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ABSTRACT

Aim Species attributes are often used to explain diversity patterns across

assemblages/communities. However, repeated species co-occurrences can gener-

ate spatial pattern and strong statistical relationships between aggregated attri-

butes and richness in the absence of biological information. Our aim is to

increase awareness of this problem.

Location North America.

Methods We generated empirical species richness patterns using two data

structures: (1) birds gridded from range maps and (2) tree communities from

the US Forest Service’s Forest Inventory and Analysis. We analysed richness

using linear regression, regression trees, generalized additive models, geographi-

cally weighted regression and simultaneous autoregression, with ‘random

intrinsic variables’ as predictors generated by assigning random numbers to

species and calculating averages in assemblages. We then generated simulations

in which species with cohesive or patchy distributions are placed with respect

to the North American temperature gradient with or without a broad-scale

richness gradient. Random intrinsic variables are again used as predictors of

richness. Finally, we analysed one simulated scenario with random intrinsic

variables as both response and predictor variables.

Results The models of bird and tree richness often explained moderate to large

proportions of the variance. Regression trees, geographically weighted regression

and simultaneous autoregression were very sensitive to the problem; generalized

additive models were moderately affected, as was multiple regression to a lesser

extent. In the virtual data, the variance explained increased with increasing species

co-occurrences, but neither range cohesion, a richness gradient nor spatial auto-

correlation in predictors had major impacts on the variance explained. The prob-

lem persisted when the response variable was also a random intrinsic variable.

Main conclusions Repeated species co-occurrences can generate strong spuri-

ous relationships between richness and aggregated species attributes. It is

important to realize that models utilizing assemblage variables aggregated from

species-level values, as well as maps illustrating their spatial patterns, cannot be

taken at face value.
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INTRODUCTION

Community ecology, geographical ecology, ecological bio-

geography and some aspects of macroecology and macroevo-

lution frequently utilize metrics generated across

communities or assemblages. One fundamental pattern

shared across all of these fields is spatial variation in species

richness, which can be quantified in grains ranging from

small plots, for many ecological questions, to entire conti-

nents, for biogeographical and macroevolutionary questions.

Beginning in the 1960s (Pianka, 1967), analyses of non-insu-

lar, broad-scale diversity gradients primarily focused on

quantifying relationships with components of the environ-

ment, which depending on the grain/extent of the analysis

and the taxon, normally included one or more measures of

climate, often supplemented with non-climatic variables such

as, inter alia, area, topography, productivity, soil or water

properties, distance from source pools, or geological history

[see Field et al. (2009) for a compilation of case studies and

the variables that have been considered]. A major concern of

these analyses has been ranking the ‘importance’ of potential

drivers of diversity, generally by comparing regression coeffi-

cients or the relative statistical explanatory power of predic-

tors. Irrespective of the specific metrics, most analyses

utilized extrinsic predictor variables, defined as variables gen-

erated independently of the species in the plots, transects or

grid cells. The majority of the environmental predictors, par-

ticularly climatic variables, also contain strong spatial struc-

ture, which were presumed to directly or indirectly generate

the species richness patterns. There is a very extensive litera-

ture associated with the analysis of such spatially structured

data (e.g. Ripley, 1981; Haining, 2003; Dale & Fortin, 2014).

Recently, there has been increased interest in the analysis

of intrinsic variables, defined as variables calculated from

attributes of the species known or assumed to be present in

each assemblage or community. Two that have been used for

some time as response variables in assemblage-based analyses

include body size (with particular reference to Bergmann’s

Rule; Blackburn & Hawkins, 2004; Diniz-Filho et al., 2007;

Olalla-T�arraga et al., 2010; Slavenko & Meiri, 2015) and

range size (with reference to Rapoport’s Rule; Stevens, 1989;

Hawkins & Diniz-Filho, 2006; Morin & Lechowicz, 2011).

Other intrinsic variables, such as metrics generated using the

position of each species in a phylogeny, have also been corre-

lated with species richness patterns, often in combination

with extrinsic predictors (Kerr & Currie, 1999; Hawkins

et al., 2005; Svenning et al., 2008; Belmaker & Jetz, 2015).

However, with the development of community phylogenetics

(Webb et al., 2002) and trait-based approaches to studying

community size and structure (Shipley, 2010), the use of

intrinsic variables as both response and predictor variables in

assemblage/community analyses is rapidly expanding (e.g.

Swenson & Enquist, 2007; Jansson & Davies, 2008; Mayfield

et al., 2010; Swenson et al., 2012, 2016; Dubuis et al., 2013;

Stuart-Smith et al., 2013; Hawkins et al., 2014; Leing€artner

et al., 2014; Albouy et al., 2015; Belmaker & Jetz, 2015;

Blonder et al., 2015; Enquist et al., 2015; Finegan et al.,

2015; Godoy et al., 2015; Honorio Coronado et al., 2015;

Lima-Mendez et al., 2015; Seymour et al., 2015; �S�ımov�a

et al., 2015; Stevens & Gavilanez, 2015; Zhang et al., 2015;

Biswas et al., 2016; Boucher-Lalonde et al., 2016; Gonz�alez-

Maya et al., 2016; Kimberly et al., 2016; Marin & Hedges,

2016; Pfautsch et al., 2016; de la Riva et al., 2016). The

assumption or hypothesis underlying all such analyses is that

species attributes sort geographically according to their

responses to the abiotic and biotic environment. Here, we

show that these biologically meaningful assumptions cannot

be evaluated from standard statistical associations of intrinsic

variables measured at the community or assemblage level.

Patterns of species richness are by their nature spatial,

which raises a number of statistical and inferential issues.

The issue of spatial autocorrelation has been known to ecol-

ogists at least since Legendre (1993), as has the problem that

collinearity among predictors can be driven by a joint envi-

ronmental driver. However, a third ubiquitous and poten-

tially serious analytical issue related to the use of intrinsic

variables in spatial analysis appears to have largely escaped

notice. We illustrate with bird range maps, plot data for

trees, and biologically plausible simulated data sets an analyt-

ical problem associated with the use of intrinsic variables in

assemblage- and community-focused analyses conducted in a

spatial context. The problem arises whether the intrinsic vari-

ables are predictor or also as response variables, although

our primary focus is on analyses of species richness as the

response variable.

A specific flavour of the problem was reported by Zelen�y

& Schaffers (2012), who found that mean Ellenberg indicator

values, an intrinsic community-based variable used in vegeta-

tion analysis, ‘inherited’ information about compositional

similarity across communities, which then resulted in overes-

timates of explained variance in correspondence analyses as

well as in regressions with species richness and inflated Type

I error rates. They referred to this as a ‘similarity issue’

caused by the fact that the same species often occur in multi-

ple communities. More recently, Peres-Neto et al. (2016)

reported biased estimates of regression coefficients and

inflated Type I error rates between intrinsic community-

based mean trait values and environmental variables in the

context of trait-environment analysis used in community

ecology. The problem does not require that the community

data have explicit spatial structure, only that some species

occur in more than one community to the extent that some

co-occurrences are repeated (hereafter referred to as the co-

occurrence problem). However, we might expect a priori that

the problem will be especially widespread in spatially struc-

tured assemblage data if there is any overlap of species distri-

butions caused by species-level responses to environmental

gradients, which will be rampant in data sets covering broad

areas. To illustrate the severity of the problem in two widely

used types of data we first present analyses of the species

richness patterns of North American birds in their breeding

ranges derived from range maps and tree community
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richness in plots sampled by the United States Forest Ser-

vice’s Forest Inventory and Analysis (FIA). The statistical

models we generate use common linear, nonlinear, machine-

learning and spatial regression methods to quantify the

strengths of associations among cell/plot species richness as

the response variable and sets of ‘random intrinsic variables’

as predictors, generated by assigning random numbers as

species attributes and calculating their cell/plot means. These

attributes could represent any quantitative physiological,

morphological, ecological, behavioural or phylogenetic vari-

able generated from any taxon-level assignment of values.

In a second set of analyses, we explore four potential

influences on the problem of particular relevance to ecolo-

gists and biogeographers, focusing on (1) levels of repeated

species co-occurrences, (2) the spatial coherence of those

occurrences, (3) the existence of a strong broad-scale rich-

ness gradient and (4) the presence of spatial autocorrelation

in the predictors. For this, we develop a set of simulated

North Americas occupied by virtual species, to which each

species is given sets of random attributes as with the two

data sets comprising real species. With these random intrin-

sic variables as predictors we model the case in which a

strong species richness gradient is generated by species with

cohesive ranges responding to the temperature gradient

found on the continent, followed by the case in which spe-

cies still respond to temperature but ranges lack coherence.

Although less likely in real data of moderate to large geo-

graphical extent, we also generate data sets without broad-

scale richness gradients using species with either cohesive or

patchy ranges. Finally, we use the first of the simulated sce-

narios to analyse community-level metrics in which random

intrinsic variables comprise both response and predictor vari-

ables. The latter analyses illustrate the potential extent of the

problem when all variables are intrinsic and generated from

data containing repeated species co-occurrences.

MATERIALS AND METHODS

North American birds

Distribution maps were downloaded from BirdLife Interna-

tional (http://www.birdlife.org/datazone/info/spcdownload,

accessed in June, 2014), and breeding ranges of the 1913

non-marine bird species in the region were extracted for

analysis. The maps were binned at a 0.5° 9 0.5° grain in a

grid extending from the northern tip of Greenland to

Panama, and the presence–absence matrix (PAM) of 14,662

grid cells each containing at least 15 bird species was created.

As intrinsic predictors of species richness we generated ran-

dom intrinsic variables, created by first assigning a real num-

ber between 0 and 1 taken from a uniform random

distribution as a species attribute to each bird species. We

then calculated means for each cell in the grid by averaging

these random species attribute values for the birds found in

the cell. This two-step process was repeated 100 times to

generate a population of 100 random intrinsic variables for

potential inclusion in statistical models of richness. Range

map-based patterns of species richness and species co-occur-

rences invariably have strong spatial autocorrelation due to

the high cohesiveness of most range maps. Data of this type

are common in ecological biogeography and geographical

ecology.

Trees in the conterminous United States

We also generated a PAM for the 304 gymnosperm and

angiosperm species in 104,588 plots (each 0.07 h) in the For-

est Inventory and Analysis database (http://www.fia.fs.fed.us/,

accessed in January, 2012) that contained at least three spe-

cies and were in the conterminous USA. As with the birds,

we generated 100 random intrinsic variables by repeatedly

assigning random species attributes to all species in the data

set and averaging their values for species present in each

plot, and these random intrinsic variables were then used as

predictors in statistical models of tree species richness.

Because the data are plot-based counts, species ranges are

non-cohesive and expected to generate a substantially noisier

and less spatially autocorrelated richness pattern, although

distributions are by no means random due to trees’

responses to spatially structured environmental drivers oper-

ating across a range of scales. This is the data type used in

community ecology, community phylogenetics and fre-

quently in analyses of altitudinal diversity gradients.

Virtual North America

We simulated species distributions in North America by

defining their tolerances to annual mean temperature [Bio 1

in WorldClim (Hijmans et al., 2005)] within the ‘virtual-

species’ package in R (Leroy et al., 2016). To generate a spe-

cies distribution, we simulated a Gaussian response to

temperature, defined by an optimum value and a thermal

tolerance delimiting 99% of the area under the Gaussian

curve. We used this response to temperature to project the

probability of occurrence of the species in North America.

Next, we converted probabilities of occurrence into pres-

ence–absence with a probabilistic conversion. Lastly, we

applied dispersal limitation with two approaches: (1) a non-

cohesive approach where a species distribution was limited

to a defined number of single-pixel habitat patches across

North America; and (2) a cohesive approach where species

distributions were limited to a cohesive range of size identi-

cal to its non-cohesive counterpart. We expected the statisti-

cal problem to be most severe in the presence of a richness

gradient comprising species with cohesive ranges due to a

higher level of repeated species co-occurrences.

To sample species’ optimal temperatures, we defined two

scenarios: (1) a scenario with a richness gradient (optimal

temperatures more likely to be sampled at higher tempera-

tures), and (2) a scenario with no richness gradient (optimal

temperatures were randomly sampled along the temperature

gradient). Thermal tolerances were randomly sampled
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between 5° and 45 °C for both scenarios. These two scenar-

ios were designed to test the co-occurrence effect on models

where there is a link between richness and a spatially struc-

tured environmental driver (temperature), and where there is

no link between richness and the environment, although the

latter case is highly unlikely in any real data set. For each

scenario, we generated 2000 species, and we repeated the

process five times with different numbers of suitable habitat

patches each time (250, 500, 1000, 2500 and 5000). We

expected increases in numbers of available habitat patches to

increase the degree of co-occurrence among species. We

characterized co-occurrence patterns by estimating the

C-score (Stone & Roberts, 1990) for each data set/scenario.

The C-score describes the average pairwise value of species

associations in a PAM, ranging from a lower bound of 0

(maximum aggregation) to an undefined upper bound

(Gotelli, 2000). Lower C-score values thus indicate higher

average co-occurrence across all species pairs. Given that a

particular C-score is specific to the PAM being analysed, we

used a modified version that normalizes the C-score accord-

ing to a general maximum derived from the data and thus

can be compared across data sets (Dormann et al., 2008). To

summarize, to facilitate interpretation of the results for the

bird and tree data, neither of which is replicated, we simu-

lated a total of 20 virtual North Americas (two richness sce-

narios 9 two range cohesiveness scenarios 9 five numbers

of habitat patches).

As with the bird data, we generated a PAM for each sce-

nario across the North American grid and generated 100 ran-

dom intrinsic variables by assigning random numbers as

species attributes and calculating assemblage means. These

were selected as predictors of species richness and for one

scenario as the response variable as well.

Statistical analyses

A range of linear and non-linear modelling methods exist for

analysing assemblage/community data focused on patterns of

diversity, from which we selected five that have been com-

monly used or are coming into common usage: ordinary

least squares linear regression (MR), regression trees (RT),

generalized additive models (GAM), geographically weighted

regression (GWR) and simultaneous autoregression (SAR).

These methods vary considerably in their underlying assump-

tions and their ability to capture non-linear/non-stationary

relationships, both of which are widespread in broad-scale

ecological data sets (Bini et al., 2009) including our real and

virtual data. Because of the non-stationarity in the data, we

selected geographically weighted regression as our primary

choice of a spatially explicit method, as it is explicitly

designed to describe spatially varying relationships among

variables. Even so, because SAR is used by many workers, we

evaluated its sensitivity to the co-occurrence problem using

the bird data, the most strongly spatially autocorrelated of

the data sets. When evaluating the results using this method,

it should be remembered that the coefficients are also

sensitive to non-stationarity of the relationships independent

of repeated species co-occurrences [see Fotheringham et al.

(2002), Bini et al. (2009), Beale et al. (2010) and Hawkins

(2012) for discussion of the assumptions underlying this

class of spatially explicit methods], so interpretation of the

results contains some ambiguity.

The utilization of geographically weighted regression is

also compromised by the fact that we focused on a single

bandwidth in the bird and tree data sets, 250.6 and 100.4

respectively, generated by a preliminary evaluation of the

method in the Geographically Weighted Regression module

in the Spatial Analysis in Macroecology program

(https://www.ecoevol.ufg.br/sam/). Model outputs are sensi-

tive to the bandwidth, and selection of appropriate band-

widths is itself a complex statistical issue (Cho et al., 2010).

Thus, changing model parameters will change the results

independently of the underlying structure of the data, and

the results presented here represent one of many possible

outcomes. Even so, it provides a warning that the method

may be sensitive to the problem we describe in this paper.

Our rationale for selecting multiple modelling approaches

was to evaluate the extent to which the existing literature is

likely affected by the co-occurrence problem. If the analytical

methods we evaluate are affected, it is likely that many other

regression methods are affected as well. At the very least, we

cannot rule out that possibility without examining all known

methods, which is beyond the scope of this paper. Zelen�y &

Schaffers (2012) have already demonstrated that correspon-

dence analysis and correlation are sensitive to the problem.

For the real data sets (birds and trees), we generated sets

of regression models of richness using combinations of ran-

dom intrinsic variables as predictors. Models using each

method were generated with one, three or five predictors,

which is within the range of the number of predictors evalu-

ated by researchers. The sample size of the birds comprised

the 14,662 cells containing at least 15 species. For the trees,

computational limitations required randomly sampling

25,000 plots supporting at least three species. The models of

varying complexity were generated 100 times, except in the

case of the regression trees, for which 200 trees were gener-

ated in each case. Model iterations used each random intrin-

sic variable in the one-predictor models or randomly selected

combinations of variables in the three- and five-predictor

models. Evaluation of model fit comprised coefficients of

determination (R2), or the model average R2 in the case of

geographically weighted regression. We do not explicitly eval-

uate regression coefficients for four of the five regression

types, as they have no biological meaning with respect to sets

of random predictors and not all of the methods generate

them. The exception is the SAR models, since they are

designed to account for the spatial autocorrelation in data

and can generate high coefficients of determination irrespec-

tive of the nature of the predictors; further, it is the more

precise coefficients generated by the method that justify its

use (Beale et al., 2010). Consequently, for the SARs we deter-

mined how many of the coefficients across the models were
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significantly different from 0. If the models often generate

spurious coefficients it indicates that controlling for spatial

autocorrelation in the data does not remove the bias gener-

ated by the co-occurrence problem. This also would repre-

sent one line of evidence that the problem we are evaluating

in this paper is not simply due to the spatial autocorrelation

in the data, and we must look elsewhere for an explanation.

Analysis of the 20 virtual scenarios comprised first fitting

randomly selected sets of five random intrinsic variables to

species richness. Given the extremely strong fits found using

geographically weighted regression of the bird data and the

large number of spurious regression coefficients in the simul-

taneous autoregression models (see Results section), making

the sensitivity of both methods to the problem obvious, we

excluded them from the analysis of the simulated data. As

before, each model was repeated 100 times using random

combinations of random intrinsic variables, and coefficients

of determination were tallied.

The final analysis used one random intrinsic variable as a

response variable and five random intrinsic variables as pre-

dictors, derived from data in the 5000-patches, cohesive

ranges scenario with a strong richness gradient. We repeated

the analysis ten times with arbitrarily chosen response vari-

ables, each replicated 100 times with random combinations of

predictors. Here, we present the ‘best case’ and ‘worst case’

results, those with the lowest and highest mean coefficients of

determination among the sets of models of the 10 repetitions.

Running models for all 100 random intrinsic variables as

response variables would expand the range of possible results,

but the results for 10 are sufficient to illustrate the potential

severity of the problem when using intrinsic variables derived

from species presences as response variables in assemblage/

community analysis with strong spatial structure.

RESULTS

Bird species richness

The richness gradient generated by the breeding range maps

is strongly spatially patterned (Fig. 1a), as is already well

known (e.g. Cook, 1969; Orme et al., 2005; Hawkins et al.,

2006). Further, means generated from random attributes can

contain obvious spatial structure across multiple scales, as

illustrated using three examples (Fig. 1b–d). Although the

details of the spatial patterns varied among the random

intrinsic variables, they tended to share a common structure

of positive autocorrelation at small spatial scales and negative

autocorrelation at very large scales, as did the species rich-

ness gradient (Fig. 2a). Further, statistical models of richness

had moderate to strong explanatory power across the model

types (Table 1). Geographically weighted regression was espe-

cially sensitive to covariation between random predictors and

richness, and even a single predictor variable generated very

strong model fits. Simultaneous autoregression similarly

showed evidence of strong sensitivity; all 100 models gener-

ated at least one coefficient significant at P < 0.01, and in 26

cases all five coefficients were significant (see Appendix S1 in

Supporting Information). Because of their ability to capture

non-linear relationships, regression trees and generalized

additive models generated moderate to very strong models,

despite the complete lack of biological information in the

predictors. Linear regression, due to the constraint of fitting

linear relationships, generated the weakest models on aver-

age, but even a single random predictor could sometimes

explain over half of the variance in richness (maximum

r2 = 0.518).

Tree species richness

The richness pattern for FIA plots is also spatially patterned,

albeit noisy (Fig. 1e), as expected. The range of richness val-

ues is low, also expected from the very small plot size

(0.07 ha). At least some of the random intrinsic variables

also contain obvious spatial structure (Fig. 1f–h), and all

contain at least some small-scale positive autocorrelation

with low to moderate levels of broad-scale structure in many

of them (Fig. 2b). Single predictor models of richness are in

all cases weaker than for the bird data, but regression trees

and generalized additive models were sensitive to the co-

occurrence problem irrespective of the number of predictors

(Table 2). Geographically weighted regression was not as

strongly impacted as for the bird data, but R2s remained

fairly high. In contrast, linear regression models were reason-

ably robust, perhaps only because they are constrained to

describe linear relationships. Our general finding is that

although both data sets are affected by the co-occurrence

problem, there are differences with respect to their sensitiv-

ity, and these differences could at least potentially reflect that

the plot data have (1) a weaker broad-scale species richness

gradient, (2) lower levels of spatial autocorrelation, and (3)

lower levels of species co-occurrences (see next section). We

explore these issues with the virtual scenarios.

Virtual North America

The simulations provided evidence that all data likely to be

analysed by biogeographers are sensitive to some extent to

the co-occurrence problem, at least for the analytical meth-

ods we examined (Fig. 3). It made rather little difference in

the average model R2s whether the data were derived from

cohesive or patchy ranges (cf. Fig. 3a,c) or if they contained

a broad-scale species richness gradient (cf. Fig. 3a,b). The

only data structure that did not generate spurious models in

at least some cases was when they are derived from patchy

species distributions in the absence of a richness gradient

(Fig. 3d), a very unlikely structure in data collected across

any moderately strong environmental gradient.

Two consistent patterns in the virtual scenarios were that

multiple regression models are less strongly impacted than

regression trees or generalized additive models, and the

problem becomes increasingly more severe with increasing

levels of repeated species co-occurrences for all analytical
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methods and three of four data structures (Fig. 3a–c). We

also note that the levels of co-occurrence in some of the vir-

tual scenarios were very similar to those found in both the

bird (Fig. 3a) and tree (Fig. 3c) data, and higher levels of

co-occurrence are found in the birds than in the trees,

undoubtedly due in part to the cohesive ranges in the

former.

Despite the results from the simultaneous regressions, it

is possible that the spatial autocorrelation found in all real

data is at least part of the problem. We examined this by
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quantifying the spatial patterns of the response and predic-

tor variables in the virtual scenarios of cohesive versus pat-

chy ranges with C-scores near 0.79 and 0.95, respectively

(see Fig. 3a,c). If spatial autocorrelation is the root of the

problem, we expect both data sets to contain broadly simi-

lar spatial patterning given that matched model fits (per-

centage of variance explained) are similar in both data sets

despite the fact that the ranges that underlie the variables

are structurally quite different.

Unsurprisingly, cohesive ranges generated similar patterns

of spatial autocorrelation between species richness and many

of the random intrinsic variables (positive short-distance and

negative long-distance autocorrelation, Fig. 4a), so it is per-

haps not surprising that model fits were very high (Fig. 3a).

However, using patchy ranges to generate a richness gradient

effectively removed the spatial pattern in the random intrin-

sic variables across all scales without affecting the pattern in

richness (Fig. 4b). Despite the almost complete spatial

decoupling of patterns in richness and the predictors, model

fits remained high (Fig. 3c). Therefore, the analytical prob-

lem can exist independently of any spatial autocorrelation in

the predictors. On the other hand, spatial patterning in the

broad sense must have a role to play when groups of species

respond similarly to an environmental gradient, as the mod-

els are minimally impacted when species do not respond to a

spatially structured environmental gradient and are patchily

distributed (Fig. 3d).

Traits as response variables

The co-occurrence problem persists when the focus of an

analysis is itself an intrinsic variable, although not as severely

(Fig. 5). In the subset of random intrinsic variables selected

as response variables, both multiple regression and general-

ized additive models were moderately impacted, whereas

regression tree models remained very strong although none

of the variables in the analysis, including the response vari-

able, carry meaningful information.

DISCUSSION

Following Zelen�y & Schaffers (2012), we find that the com-

munity-focus widely used in ecology, biogeography and

macroecology suffers from a potentially severe structural

problem with obvious ramifications. First and foremost, any

metric, whether physiological, morphological, behavioural,

functional, phylogenetic or ecological, that is generated at

the assemblage/community level by assigning values to spe-

cies and averaging them for the species present within a cell/

plot can have internal statistical relationships of no biological

significance across communities. Thus, the problem is likely

to be widespread in community-based analyses in which spe-

cies share multiple sites. Most worrying in our context is that

the statistical bias generated by repeated species co-occur-

rences among sites is not slight in most biologically plausible

Table 1 Means (and SD) of coefficients of determination (R2) of four types of statistical models of the species richness of North

American birds (see Fig. 1) across 14,662 cells in a continental grid including one, three or five ‘random intrinsic variables’ as
predictors. Each predictor variable represents mean cell values of random numbers taken from a uniform distribution between 0 and 1

and assigned to species. LR = linear regression, RT = regression trees, GAM = generalized additive models, GWR = geographically
weighted regression.

No. predictors LR RT GAM GWR

One 0.145 (0.143) 0.321 (0.087) 0.304 (0.159) 0.936 (0.004)

Three 0.310 (0.148) 0.702 (0.061) 0.584 (0.126) 0.952 (0.004)

Five 0.437 (0.114) 0.853 (0.032) 0.732 (0.074) 0.964 (0.003)

The requisite numbers of predictors were randomly selected from a population of 100 random intrinsic variables. Each model type was run with

100 combinations of predictors, or each predictor once in the one-predictor models. The regression tree values were calculated from 200 compo-

nent trees in random forest models generated in the ‘randomForest’ package in R. The simple and multiple regression models comprise linear

terms of predictors with no interactions, and the degrees of freedom for the smooth terms in the GAMs were estimated using the Generalized

Cross Validation criterion (for details see the gam function in the ‘mgcv’ R package). See the text for the details of the GWR models.

Table 2 Means (and SD) of coefficients of determination (R2) of four types of statistical models of the species richness of trees in US

Forest Service’s Forestry Inventory and Analysis plots (see Fig. 1) including one, three or five ‘random intrinsic variables’ as predictors.
Each predictor variable represents mean plot values of random numbers taken from a uniform distribution between 0 and 1 and

assigned to species. LR = linear regression, RT = regression trees, GAM = generalized additive models, GWR = geographically weighted
regression. Modelling details as in Table 1.

No. predictors LR RT GAM GWR

One 0.021 (0.025) 0.146 (0.016) 0.184 (0.036) 0.443 (0.006)

Three 0.058 (0.034) 0.444 (0.021) 0.441 (0.038) 0.465 (0.010)

Five 0.084 (0.042) 0.593 (0.020) 0.542 (0.030) 0.495 (0.012)
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scenarios, especially when multiple intrinsic variables are

involved. That sets of intrinsic variables derived from ran-

dom numbers can sometimes generate > 90% explanatory

power in statistical models of species richness in spatially

structured assemblages/communities suggests that no result

using actual traits or other attributes can be trusted, however

strong the model may be. It also follows that it is not possi-

ble to compare with confidence goodness-of-fits, regression

coefficients or other measures of variable importance or rank

in analysis involving multiple intrinsic predictors. In some

situations, where levels of co-occurrence are low, multiple

regression appears to be robust, but without detailed analysis

it is not possible to know why because of the multiple prob-

lems with linear regression that have been identified when

used to analyse spatially structured data (Fotheringham

et al., 2002; Grace & Bollen, 2005; Bini et al., 2009; Hawkins,

2012). We are unable to address this complex set of statisti-

cal issues here.

Secondly, we expected range cohesion to exacerbate the

analytical problem by generating potentially spurious spatial

autocorrelation among intrinsic predictor variables that

would then link to the underlying spatial autocorrelation in

richness. If true, this would identify results based on range

map data as being particularly unreliable, whereas the plot

data normally generated by community ecologists would be

less impacted due to lower levels of autocorrelation. How-

ever, our virtual data indicate that strong spurious

relationships can occur in plot data without spatial autocor-

relation in the intrinsic predictors as long as richness itself is

spatially structured (see Fig. 4b). Although it was possible to

generate data with minimal apparent impact on the three

statistical methods (see Fig. 3d) few real data sets will have

this structure, and so no data should be considered a priori

to be immune to the problem, and the presence or absence

of spatial autocorrelation is not definitive evidence that no

problem exists, as long as some level of repeated species co-

occurrence exists across communities/assemblages.

Yet another ramification of the co-occurrence problem is

that although spatial structure in intrinsic variables is not

required for co-occurrences to be an issue in statistical analy-

sis and ecological inference, spatially autocorrelated data are

often used to generate maps showing aggregated assemblage/

community trait values at the sub-continental, continental or

global extent (Hawkins & Diniz-Filho, 2006; Morin &

Lechowicz, 2011; Jetz et al., 2012; Swenson et al., 2012; Haw-

kins et al., 2014; �S�ımov�a et al., 2015; Belmaker & Jetz, 2015).

The patterns in such maps can be visually striking and yet at

least potentially biologically uninformative. Thus, if repeated

species co-occurrences contain spatial structure, which they

will if multiple species respond similarly to the environment,

it is not surprising that climate or other spatially structured

environmental variables could generate relatively strong

regression models when trait values are response variables. It

does not follow that such patterns must be artefactual if the
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simulated North American scenarios plotted against a measure of species co-occurrences (C-score) calculated for five range size
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trait of interest actually drives the species distributions; the

problem is that any trait can contain spatial structure due to

the co-occurrence problem even if it is distributed indepen-

dently of the environment (see Fig. 1 for examples).

We are aware of two published solutions to the impact of

repeated species co-occurrences on community-level metrics.

One is the permutation method proposed by Zelen�y &

Schaffers (2012) to correct the inflated Type I error. Their

modified permutation test first calculates observed test statis-

tics (like Pearson’s r coefficients for correlation or F-values

for regression or ANOVA) of relationships between cell/plot

mean species attributes and sample attributes. Then, these

observed statistics are compared with the null distribution of

expected test statistics, calculated between cell/plot means of

randomly permuted species attributes and sample attributes.

Note the difference of this approach and the use of null

models in evaluating functional or phylogenetic diversity

indices (e.g. Mason et al., 2013; with community weighted

means being one of them) based on calculating standardized

effect sizes (SES, or z-scores). While SES is devised to correct

for the effect of species richness influencing the absolute

values of these indices, it does not solve the problem of

repeated co-occurrences, which is not directly related to spe-

cies richness. The important point here is that the modified

permutation test of Zelen�y & Schaffers (2012) does correct

for inflated Type I error but does not correct regression coef-

ficients or model fits. Whereas accurate significance testing

may be necessary and sufficient for many ecological applica-

tions, it is of limited value for broad-scale analyses, particu-

larly of diversity gradients, in which the focus is typically on

ranking the relative contributions of potential explanatory

variables to compare potential underlying processes. The

challenge of distinguishing strong and weak predictors of

species richness gradients has generated much of the
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discussion in the ecological literature evaluating methods for

estimating regression coefficients for spatially structured data

(e.g. Lennon, 2000; Diniz-Filho et al., 2003; Dormann et al.,

2007; Hawkins, 2012; K€uhn & Dormann, 2012). Uncertainty

about ranking potential ‘effects’ of predictors makes disen-

tangling the contributions of the many hypothesized influ-

ences on diversity gradients difficult, and species co-

occurrences add yet another layer of difficulty for evaluating

intrinsic variables.

The second approach to the problem of which we are aware

is an adaptation of the fourth-corner method by Peres-Neto

et al. (2012, 2016), which claims to be immune to both the

bias in regression coefficients and inflated Type I error rate.

This method is in fact a special case of correlation between

cell/plot means of species attributes (traits) and sample attri-

butes, in which both species and sample attributes are stan-

dardized, and the correlation itself is weighted by row sums of

the species composition matrix. These row sums represent the

sum of species abundances in the cells/plots, which in the case

of presence/absence species composition data equal species

richness. This method may be suitable for community data

relating species traits to environmental variables, which is

sometimes done by the original fourth-corner method. How-

ever, in our opinion its current formulation cannot be used in

the context of the analysis of species richness, since using corre-

lation weighted by species richness to analyse the relationship

between species richness and one or more intrinsic variables

has no theoretical justification. Further development of this

approach may lead to a solution to the problem we address

here, but it is not obvious to us how to accomplish this.

Although not a solution per se, a relatively straight-forward

approach to evaluate if repeated co-occurrences might be a

problem in a data set would be to conduct a separate set of

regressions using cell/plot means calculated from repeatedly

re-randomized trait values. If 100 or more iterations of such

regressions always generate very low coefficients of determi-

nation, it suggests that patterns of repeated co-occurrences

are not generating serious structural bias for the statistical

method being evaluated. On the other hand, if at least some

models using repeatedly randomized trait values are moder-

ate to strong, confidence in the results will have to be limited

until a formal analytical solution is devised.

To conclude, there is clearly a potentially serious analytical

problem with community-based metrics as predictors of spe-

cies richness gradients, but a methodological solution to the

co-occurrence problem with respect to understanding diver-

sity patterns is not yet available. Until it is, workers should

be aware that inferences from maps of assemblage/commu-

nity-level metrics for any class of attribute, as well as analyses

based on them using commonly used statistical methods, can

be much less certain than they appear.

ACKNOWLEDGEMENTS

We thank Pedro Peres-Neto for discussion of the problem

addressed in this paper. We also thank the anonymous

referees and Oliver Schwieger for their valuable critiques of

the ms. F.V. is supported by a CNPq BJT (‘Science without

Borders’) fellowship. B.V. was supported by a CAPES grant

for doctoral studies. Work by M.A.R. was supported by the

Spanish Ministry of Economy and Competitiveness (grant:

CGL2013-48768-P). X.W. was supported by the National

Natural Science Foundation of China (31370620) and the

State Scholarship Fund of China (2011811457). D.Z. was

supported by the Ministry of Science and Technology

(MOST 105-2621-B-002-004).

REFERENCES

Albouy, C., Leprieur, F., Le Loc’h, F., Mouquet, N., Mey-

nard, C.N., Douzery, E.J.P. & Mouillot, D. (2015) Pro-

jected impacts of climate warming on the functional and

phylogenetic components of coastal Mediterranean fish

biodiversity. Ecography, 38, 681–689.
Beale, C.M., Lennon, J.J., Yearsley, J.M., Brewer, M.J. &

Elston, D.A. (2010) Regression analysis of spatial data.

Ecology Letters, 13, 246–264.
Belmaker, J. & Jetz, W. (2015) Relative roles of ecological

and energetic constraints, diversification rates and region

history on global species richness gradients. Ecology Letters,

18, 563–571.
Bini, L.M., Diniz-Filho, J.A.F., Rangel, T.F.L.V.B. et al.

(2009) Coefficient shifts in geographical ecology: an

empirical evaluation of spatial and non-spatial regression.

Ecography, 32, 193–204.
Biswas, S.R., Mallik, A.U., Braithwaite, N.T. & Wagner, H.H.

(2016) A conceptual framework for the spatial analysis of

functional trait diversity. Oikos, 125, 192–200.
Blackburn, T.M. & Hawkins, B.A. (2004) Bergmann’s rule

and the mammal fauna of northern North America. Ecog-

raphy, 27, 715–724.
Blonder, B., Nogu�es-Bravo, D., Borregaard, M.K., Donoghue,

J.C., II, Jørgensen, P.M., Kraft, N.J.B., Lessard, J.-P., Mor-

ueta-Holme, N., Sandel, B., Svenning, J.-C., Violle, C.,

Rahbek, C. & Enquist, B.J. (2015) Linking environmental

filtering and disequilibrium to biogeography with a com-

munity climate framework. Ecology, 96, 972–985.
Boucher-Lalonde, V., Morin, A. & Currie, D.J. (2016) Can

the richness-climate relationship be explained by system-

atic variations in how individual species’ ranges related to

climate? Global Ecology and Biogeography, 25, 527–539.
Cho, S.-H., Lambert, D.M. & Chen, Z. (2010) Geographically

weighted regression bandwidth selection and spatial auto-

correlation: an empirical example using Chinese agricul-

ture data. Applied Economics Letters, 17, 767–772.
Cook, R.E. (1969) Variation in species density of North

American birds. Systematic Zoology, 18, 63–84.
Dale, M.R.T. & Fortin, M.-J. (2014) Spatial analysis: a guide

for ecologists, 2nd edn. Cambridge University Press, Cam-

bridge, UK.

de la Riva, E.G., P�erez-Ramos, I.M., Tosto, A., Navarro-

Fern�andez, C.M., Olmo, M., Mara~n�on, T. & Villar, R.

Journal of Biogeography
ª 2017 John Wiley & Sons Ltd

10

B. A. Hawkins et al.



(2016) Disentangling the relative importance of species

occurrence, abundance and intraspecific variability in

community assembly: a trait-based approach at the whole-

plant level in Mediterranean forests. Oikos, 125, 354–363.
Diniz-Filho, J.A.F., Bini, L.M. & Hawkins, B.A. (2003) Spatial

autocorrelation and red herrings in geographical ecology.

Global Ecology and Biogeography, 12, 53–64.
Diniz-Filho, J.A.F., Bini, L.M., Rodr�ıguez, M.�A., Rangel,

T.F.L.V.B. & Hawkins, B.A. (2007) Seeing the forest for

the trees: partitioning ecological and phylogenetic compo-

nents of Bergmann’s rule in European Carnivora. Ecogra-

phy, 30, 598–608.
Dormann, C.F., Gruber, B. & Fruend, J. (2008) Introducing

the bipartite package: analysing ecological networks. R

News, 8/2, 8–11.
Dormann, C.R., McPherson, J.M., Ara�ujo, M.B., Bivand, R.,

Bolliger, J., Carl, G., Davies, R.G., Hirzel, A., Jetz, W.,

Kissling, W.D., K€uhn, I., Ohlem€uller, R., Peres-Neto, P.R.,

Reineking, B., Schr€oder, B., Schurr, F.M. & Wilson, R.

(2007) Methods to account for spatial autocorrelation in

the analysis of species distributional data: a review. Ecogra-

phy, 30, 609–628.
Dubuis, A., Rossier, L., Pottier, J., Pellissier, L., Vittoz, P. &

Guisan, A. (2013) Predicting current and future spatial

community patterns of plant functional traits. Ecography,

36, 1158–1168.
Enquist, B.J., Norberg, J., Bonsor, S.P., Violle, C., Webb,

C.T., Henderson, A., Sloat, L.L. & Savage, V.M. (2015)

Scaling from traits to ecosystems: developing a general

trait driver theory via integrating trait-based and metabolic

scaling theories. Trait-Based Ecology – From Structure to

Function. Advances in Ecological Research, 52, 249–318.
Field, R., Hawkins, B.A., Cornell, H.V., Currie, D.J., Diniz-

Filho, J.A.F., Gu�egan, J.-F., Kaufman, D.M., Kerr, J.T.,

Mittelbach, G.G., Oberdorff, T., O’Brien, E.M. & Turner,

J.R.G. (2009) Spatial species-richness gradients across

scales: a meta-analysis. Journal of Biogeography, 36, 132–
147.

Finegan, B., Pe~na-Claros, M., de Oliveira, A., Ascarrunz, N.,

Bret-Harte, M.S., Carre~no-Rocabado, G., Casanoves, F.,

D�ıaz, S., Velepucha, P.E., Fernandez, F., Licona, J.C., Lor-

enzo, L., Negret, B.S., Vaz, M. & Poorter, L. (2015) Does

functional trait diversity predict above-ground biomass

and productivity of tropical forests? Testing three alterna-

tive hypotheses. Journal of Ecology, 103, 191–201.
Fotheringham, A.S., Brunsdon, C. & Charlton, M. (2002)

Geographically weighted regression: the analysis of spatially

varying relationships. Wiley, Chichester.

Godoy, O., Rueda, M. & Hawkins, B.A. (2015) Functional

determinants of forest recruitment over broad scales. Glo-

bal Ecology and Biogeography, 24, 192–202.
Gonz�alez-Maya, J.F., V�ıquez-R, L.R., Arias-Alzate, A., Belant,

J.L. & Ceballos, G. (2016) Spatial patterns of species rich-

ness and functional diversity in Costa Rican terrestrial

mammals: implications for conservation. Diversity and

Distributions, 22, 43–56.

Gotelli, N.J. (2000) Null models of species co-occurrence

patterns. Ecology, 81, 2606–2621.
Grace, J.B. & Bollen, K.A. (2005) Interpreting the results

from multiple regression and structural equation models.

Bulletin of the Ecological Society of America, 86, 283–295.
Haining, R. (2003) Spatial data analysis. Cambridge Univer-

sity Press, Cambridge, UK.

Hawkins, B.A. (2012) Eight (and a half) deadly sins of spatial

analysis. Journal of Biogeography, 39, 1–9.
Hawkins, B.A. & Diniz-Filho, J.A.F. (2006) Beyond Rapo-

port’s rule: evaluating range size patterns of New World

birds in a two-dimensional framework. Global Ecology and

Biogeography, 15, 461–469.
Hawkins, B.A., Diniz-Filho, J.A.F. & Soeller, S.A. (2005)

Water links the historical and contemporary components

of the Australian bird diversity gradient. Journal of Bio-

geography, 32, 035–1042.
Hawkins, B.A., Diniz-Filho, J.A.F., Jaramillo, C.A. & Soeller,

S.A. (2006) Post-Eocene climate change, niche conser-

vatism, and the latitudinal diversity gradient of New

World birds. Journal of Biogeography, 33, 770–780.
Hawkins, B.A., Rueda, M., Rangel, T.F., Field, R. & Diniz-

Filho, J.A.F. (2014) Community phylogenetics at the bio-

geographical scale: cold tolerance, niche conservatism and

the structure of North American forests. Journal of Bio-

geography, 41, 23–38.
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis,

A. (2005) Very high resolution interpolated climate sur-

faces for global land areas. International Journal of Clima-

tology, 25, 1965–1978.
Honorio Coronado, E.N., Dexter, K.G., Pennington, R.T.

et al. (2015) Phylogenetic diversity of Amazonian tree

communities. Diversity and Distributions, 21, 1295–1307.
Jansson, R. & Davies, T.J. (2008) Global variation in diversi-

fication rates of flowering plants: energy vs. climate

change. Ecology Letters, 11, 173–183.
Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers,

A.O. (2012) The global diversity of birds in time and

space. Nature, 491, 444–448.
Kerr, J.T. & Currie, D.J. (1999) The relative importance of

evolutionary and environmental controls on broad-scale

patterns of species richness in North America. Ecoscience,

6, 329–337.
Kimberly, A., Blackburn, G.A., Whyatt, J.D. & Smart, S.M.

(2016) How well is current plant trait composition pre-

dicted by modern and historical forest spatial configura-

tion? Ecography, 39, 67–76.
K€uhn, I. & Dormann, C.F. (2012) Less than eight (and a

half) misconceptions of spatial analysis. Journal of Biogeog-

raphy, 39, 995–998.
Legendre, P. (1993) Spatial autocorrelation: trouble or new

paradigm? Ecology, 74, 1659–1673.
Leing€artner, A., Krauss, J. & Steffan-Dewenter, I. (2014) Spe-

cies richness and trait composition of butterfly assem-

blages change along an altitudinal gradient. Oecologia, 175,

613–623.

Journal of Biogeography
ª 2017 John Wiley & Sons Ltd

11

Structural bias in assemblage/community analysis



Lennon, J.J. (2000) Red-shifts and red herrings in geographi-

cal ecology. Ecography, 23, 101–113.
Leroy, B., Meynard, C.N., Bellard, C. & Courshamp, F.

(2016) virtualspecies, an R package to generate virtual spe-

cies distributions. Ecography, 39, 599–607.
Lima-Mendez, G., Faust, K., Henry, N. et al. (2015) Determi-

nants of community structure in the global plankton inter-

actome. Science, 348, 1262073.

Marin, J. & Hedges, S.B. (2016) Time best explains global

variation in species richness of amphibians, birds and

mammals. Journal of Biogeography, 43, 1069–1079.
Mason, N.W.H., de Bello, F., Mouillot, D., Pavoine, S. &

Dray, S. (2013) A guide for using functional diversity

indices to reveal changes in assembly processes along eco-

logical gradients. Journal of Vegetation Science, 24, 794–806.
Mayfield, M.M., Bonser, S.P., Morgan, J.W., Aubin, I.,

McNamara, S. & Vesk, P.A. (2010) What does species

richness tell us about functional trait diversity? Predictions

and evidence for responses of species and functional trait

diversity to land-use change. Global Ecology and Biogeogra-

phy, 19, 423–431.
Morin, X. & Lechowicz, M.J. (2011) Geographical and eco-

logical patterns of range size in North American trees.

Ecography, 34, 738–750.
Olalla-T�arraga, M.�A., Bini, L.M., Diniz-Filho, J.A.F. &

Rodr�ıguez, M.�A. (2010) Cross-species and assemblage-

based approaches to Bergmann’s rule and the biogeogra-

phy of body size in Plethodon salamanders of eastern

North America. Ecography, 33, 362–368.
Orme, C.D.L., Davies, R.G., Burgess, M., Eigenbrod, F.,

Pickup, N., Olson, V.A., Webster, A.J., Ding, T.-S., Ras-

mussen, P.C., Ridgely, R.S., Stattersfield, A.J., Bennett,

P.M., Blackburn, T.M., Gaston, K.J. & Owens, I.P.F.

(2005) Global hotspots of species richness are not congru-

ent with endemism or threat. Nature, 436, 1016–1019.
Peres-Neto, P.R., Leibold, M.A. & Dray, S. (2012) Assessing

the effects of spatial contingency and environmental

filtering on metacommunity phylogenetics. Ecology, 93,

S14–S30.
Peres-Neto, P.R., Dray, S. & ter Braak, C.J.F. (2016) Linking

trait variation to the environment: critical issues with com-

munity-weighted mean correlation resolved by the fourth-

corner approach. Ecography, doi:10.1111/ecog.02302.

Pfautsch, S., Harbusch, M., Wesolowski, A., Smith, R., Mac-

farlane, C., Tjoelker, M.G., Reich, P.B. & Adams, M.A.

(2016) Climate determines vascular traits in the ecologi-

cally diverse genus Eucalyptus. Ecology Letters, 19, 240–248.
Pianka, E.R. (1967) On lizard species diversity: North Ameri-

can flatland deserts. Ecology, 48, 333–351.
Ripley, B.D. (1981) Spatial statistics. Wiley Press, New York,

NY, USA.

Seymour, C.L., Simmons, R.E., Joseph, G.S. & Sliingsby, J.A.

(2015) On bird functional diversity: species richness and

functional differentiation show contrasting responses to

rainfall and vegetation structure in an arid landscape.

Ecosystems, 18, 971–984.

Shipley, B. (2010) From plant traits to vegetation structure.

Chance and selection in the assembly of ecological communi-

ties. Cambridge University Press, Cambridge, UK.
�S�ımov�a, I., Violle, C., Kraft, N.J.B., Storch, D., Svenning, J.-

C., Boyle, B., Donoghue, J.C.I.I., Jørgensen, P., McGill,

B.J., Morueta-Holme, N., Piel, W.H., Peet, R.K., Regetz, J.,

Schildhauer, M., Spencer, N., Thiers, B., Wiser, S. &

Enquist, B.J. (2015) Shifts in trait means and variances in

North American tree assemblages: species richness patterns

are loosely related to the functional space. Ecography, 38,

649–658.
Slavenko, A. & Meiri, S. (2015) Mean body sizes of amphib-

ian species are poorly predicted by climate. Journal of Bio-

geography, 42, 1246–1254.
Stevens, G.C. (1989) The latitudinal gradient in geographical

range: how so many species coexist in the tropics. The

American Naturalist, 113, 240–256.
Stevens, R.D. & Gavilanez, M.M. (2015) Dimensionality of

community structure: phylogenetic, morphological and

functional perspectives along biodiversity and environmen-

tal gradients. Ecography, 38, 861–875.
Stone, L. & Roberts, A. (1990) The checkerboard score and

species distributions. Oecologia, 85, 74–79.
Stuart-Smith, R.D., Bates, A.E., Lefcheck, J.S., Duffy, J.E.,

Baker, S.C., Thomson, R.J., Stuart-Smith, J.F., Hill, N.A.,

Kininmonth, S.J., Airoldi, L., Becerro, M.A., Campbell,

S.J., Dawson, T.P., Navarrete, S.A., Soler, G.A., Strain,

E.M.A., Willis, T.J. & Edgar, G.J. (2013) Integrating abun-

dance and functional traits reveals new global hotspots of

fish diversity. Nature, 501, 539–542.
Svenning, J.-C., Borchsenius, F., Bjorholm, S. & Balslev, H.

(2008) High tropical net diversification drives the New

World latitudinal gradient in palm (Arecaceae) species

richness. Journal of Biogeography, 35, 394–406.
Swenson, N.G. & Enquist, B.J. (2007) Ecological and evo-

lutionary determinants of a key plant functional trait:

wood density and its community-wide variation across

latitude and elevation. Journal of Botany, 94, 451–459.
Swenson, N.G., Enquist, B.J., Pither, J. et al. (2012) The

biogeography and filtering of woody plant functional

diversity in North and South America. Global Ecology and

Biogeography, 21, 798–808.
Swenson, N.G., Weiser, M.D., Mao, L., Normand, S., Rodri-

guez, M.�A., Lin, L., Cao, M. & Svenning, J.-C. (2016)

Constancy in functional space across a species richness

anomaly. The American Naturalist, 187, E83–E92.
Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J.

(2002) Phylogenies and community ecology. Annual

Review of Ecology, Evolution and Systematics, 33, 475–505.
Zelen�y, D. & Schaffers, A.P. (2012) Too good to be true: pit-

falls of using mean Ellenberg indicator values in vegetation

analyses. Journal of Vegetation Science, 23, 419–431.
Zhang, Y., Wang, R., Kaplan, D. & Liu, J. (2015) Which

components of plant diversity are most correlated

with ecosystem properties? A case study in a restored wet-

land in northern China. Ecological Indicators, 49, 228–236.

Journal of Biogeography
ª 2017 John Wiley & Sons Ltd

12

B. A. Hawkins et al.

https://doi.org/10.1111/ecog.02302


SUPPORTING INFORMATION

Additional Supporting Information may be found in the

online version of this article:

Appendix S1 Results for SAR models.

DATA ACCESSIBILITY

The bird range maps are available at (http://www.birdlife.

org/datazone/info/spcdownload), and the FIA data are avail-

able at (http://www.fia.fs.fed.us/). All scripts used for the

simulations are available at https://github.com/Farewe/Coocc

urrenceIssue.

BIOSKETCH

Bradford A. Hawkins is interested in ecological and phylo-

genetic patterns across a range of spatial scales, with a focus

on linking local and biogeographical processes.

Editor: Jens-Christian Svenning

Journal of Biogeography
ª 2017 John Wiley & Sons Ltd

13

Structural bias in assemblage/community analysis

http://www.birdlife.org/datazone/info/spcdownload
http://www.birdlife.org/datazone/info/spcdownload
http://www.fia.fs.fed.us/
https://github.com/Farewe/CooccurrenceIssue
https://github.com/Farewe/CooccurrenceIssue

