
P E R S P E C T I V E

Without quality presence–absence data, discrimination
metrics such as TSS can be misleading measures of model
performance

Abstract
The discriminating capacity (i.e. ability to correctly classify presences

and absences) of species distribution models (SDMs) is commonly

evaluated with metrics such as the area under the receiving operat-

ing characteristic curve (AUC), the Kappa statistic and the true skill

statistic (TSS). AUC and Kappa have been repeatedly criticized, but

TSS has fared relatively well since its introduction, mainly because it

has been considered as independent of prevalence. In addition, dis-

crimination metrics have been contested because they should be cal-

culated on presence–absence data, but are often used on presence‐
only or presence‐background data. Here, we investigate TSS and an

alternative set of metrics—similarity indices, also known as F‐mea-

sures. We first show that even in ideal conditions (i.e. perfectly ran-

dom presence–absence sampling), TSS can be misleading because of

its dependence on prevalence, whereas similarity/F‐measures provide

adequate estimations of model discrimination capacity. Second, we

show that in real‐world situations where sample prevalence is differ-

ent from true species prevalence (i.e. biased sampling or presence‐
pseudoabsence), no discrimination capacity metric provides adequate

estimation of model discrimination capacity, including metrics specifi-

cally designed for modelling with presence‐pseudoabsence data. Our

conclusions are twofold. First, they unequivocally impel SDM users

to understand the potential shortcomings of discrimination metrics

when quality presence–absence data are lacking, and we recommend

obtaining such data. Second, in the specific case of virtual species,

which are increasingly used to develop and test SDM methodologies,

we strongly recommend the use of similarity/F‐measures, which were

not biased by prevalence, contrary to TSS.

1 | INTRODUCTION

During the last decades, species distribution models (SDMs) have

become one of the most commonly used tools to investigate the

effects of global changes on biodiversity. Specifically, SDMs are

widely used to explore the potential effects of climate change on

the distribution of species of concern (Gallon et al., 2014), to antici-

pate the spread of invasive species (Bellard et al., 2013), and also to

prioritize sites for biodiversity conservation (Leroy et al., 2014).

Therefore, conservation managers increasingly rely on SDMs to

implement conservation strategies and policies to mitigate the

effects of climate change on biodiversity (Guisan et al., 2013). There

are various methodological choices involved in the application of

SDMs (e.g. data type and processing, variables, resolution, algo-

rithms, protocols, global climate models, greenhouse gas emission

scenarios), which make them particularly difficult to interpret, com-

pare and assess. However, evaluation of their predictive accuracy is

probably a common step to most SDM studies across methodologi-

cal and technical choices. This evaluation allows us to quantify

model performance in terms of how well predictions match observa-

tions, which is a fundamental and objective part of any theoretical,

applied or methodological study.

To evaluate model predictive performance, the occurrence data-

set is often partitioned into two subsets (one for calibrating models,

and one for testing) and predictions are assessed in terms of

whether or not they fit observations using various accuracy metrics

(Araújo, Pearson, Thuiller, & Erhard, 2005), a method called cross‐
validation. Other approaches include calibrating on the full dataset

and testing on an independent dataset, or, when the modelled spe-

cies is a virtual, in silico, species (e.g. for testing methodological

aspects), directly comparing the predicted distribution with the

known true distribution (Leroy, Meynard, Bellard, & Courchamp,

2015). Accuracy metrics can be divided into two groups: discrimina-

tion versus reliability metrics (Liu, White, & Newell, 2009; Pearce,

Pearce, Ferrier, & Ferrier, 2000). Discrimination metrics measure

classification rates, i.e. the capacity of SDMs to distinguish correctly

between presence and absence sites. Reliability metrics measure

whether the predicted probability is an accurate estimate of the like-

lihood of occurrence of the species at a given site. Here, we focus

on discrimination metrics, since they are often used in the SDM lit-

erature to test model robustness; however, we stress the importance

of evaluating reliability (see Meynard & Kaplan, 2012 as well as Liu

et al., 2009), for example with the Boyce index which is probably

the most appropriate reliability metric for presence‐only data (Boyce,

Vernier, Nielsen, & Schmiegelow, 2002; Di Cola et al., 2016; Hirzel,

Randin, & Guisan, 2006).

Discrimination metrics rely on the confusion matrix, i.e. a matrix

comparing predicted versus observed presences and absences

(Table 1). Such discrimination metrics have largely been borrowed

from other fields of science, such as medicine and weather forecast-

ing, rather than being specifically developed for SDM studies (Liu et

al., 2009). Three classification metrics stand out in the SDMs litera-

ture: Cohen's Kappa, the area under the receiver operating charac-

teristic curve (AUC) and the true skill statistic (TSS). AUC was
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introduced in ecology by Fielding and Bell (1997) (2,821 citations on

Web of Science in June 2017), but has since repeatedly been criti-

cized (Jiménez‐Valverde, 2012; Lobo, Jiménez‐Valverde, & Hortal,

2010; Lobo, Jiménez‐Valverde, & Real, 2008) because of its depen-

dence on prevalence (i.e. the proportion of recorded sites where the

species is present) makes it frequently misused. Cohen's Kappa has

also been repeatedly criticized for the same reason (Allouche, Tsoar,

& Kadmon, 2006; Lobo et al., 2010; McPherson, Jetz, & Rogers,

2004). TSS (Peirce, 1884), on the other hand, has fared relatively

well since its introduction by Allouche et al. (2006) (719 citations in

June 2017), mainly because it had been shown as independent of

prevalence. However, this claim has recently been questioned

because of a flawed testing design (Somodi, Lepesi, & Botta‐Dukát,

2017). More recently, all of these metrics have been contested

because they should be calculated on presence–absence data, but

are often used on presence‐only or presence‐background data, i.e.

data with no information on locations where species do not occur

(Jarnevich, Stohlgren, Kumar, Morisette, & Holcombe, 2015; Somodi

et al., 2017; Yackulic et al., 2013). In these cases, false positives and

true negatives (Table 1) are unreliable, which led Li and Guo (2013)

to propose alternative approaches, specifically designed for pres-

ence‐background models. They proposed the use of Fpb, a proxy of

an F‐measure (“the weighted harmonic average of precision and

recall”, Li & Guo 2013) based on presence‐background data, and

Fcpb, a prevalence‐calibrated proxy of an F‐measure based on pres-

ence‐background data. Despite the apparent relevance of Li and

Guo's (2013) metrics (13 citations as of June 2017), the field is still

dominated by metrics that have been repeatedly criticized, such as

AUC and Kappa, or more recently TSS (e.g. D'Amen, Pradervand, &

Guisan, 2015; Jarnevich et al., 2015; Mainali et al., 2015).

With this Perspective, our aim is twofold: (a) illustrate with

examples and simulations that, contrary to early claims, TSS is in fact

dependent on prevalence and (b) evaluate an alternative set of met-

rics based on similarity indices, also known as F‐measures in the bin-

ary classification literature, as potential alternative measures of

model predictive ability. Similarity indices assess the similarity of

observed and predicted distributions, and can be partitioned into

two components to evaluate model characteristics: over prediction

rate (OPR) and unpredicted presence rate (UPR). We compare the

performance of TSS and similarity‐derived metrics on three mod-

elling situations corresponding to the most common modelling set-

ups, depending on the interplay between species and sample

prevalence (see Section 2). We finally discuss the applicability of

these discrimination metrics in SDM studies and provide practical

recommendations.

2 | SPECIES AND SAMPLE PREVALENCE

Here we will define species prevalence as the ratio between the species

area of occupancy (AOO, i.e. the area that a species actually occupies)

and the total study area (see Rondinini, Wilson, Boitani, Grantham, &

Possingham, 2006 for definitions). For example, if the study area

encompasses Europe which we have divided into 1‐km grid cells, and

if we are studying a species that occupies only 15% of those grid cells,

its prevalence would be 0.15. Notice that species prevalence will vary

depending on the resolution of the gridded data and on the extent of

the study area. In practice, however, species prevalence is never

known, because the true AOO is generally not known, except for the

specific case of virtual species (Leroy et al., 2015). Hence, for real spe-

cies, only the sample prevalence is known, which is the proportion of

sampled sites in which the species has been recorded. Meynard and

Kaplan (2012) showed with virtual species that sample prevalence

should be similar to species prevalence to produce accurate predic-

tions. However, in practice, we expect sample prevalence to be differ-

ent from species prevalence, unless the sampling of presences and

absences is perfectly random throughout the entire study area.

Indeed, samplings of species presences are generally spatially biased

(Phillips et al., 2009; Varela, Anderson, García‐Valdés, & Fernández‐
González, 2014). For example, ecologists look for their species of

interest in sites where they have a sense a priori that they will find it,

which will inevitably result in a mismatch between sample and species

prevalence. Furthermore, a substantial proportion of SDM studies

relies on presence‐only modelling techniques, which requires sampling

“pseudoabsence” or “background” points (hereafter called pseudoab-

sences). In such cases, the sample prevalence is artificially defined by

the number of chosen pseudoabsences, and is thus unlikely to be

equal to species prevalence.

Neither species prevalence nor sample prevalence should influ-

ence accuracy metrics. In the following, we investigate three differ-

ent cases corresponding to the most common situations of SDM

evaluation. First, we investigate the ideal “presence–absence” case

where species prevalence is equal to sample prevalence; this case

corresponds to well‐designed presence–absence sampling or to the

evaluation of SDMs based on virtual species where the true AOO is

known. Second, we investigate “presence–absence” situations where

sample prevalence differs from species prevalence. Last, we investi-

gate “presence only” situations where sample prevalence differs

from species prevalence.

3 | PRESENCE–ABSENCE, SPECIES
PREVALENCE = SAMPLE PREVALENCE

In this first case, we define the sample confusion matrix as perfectly

proportional or equal to the true confusion matrix, i.e. the entire

TABLE 1 Confusion matrix used to calculate discrimination
metrics

Sampled data

Presence Absence

Predicted values

Presence True positives False positives

Absence False negatives True negatives

2 | PERSPECTIVE



predicted species distribution is compared to the true species distri-

bution. In practice, this case occurs when the sampling is perfectly

random throughout the landscape and species detectability is equal

to one, or when evaluating SDM performance with virtual species

(e.g. Qiao, Soberón, & Peterson, 2015). With this first case we can

analyse the sensitivity of discrimination metrics to species preva-

lence only.

3.1 | The unexpected dependence of TSS on
prevalence

Previous studies have already shown that common discrimination

metrics such as Kappa and AUC are influenced by species preva-

lence (e.g. Lobo et al., 2008, 2010). However, TSS has been widely

advocated as a suitable discrimination metric that is independent of

prevalence (Allouche et al., 2006). Here we demonstrate with simple

examples that TSS is itself also dependent on species prevalence.

When species prevalence is very low (and so is sample prevalence),

we expect the number of true negatives (Table 1) to be dispropor-

tionately high. In these cases, specificity will tend towards one, and

TSS values will be approximately equal to sensitivity (Table 2). As a

result, TSS values can be high even for models that strongly overpre-

dict distributions. Figure 1 represents graphically some examples of

how overprediction and underprediction play into TSS performance.

For example, Figure 1a shows a model that strongly overpredicts the

distribution (75% of the predicted distribution is composed of false

positives), and yet TSS is close to 1 (Figure 1a, TSS = 0.97). Such a

high value can in turn be produced by a model which correctly pre-

dicts the true distribution with few overpredictions (Figure 1b, TSS =

1.00). In addition, the overpredicting model (Figure 1a) will also

have higher TSS values compared to a model that only missed 15%

of presences (Figure 1c, TSS = 0.85). Furthermore, for identically

performing models, if sample prevalence decreases (from 0.25 to

0.01), then the proportion of true negatives is increased, and conse-

quently TSS values increased from 0.60 to 0.70 (Figure 1d–f). Conse-
quently, TSS values can be artificially increased by decreasing sample

prevalence. As an unexpected consequence, for two species with

different AOO in the study area (thus different sample prevalence),

the species with the smaller distribution will be considered better

predicted than the one with a larger distribution (Figure 1d–f).
To summarize, TSS values can be misleading in situations where

the number of true negatives is high by (a) not penalizing overpredic-

tion and (b) assigning higher values to models of species with lower

prevalence in cases of two models with identical discrimination accu-

racy. These flaws can be strongly problematic for ecologists, and

during SDM performance evaluation it is generally preferable to

assume that overprediction should be equivalent to underprediction

(e.g. Lawson, Hodgson, Wilson, & Richards, 2014). Therefore, we

conclude that TSS is prone to similar shortcomings as AUC and

Kappa when it comes to its dependence on sample prevalence and

AOO.

3.2 | Similarity metrics as an alternative

To avoid these shortcomings, we propose to focus evaluation met-

rics on three components of the confusion matrix (Table 1): true

positives, false positives and false negatives, neglecting the true neg-

atives that could be easily inflated. In particular, we seek to maxi-

mize true positives, and minimize both false positives and false

negatives with respect to true positives. The definition exactly

matches the definition of similarity indices from community ecology,

such as Jaccard and Sørensen indices or the F-measure indices

(Table 2). This definition also matches indices identified by Li and

Guo (2013) as potential presence‐background metrics. The Fpb index

is in fact equal to twice the Jaccard index (eqn. 13 in Li & Guo,

2013), while the F index is equal to the Sørensen index of similarity

(eqn. 4 in Li & Guo, 2013; Table 2).

Similarity indices have two main benefits. First, their conceptual

basis is easy to understand: they measure the similarity between

predictions and observations. A value of 1 means predictions per-

fectly match observations, without any false positive or false nega-

tive. A value of 0 means that none of the predictions matched any

observation. The lower the similarity value, the higher the number of

false positives and false negatives, relative to the number of true

TABLE 2 Existing discrimination metrics

Metric Calculation References

Sensitivity Sn = TP/(TP+FN) Fielding and Bell (1997)

Specificity Sp = TN/(TN+FP) Fielding and Bell (1997)

True skill statistic TSS = Sn + Sp−1 Peirce (1884), Allouche et al. (2006)

Jaccard's similarity index Jaccard = TP/(FN + TP + FP) Jaccard (1908)

Sørensen's similarity index, F-measure Sørensen = 2TP/(FN + 2TP + FP) Sørensen (1948), Li and Guo (2013)

Proxy of F‐measure

based on presence‐background data

Fpb = 2 × Jaccard Li and Guo (2013)

Fcpb = 2 × TP/(FN + TP + c × FP), where c = P/(prevsp × A)

Overprediction rate OPR = FP/(TP+FP) Barbosa et al. (2013)

Underprediction rate UPR = FN/(TP+FN) = 1−Sn False negative rate in Fielding and Bell (1997)

TP: true positives, FN: false negatives, FP: false positives, TN: true negatives, P: number of sampled presences, A: number of sampled pseudoabsences,

prevsp: estimate of species prevalence.
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presences. Second, as similarity indices do not include true negatives,

they are not biased by a disproportionate number of true negatives.

In return, they do not estimate the capacity of models to correctly

predict absences. To illustrate this, we calculated the Sørensen index

of similarity (F‐measure) on the same examples as above. Sørensen

accurately discriminated between highly overpredicting and well per-

forming models (Figure 1a–c). In addition, when species prevalence

was artificially increased for identical models, both indices remained

identical (Figure 1d–f).
Because the specific objectives of SDM studies can be very dif-

ferent (e.g. invasion monitoring versus habitat identification for

threatened species), in a particular context we may be more inter-

ested in assessing whether predictions tend to over‐ or underesti-

mate observations. Such additional information can be obtained with

metrics derived from the confusion matrix: overprediction rate and

UPR (Table 2). The overprediction rate measures the percentage of

predicted presences corresponding to false presences, and was

already recommended for assessing model overprediction (Barbosa,

Real, Muñoz, & Brown, 2013). The UPR measures the percentage of

actual presences not predicted by the model, and is also called the

false‐negative rate (Fielding & Bell, 1997). Taken together these met-

rics provide a full view of model discrimination accuracy and allow

interpreting the results in the specific context of the study.

3.3 | Demonstration based on simulations

To validate these theoretical demonstrations, we performed simula-

tions of the metrics for three case studies with different perfor-

mances: a first model with 40% overprediction and 40%

underprediction, a second model with 40% underprediction and no

overprediction, and a third model with 40% overprediction and no

underprediction. The first case addresses a predicted range that is

shifted in space with respect to the real one; the second and third

cases address situations where the predicted range is, respectively,

smaller or larger than the real one. For each model, we predicted the

distribution range of theoretical species with different prevalences

0% under-prediction,
prevalence = 0.01

TSS = 0.97
Sensitivity = 1.00
Specificity = 0.97

Sørensen = 0.40
UPR = 0.00
OPR = 0.75

0% under-prediction,
prevalence = 0.01

TSS = 1.00
Sensitivity = 1.00
Specificity = 1.00

Sørensen = 0.92
UPR = 0.00
OPR = 0.15

15% under-prediction,
prevalence = 0.01

TSS = 0.85
Sensitivity = 0.85
Specificity = 1.00

Sørensen = 0.92
UPR = 0.15
OPR = 0.00

prevalence = 0.25

TSS = 0.60
Sensitivity = 0.70
Specificity = 0.90

Sørensen = 0.70
UPR = 0.30
OPR = 0.30

prevalence = 0.1

TSS = 0.67
Sensitivity = 0.70
Specificity = 0.97

Sørensen = 0.70
UPR = 0.30
OPR = 0.30

(a) 75% overprediction, (b) 15% over-prediction, (c) 0% over-prediction,

(d) 30% over- & under-prediction, (e) 30% over- & under-prediction, (f) 30% over- & under-prediction,
prevalence = 0.01

TSS = 0.70
Sensitivity = 0.70
Specificity = 1.00

Sørensen = 0.70
UPR = 0.30
OPR = 0.30

F IGURE 1 Examples of model performances and associated metrics. The dark grey‐filled circle represents the proportion of actual
presences in the sample. The light grey‐filled circle represents the proportion of predicted presences in the sample. Therefore, the overlap
between the two circles represents the proportion of actual presences correctly predicted as presences (“true positives”), whereas the white
area represents the proportion of actual absences correctly predicted as absences (“true negatives”). At low prevalence (0.10), TSS does not
penalize overprediction: a model that strongly overpredicts distribution (a; 75% of the predicted distribution is composed of false positives) can
have a very high TSS (0.97), which is almost equivalent to a model with little overprediction (b, TSS = 1.00). TSS does penalize underprediction
(c, TSS = 0.85) much more than overprediction (a, b). For identically performing models (i.e. similar rates of over‐ and underprediction), if
prevalence decreases (from 0.25 to 0.01) with increasing numbers of true negatives, TSS values increased from 0.60 to 0.70 (d–f). In other
words, for two species with different AOO in a given study area, the species with the smaller distribution has a higher TSS than the one with
a larger distribution. Sørensen, on the other hand, accurately discriminates between highly overpredicting and well performing models (a–c).
Similarity indices penalize identically over‐ and underprediction (b,c). In addition, when species prevalence is artificially increased for identical
models, both indices remain identical (d–f)
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(from 0.01 to 0.60 with a step of 0.01) over an area of 100,000 pix-

els. Then, for each species, we randomly sampled 500 presences in

the total area and a number of absences verifying the condition that

the sample prevalence is equal to species prevalence. We repeated

this procedure five times. For each repetition, we calculated the TSS

and the Sørensen index (R scripts available at https://github.com/Fa

rewe/SDMMetrics).

Our results (Figure 2) show that TSS values decreased with

prevalence for cases that overpredicted species distributions, but not

for cases that only underpredicted distributions (Figure 2a). This

result confirms our expectation that TSS does not penalize overpre-

diction at low prevalence. Sørensen values, on the other hand,

remain similar regardless of species prevalence (Figure 2b). These

results confirm that in the ideal situation where species preva-

lence = sample prevalence, the Sørensen index of similarity is a more

appropriate metric of model discrimination capacity.

4 | PRESENCE–ABSENCE, SPECIES
PREVALENCE ≠ SAMPLE PREVALENCE

When sample prevalence is different from species prevalence, the

ratio of sampled absences over sampled presences is different from

the ratio of true absences over true presences. For example, if too

many absences are sampled (sample prevalence lower than species

prevalence), then the numbers of false positives and true negatives

will be too large compared to true positives and false negatives. The

major consequence of this mismatch is that any metric comparing

sampled presences and absences will not reflect true model perfor-

mance, unless it contains a correction factor for the mismatch

between sample and species prevalence. Note, however, that metrics

focusing only on sampled presences (omitting sampled absences) will

not be affected by this bias (e.g. sensitivity or rate of unpredicted

presences will not be affected). We illustrate in Supporting

(a) True Skill Statistic (b) Sørensen

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

0.00

0.25

0.50

0.75

1.00

Species prevalence

M
et

ric
 v

al
ue

Case studies
40% overprediction & 40% underprediction
40% underprediction
40% overprediction

F IGURE 2 Simulations of the effect of species prevalence on species distribution model discrimination metrics (a) TSS and (b) Sørensen
(equations available in Table 2) in a presence–absence scheme where sample prevalence is equal to species prevalence. Three case studies
with varying degrees of over‐ and underprediction are applied to theoretical species with prevalence ranging from 0.01 to 0.60 with a step of
0.01. The upper limit of 0.60 was chosen to produce values for models with 40% overprediction. For each species, an evaluation dataset was
composed of 500 presences randomly sampled in the total area and a number of randomly sampled absences verifying the condition that the
sample prevalence is equal to species prevalence, with five repetitions for each species (R scripts available at https://github.com/Farewe/
SDMMetrics). These simulations showed that TSS attributes higher values at lower prevalence for case studies that overpredict species
distributions, but not for case studies that have only underprediction (a). Sørensen values, on the other hand, remain similar regardless of
species prevalence (b)
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Information Appendix S1 how the aforementioned metrics are biased

by prevalence in this situation: the lower the prevalence, the higher

the metric. We further show that an appropriate estimation can only

be obtained when an accurate estimation of species prevalence is

available, which is generally not the case (see Section 6).

5 | PRESENCE–PSEUDOABSENCE OR
PRESENCE ‐BACKGROUND, SPECIES
PREVALENCE ≠ SAMPLE PREVALENCE

In presence–pseudoabsence schemes, sample prevalence is highly

unlikely to be equal to species prevalence, thus the previous bias

also applies in this situation. Furthermore, an additional bias is added

by the fact that pseudoabsence points may be actual presence

points. This bias will further impact the estimation of false positive

by generating “false false positives”, i.e. predicted presences corre-

sponding to actual presences but sampled as pseudoabsences. We

illustrate with simulation how this bias increases the dependence on

prevalence of existing metrics in Supporting Information

Appendix S2, including the prevalence‐calibrated Fcpb metric specifi-

cally designed for presence‐background (Li & Guo, 2013). We also

illustrate that a mathematical correction could be applied but

requires ideal conditions unlikely to be obtained (perfectly random

samplings of presences and pseudoabsences, multiple repetitions,

accurate estimation of species prevalence; see section Estimations of

species prevalence).

6 | ESTIMATIONS OF SPECIES
PREVALENCE

The only way to correct discrimination metrics in cases where sam-

ple prevalence is different from species prevalence requires an esti-

mate of species prevalence. In presence–absence schemes, species

prevalence is usually estimated from the sample of presences and

absences—however we assumed here that in many situations this

estimate may be biased. Besides, in presence–pseudoabsence
schemes this estimation is not available. An alternative approach

consists in estimating species prevalence from the modelled species

distribution (e.g. Li & Guo, 2013; Liu, Newell, & White, 2016). Li and

Guo (2013) demonstrated that this approach yielded satisfactory

results for presence‐pseudoabsence based on the Fpb index. How-

ever, these results were later contested by Liu et al. (2016) who

found that neither Fpb, nor a TSS‐derived metric were able to cor-

rectly estimate species prevalence with presence–pseudoabsence
data. This inability to estimate species prevalence from presence–
pseudoabsence data was expected because an accurate estimation

would require strong conditions which are unlikely to be met in real-

ity (see Guillera‐Arroita et al., 2015 for a demonstration). Actually,

for both presence–pseudoabsence and presence–absence data, esti-

mating species prevalence could be feasible from limited presence–
absence surveys, but may be prohibitively difficult or expensive to

obtain (Lawson et al., 2014; Phillips & Elith, 2013). This barrier to

estimating species prevalence severely limits the applicability of dis-

crimination metrics for presence–absence and presence–pseudoab-
sence models where sample prevalence is different from species

prevalence.

7 | DISCUSSION AND
RECOMMENDATIONS

In this paper, we have demonstrated that evaluating model discrimi-

nation capacity (i.e. the capacity to accurately discriminate between

presence and absence) depends on the interplay between sample

and species prevalence. We studied three general situations that

modellers frequently encounter in their modelling exercises: (a) a

presence–absence scheme where sample prevalence is equal to spe-

cies prevalence—this situation corresponds to perfectly random

presence–absence samplings with no detection bias, or to evalua-

tions based on virtual species; (b) a presence–absence scheme where

sample prevalence is different from species prevalence—a likely situ-

ation for presence–absence modelling; and (c) a presence–pseudoab-
sence scheme where sample prevalence is different from species

prevalence—the general case for presence–pseudoabsence or pres-

ence‐background modelling.

Our simulations unequivocally indicate that when sample preva-

lence is different from species prevalence, none of the tested met-

rics are independent of species prevalence, corroborating previous

conclusions on the TSS (Somodi et al., 2017), and invalidating the

propositions of Li and Guo (2013). Our rationale and conclusions on

TSS relate in fact to the same argumentation as provided on AUC by

Lobo et al. (2008). Both TSS and AUC have the same shortcomings.

Most importantly, Lobo et al. (2008) showed that the total spatial

extent used to calibrate a species’ model highly influenced AUC val-

ues. Indeed, the total study extent drives species prevalence (termed

Relative Occurrence Area in Lobo et al., 2008); increasing extent

reduces species prevalence and vice versa. Consequently, artificially

increasing the modelling extent will artificially decrease prevalence,

which in turn will increase AUC values (Jiménez‐Valverde, Acevedo,
Barbosa, Lobo, & Real, 2013; Lobo et al., 2010), but also TSS values

as we showed here. Likewise, comparing species with different AOO

over the same extent will provide an unfair advantage to species

with smaller AOO because they will have a smaller prevalence. In

fact, these shortcomings are likely to extend to any measurement

that need to estimate either false positive or true negative (Jiménez‐
Valverde et al., 2013).

Our first recommendation is a compelling advocacy for improving

data quality in SDMs. Our arguments, as well as those of Lobo et al.

(2008, 2010) and Jiménez‐Valverde et al. (2013), suggest that the

quest for an ideal discrimination metric is futile, unless reliable pres-

ence–absence data are available. Indeed, an unbiased set of presence

and absence data is required to estimate species prevalence (Guil-

lera‐Arroita et al., 2015), and any metric based on true negative and

false positive (Jiménez‐Valverde et al., 2013). Therefore, we advocate
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the importance of collecting more informative data. Ideally, we

emphasize the necessity of obtaining at least a random or represen-

tative sample of presences and absences (Phillips & Elith, 2013), or

of improving data collection, for instance, by recording non‐detec-
tions to estimate sampling bias and species prevalence (Guillera‐
Arroita et al., 2015; Lahoz‐Monfort, Guillera‐Arroita, & Wintle,

2014). Cross‐validation procedures can lead to overoptimistic evalua-

tions because of data autocorrelation, and specific procedures can

be applied to avoid this further bias (Roberts et al., 2017). We also

emphasize the importance of appropriate spatial extent; although a

robust framework for choosing spatial extent does not exist, guideli-

nes exist to improve spatial extent definition (Barve et al., 2011; Jar-

nevich et al., 2015).

Our second recommendation concerns the case where quality

presence–absence data are available. This is also the case of virtual

species, which are increasingly used to develop and test SDM

methodologies (Hattab et al., 2017; Leroy et al., 2015; Li & Guo,

2013; Liu et al., 2016; Meynard & Kaplan, 2013; Miller, 2014; Ranc

et al., 2016; Varela et al., 2014). Our results unequivocally demon-

strated that similarity/F‐measure metrics, and their complementary

metrics (OPR, UPR) were unbiased by species prevalence and, thus,

can be applied to produce discrimination metrics with better perfor-

mance than Kappa, AUC and TSS metrics. Therefore, we strongly

recommend the use of similarity/F‐measures in the specific case of

virtual species. After all, virtual species are used to demonstrate the

shortcoming and/or advantages of some methods over others, and

therefore the use of appropriate evaluation metrics is highly

desirable.
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