-9, FFFtag12293-12294, 12324		no
Gasterosteus gymnurus	France	Vaccarès (Rhone)	UCBLZ 2012.9.498	EPIA1-3		no
Gasterosteus gymnurus	France	Font Estramar	MNHN 2013-0615	FFFtag 16507-16508		no
Gasterosteus gymnurus	France	Massane	MNHN 2013-0672	FFFtag 16621-16622		no
Gasterosteus gymnurus	France	Brague	ZFMK:ICH:55611		KJ553504	no
Gasterosteus gymnurus	France	Vouge (Rhone)	MNHN 2013-1300	FFFtag12287-12288		no

Annexe 1 - Continued.

Morphological identification	Country	Locality (Drainage)	Collection Number	BOLD samples Ids (for new sequences)	GenBank accession numbers	Presence of plates
Gasterosteus gymnurus	France	Rhone	MNHN 2013-1309; ZFMK:ICH:55616	FFFtag12305	KJ553372, KJ553513, KJ553518, KJ553624, KJ553630	no
Gasterosteus gymnurus	France	Termi (Adour)	MNHN 2013-1285	FFFtag 12257-12258		no
Gasterosteus gymnurus	France	Soptier (Dordogne)	MNHN 2013-1290	FFFtag 12267-12268		no
Gasterosteus gymnurus	France	Livenne	MNHN 2013-1292	FFFtag12271		no
Gasterosteus gymnurus	France	Ligneron (Vie)	MNHN 2013-807	FFFtag 10991-10992		no
Gasterosteus gymnurus	France	Falleron	MNHN 2013-804	FFFtag10985		no
Gasterosteus gymnurus	France	Nièvre (Loire)	MNHN 2013-813	FFFtag 12205-12206		no
Gasterosteus gymnurus	France	Blaise (Seine)	MNHN 2014-0010	FFFtag 12313-12314		no
Gasterosteus gymnurus	France	Coat Conan stream (Brittany)		BPS-0807		no
Gasterosteus gymnurus	France	Aronde (Seine)	MNHN 2013-1284	FFFtag 12255-12256		no
Gasterosteus gymnurus	France	Ourcq (Seine)	MNHN 2013-1291	FFFtag 12269-12270		no
Gasterosteus gymnurus	France	Ornain (Seine)	MNHN 2013-1307	FFFtag 12301-12302		no
Gasterosteus gymnurus	France	Evoissons (Somme)	MNHN 2013-0808	FFFtag 10994-10995		no
Gasterosteus gymnurus	France	Bresle	MNHN 2013-1304	FFFtag 12295-12296, 12325		no
Gasterosteus gymnurus	France	Scarpe (Escaut)	MNHN 2013-0613	FFFtag 10975, 16501		no
Gasterosteus gymnurus	France	Ruisseau des 4 Moulins (Meuse)	MNHN 2013-1286	FFFtag 12259-12260, 12323		no
Gasterosteus gymnurus	France	Doller (Rhine)	MNHN 2013-1306	FFFtag 12299-12300		no
Gasterosteus gymnurus	France	Riedbrunen (Rhine)	MNHN 2013-1287	FFFtag 12261-12262, 12318		no
Gasterosteus gymnurus	France	Souffel (Rhine)	UCBLZ 2012.9.521	EPIB1-3		no
Gasterosteus gymnurus	Germany	Rhine	ZFMK:ICH:58255	SCEx02G4, SCEx01E11		no
Gasterosteus gymnurus	Greece	Aris	ZFMK:ICH:55737 to 55741		KJ553405, KJ553461, KJ553493, KJ553494, KJ553560	no
Gasterosteus gymnurus	Greece	Pamisos	ZFMK:ICH:55869		KJ553329	no
Gasterosteus gymnurus	Greece	Louros	ZFMK:ICH:55870 to 55874		KJ553361, KJ553409, KJ553467, KJ553532, KJ553563	no
Gasterosteus gymnurus	Greece	Sperchios	ZFMK:ICH:55880 to 55882		KJ553485, KJ553506, KJ553578	no
Gasterosteus gymnurus	Italy	Fondi	ZFMK:ICH:59082 to 59084		KJ553470, KJ553622, KJ553629	no
Gasterosteus gymnurus	Italy	Liri	ZFMK:ICH:59101 to 59106		KJ553330, KJ553336, KJ553460, KJ553484, KJ553603, KJ553623	no
Gasterosteus gymnurus	Portugal	Minho	ZFMK:ICH:54867 to 54869	Ex83F12, EX83G1-2		no
Gasterosteus gymnurus	Turkey	Dalamian	FSJF:2585		KJ553479, KJ553561, KJ553628	no
Gasterosteus gymnurus	UK	Thames	ZFMK:ICH:53637 and 53668	Ex67C7, Ex67C12		no
Gasterosteus gymnurus	UK	North Sea	ZFMK:ICH:55426-55427 and 53692	Ex67D11, Ex70F11, Ex70G1, Ex70G6		no
Gasterosteus islandicus	Iceland	Atlantic Ocean	ZFMK:ICH:59275-59276	Ex88A3-4		no
Gasterosteus islandicus	Iceland	Atlantic Ocean	ZFMK:ICH:59277-59278	Ex88A5-6		yes

Annexe 1 - Continued.

Morphological identification	Country	Locality (Drainage)	Collection Number	BOLD samples Ids (for new sequences)	GenBank accession numbers	Presence of plates
Gasterosteus sp.	Albania	Buna	P6V 83689 (field label, in NM collections)		KJ553385	
Gasterosteus sp.	France	Vingeanne (Rhone)	MNHN 2014-0017	EPI10-12		
Gasterosteus sp.	France	Brague	MNHN 2014-0018	EPI1-3		
Gasterosteus sp.	France	Rhone	MNHN 2014-0019	EPI15		
Gasterosteus sp.	France	Touvre (Charente)	MNHN 2014-0020	EPI4-6		
Gasterosteus sp.	Georgia	Bzyp	K13-3 (field label, in ZIN collections)	Ex7188-10		
Gasterosteus sp.	Ireland	Suir	ZFMK:ICH:54896	Ex79F5		
Gasterosteus sp.	Italy	Mediterranean Sea	GAS1 to 4 (field label, in ZFMK collections)	Ex91D3-6		
Gasterosteus sp.	Norway	North Sea	ZFMK:ICH:50107-50108	Ex64A11-12		
Gasterosteus sp..	Russia	Bashly-chay	Dar 66 (field label, in ZIN collections)	Ex23G12, Ex23H1, WH02G6		
Gasterosteus sp.	Russia	Caspian Sea	ZIN 54178	EEFF041		
Gasterosteus sp.	Ukraine	Dniestr	MY-1 G.a. (field label, in ZIN collections)	EEFF087		
Gasterosteus wheatlandi					$\begin{gathered} \text { EU524067, EU524640, EU524641, } \\ \text { EU524642, KC015861 } \\ \hline \end{gathered}$	
Apeltes cuadracus					EU524443	
Pungitius pungitius	France	Evoissons (Somme)	MNHN 2013-0809	FFFtag 10997		
Culaea inconstans					JX517193	
Spinachia spinachia				BPS-1348		

[^0]: (1) Muséum national d'Histoire naturelle, Département des milieux et peuplements aquatiques, UMR BOREA MNHN-CNRS 7208IRD 207-UPMC-UCBN, 57 rue Cuvier CP26, 75005 Paris, France. [keith@mnhn.fr]
 (2) Zoologisches Forschungsmuseum Alexander Koenig, Leibniz Institute for Animal Biodiversity, Adenauerallee 160, 53113 Bonn, Germany. [m.geiger@zfmk.de]
 (3) Écologie des hydrosystèmes naturels et anthropisés, LEHNA UMR 5023, Bât. Forel, Université Claude Bernard Lyon 1, 69622 Villeurbanne CEDEX, France. [Henri.Persat@univ-lyon1.fr]
 (4) Muséum national d'Histoire naturelle, Département systématique et évolution, UMR ISYEB 7205 MNHN-CNRS-UPMC-EPHE, 57 rue Cuvier CP26, 75005 Paris, France. [adettai@mnhn.fr]

 * Corresponding author [gael.denys@mnhn.fr]

