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ABBREVIATIONS

3rd V third ventricle

11-KT 11-ketotestosterone

17αHP 17α-hydroxyprogesterone
125IMel 2-[125I]-iodomelatonin

AANAT arylalkylamine N-acetyltransferase

AgRP agouti-related peptide

ASMT acetylserotonin-O-methyltransferase (formerly HIOMT)

AVT arginine vasotocin

Bmax maximal number of binding sites

BPG brain-pituitary-gonadal axis

Ca2+ calcium

CSF cerebrospinal fluid

cAMP cyclic-30,50-adenosine monophosphate

cGMP cyclic-30,50-guanosine monophosphate

D darkness

Dio2 type-2 deiodinase

dpf days postfertilization

DHP 17α,20β-dihydroxy-4-pregnen-3-one
E1 estrone

E2 17β-estradiol
Erα/β estradiol receptor alpha/beta

FEO food-entrained oscillators

FMRF tetrapeptide Phe-Met-Arg-Phe-NH2

FSH follicle-stimulating hormone

Fshβ follicle-stimulating hormone (beta subunit)

GC granulosa cells

GH growth hormone

GnIH gonadotropin-inhibitory hormone

GnRH gonadotropin-releasing hormone

GnRHR gonadotropin-releasing hormone receptor

GPCR G- protein-coupled receptors

Gr glucocorticoid receptor

GSI gonadosomatic index

h hour

HIOMT hydroxyindole-O-methyltransferase (now ASMT) gene

name or enzyme??

ICC immunocytochemistry

i.c.v. intracerebroventricular injection

i.m. intramuscular injection

i.p. intraperitoneal injection

ISH in situ hybridization

kD dissociation constant

Kp kisspeptin

L light

LEO light-entrained oscillators

LH Luteinizing hormone

Lhβ luteinizing hormone (beta subunit)

mRNA-Seq mRNA sequencing

NPY neuropeptide Y

PKA protein kinase A

PGE2 prostaglandin E2

POMC proopiomelanocortin

PRL prolactin

RHT retinohypothalamic tract

RPE retinal pigment epithelium

SCN suprachiasmatic nuclei of the hypothalamus

Sl somatolactin

T testosterone

T3 triiodothyronine

T4 thyroxine

TH tyrosine hydroxylase

TpOH tryptophan hydroxylase

TSH thyroid-stimulating hormone

Tshβ thyroid-stimulating hormone (beta subunit)

TRPV transient-receptor-potential channel vanilloid

VGCC voltage-gated calcium channels

WGD whole-genome duplication
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1 INTRODUCTION

Photoperiod is the most reliable indicator of the cyclic

changes of our environment. It is thus no surprise that the

timing of periodic events be synchronized by the alternation

of the light (L) and dark (D) daily and seasonal fluctuations

in most living species. This allows harmonization and antic-

ipation in a flurry of rhythmic biochemical, physiological,

and behavioral processes that occur in a single organism.

Reproduction is one such precisely timed process. The first

indications of photoperiod controlling the seasonal cycle of

reproduction in fishes came from early studies in the bridle

shiner, Notropis bifrenatus; the bitterling, Rhodeus amarus;
and the European minnow, Phoxinus laevis (Bullough,

1941; Harrington Jr., 1957). Since then, numerous investi-

gations using manipulated photoperiod have highlighted

the major role this factor plays in fish reproduction

(Bromage et al., 2001; Carrillo et al., 1993; de

Vlaming & Olcese, 1981; Doyle et al., 2021; Migaud

et al., 2010). It is worth mentioning that other factors may

interact with photoperiod, particularly temperature and food

availability, to control this seasonal cycle (Bushnell et al.,

2010; Isorna et al., 2017; Shimizu, 2003; Shimizu et al.,

1994; Vasal & Sundararaj, 1976). In the equatorial areas,

photoperiod is constant, and synchronization is achieved

via, e.g., rainfalls, water salinity, monsoons, feeding, social

cues, lunar, or tidal cycles (Abesamis et al., 2015; Bushnell

et al., 2010; Claydon et al., 2014; Guerrero et al., 2009;

Ikegami et al., 2014; Ohta & Ebisawa, 2015, 2017;

Oliveira & Sánchez-Vázquez, 2010).

Photoperiod acts at different timescales from daily to once in

a life ( Juntti&Fernald, 2016). In seasonal breeders, fishmay

display one or two spawning windows, with months of prep-

arationpreceding, and aphaseof arrest following thewindow

(Falcón & Zohar, 2018). Equatorial species tend to spawn

throughout the year (Abesamis et al., 2015; Claydon et al.,

2014;Oliveira&Sánchez-Vázquez, 2010). Spawningoccurs

either in the morning (e.g., zebrafish, Danio rerio), or

afternoon (e.g., seabream, Sparus aurata), or (most often)

at night (e.g., European sea bass, Dicentrarchus labrax;
Senegal sole, Solea senegalensis) depending on the species

(Claydon et al., 2014; Meseguer et al., 2008; Oliveira &

Sánchez-Vázquez, 2010; Villamizar, Herlin, et al., 2012;

Villamizar, Ribas, et al., 2012; Villamizar et al., 2013)

(Fig. 1). These daily fluctuations rely on endogenous mech-

anisms (i.e., biological clocks) as shown in many species

(e.g., D. rerio, see Blanco-Vives & Sánchez-Vázquez,

2009; S. aurata, seeMeseguer et al., 2008). The so-called cir-

cadian clocks function autonomously on a 24�4h basis

(circa ¼approximately; dian ¼day) and need to receive

input from photoreceptors to synchronize their activity to

the 24-h LD cycle. In turn, the clocks produce rhythmic

output signals that inform the rest of the organisms on the

environmental fluctuations. The photoreceptors (input), the

endogenous oscillators (clocks), and the units that produce

the overt rhythm (output) constitute the circadian system.

Although less investigated, circannual clocks seem also to

be at work along the seasonal cycle of reproduction as sug-

gested from studies in the European minnow (Bullough,

1941); Asian stinging catfish, Heteropneustes fossilis
(Vasal & Sundararaj, 1976); Atlantic salmon, Salmo salar
(Duston & Bromage, 1986); rainbow trout Oncorhynchus
mykiss (Randall et al., 1998); European sea bass (Prat

et al., 1999); and mummichog, Fundulus heteroclitus
(Shimizu, 2003) (Fig. 2). It is suspected that the circadian

and circannual clocks cooperate in the timing and

entrainment of the reproductive cycle in S. salar
(Duston & Bromage, 1986). In brief, photoperiod, acting

through the circadian and circannual systems, appears as a

main synchronizer of internal biological clocks to determine

at which time of the day and year spawning occurs (Blanco-

Vives & Sánchez-Vázquez, 2009; Carrillo et al., 2009;

Claydon et al., 2014; Falcón et al., 2010; Falcón & Zohar,

2018; Oliveira & Sánchez-Vázquez, 2010). It is therefore

not surprising that in a process that requires such precise
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FIG. 1 Daily spawning rhythm. Spawning occurs at dusk in the Mediter-

ranean seabream (Sparus aurata), at night in the European sea bass

(Dicentrarchus labrax) and at dawn in the zebrafish (Danio rerio). The sur-

vival rates often follow the same pattern (see Blanco-Vives & Sánchez-

Vázquez, 2009; Meseguer et al., 2008; Villamizar, Herlin, et al., 2012,

for details). (Modified and adapted from these same authors.)
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timing, daily and annual fluctuations be observed at all stages

of the brain-pituitary-gonadal (BPG) axis,which controls the

reproduction of fish frommolecules to physiological regula-

tions and ending with the development andmaturation of the

gonads, courtship and mating behaviors, and spawning

(Cowan, Azpeleta, & López-Olmeda, 2017; Falcón et al.,

2010; Falcón & Zohar, 2018; Farley et al., 2013; Migaud

et al., 2010; Pratt Jr. et al., 2022; Zohar et al., 2010).

Although the LD cycle is considered the strongest synchro-

nizer of biological rhythms, temperature cycles are also able

to entrain the circadian rhythms inmost organisms. Temper-

ature is an important factor that affects ectotherms,

including fishes, the body temperature of which depends

on the environmental water temperature (Wieser, 1973).

Actually, previous research has shown that temperature

has a profound effect on circadian clock function. Thus,

2.5(A) (B)

(C) (D)

2.0

1.5

1.0G
SI

 (%
)

0.5

0.0

G
SI

 (%
)

0

2

4

6

8

10

12

14

16

18

20

Jul

a ab abc abc

abc

a a a ab abc

abc
abc

abc abc

bc
bc

c
abc

abc

abc

c

bc

Aug Sep
I

II, III, IV
V

VI
mat-ovul

atresia

Oct Nov Dec Jan Feb Mar Apr Jul Aug Sep Oct Nov Dec
vtgprevtg

postvtg

Jan Feb Mar Apr May Jun

FIG. 2 Annual rhythm of reproduction in the European sea bass,Dicentrarchus labrax. The graph displays the seasonal variations of the gonadosomatic

index (GSI) in males and females (A and B), plasma vitellogenin and 17β-estradiol (E2) (C), and pituitary fshβ and lhβ mRNA abundance (D). The black

bars correspond to the reproductive phase of the annual cycle. In (A), the stages are: I, immature; II, early recrudescence; III, mid-recrudescence; IV, late

recrudescence; V, full spermiating; VI, postspawning. In (B), the stages are: Females: prevtg, previtellogenesis; evtg (n ¼10), early vitellogenesis; lat-
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sonal rhythms, effects of melatonin and water salinity. Frontiers in Physiology, 12, 774975. https://doi.org/10.3389/fphys.2021.774975.)
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daily temperature cycles and drastic temperature variations

can set the phase of the clock rhythm (Sweeney & Hastings,

1960). The effects of temperature on the circadian biology

of fishes have been explored focusing mostly on locomotor

activity rhythms (Lahiri et al., 2005; Reebs, 2002; Sánchez-

Vázquez & López-Olmeda, 2018). Daily thermocycles are

able to entrain locomotor activity rhythms of zebrafish in

the absence of LD cycles (López-Olmeda et al., 2006).

However, when imposing conflicting LD and temperature

cycles, fishes are active mostly during the day, irrespective

of the ambient temperature, suggesting light is a stronger

zeitgeber than temperature, at least in this species (López-

Olmeda et al., 2006; López-Olmeda & Sánchez-Vózquez,

2009). Regarding reproduction, the temperature change

over the seasons appears also as a predictive cue. It con-

tributes to triggering the onset and subsequent development

of gametogenesis in fishes and to positioning spawning at

specific times of the year. For example, in the European

sea bass, natural spawning occurs providing the water tem-

perature drops below 15°C (Carrillo et al., 1993). The alter-

nation between day and night also causes a daily

temperature cycle with water temperature increasing (ther-

mophase) after sunrise and decreasing (cryophase) fol-

lowing sunset. Accordingly, the transition from cold to

warm temperature is linked to dawn, whereas transition

from warm to cold temperature is associated with dusk

( Johnson et al., 2004). It is interesting that daily thermo-

cycles are involved in the control of hatching rhythms,

sex differentiation, gonad development, and sexual steroids

production in several fish species (Blanco-Vives et al.,

2011; Villamizar, Ribas, et al., 2012). Daily steroids rhyth-

micity is associated directly to daily rhythms of repro-

duction and spawning in fishes, which usually coincide

with the phase of the LD cycle that displays the highest

locomotor activity (Di Rosa et al., 2016; Oliveira, Dinis,

et al., 2009; Oliveira, Vera, et al., 2009). Although photo-

period has a role in the control of these daily spawning

rhythms (Meseguer et al., 2008), the involvement of

daily thermocycles remains to be investigated in depth.

The relationship between circadian/circannual rhythms

and temperature is complex and not always easy to under-

stand. On the one hand, a change in temperature can

affect the rhythmic processes of organisms (Rensing &

Ruoff, 2002), but on the other hand, biological rhythms

are temperature-compensated, i.e., their period remains con-

stant irrespective of the temperature changes (Pittendrigh &

Caldarola, 1973).

The pineal organ (or pineal gland or epiphysis cerebri)
occupies a central position in the circadian organization of

vertebrates. In fishes, the organ contains photoreceptive cells,

which are also thermoreceptors. In a majority of cases, these

cells are true cellular circadian systems; i.e., they contain

the input machinery to the clock (the phototransduction unit),

the clock machinery itself, and an output machinery that

delivers a rhythmic message. This message is the time-

keeping hormone melatonin, the secretion of which reflects

the ambient light and temperature conditions. Early studies

investigating the impacts of pinealectomy and/or melatonin

administration led us to suspect that the pineal organ of fishes

was involved in the control of reproduction. The first inves-

tigations on this matter were performed in the goldfish, Car-
assius auratus (Fenwick, 1969, 1970). Intraperitoneal (i.p.)
injections of melatonin inhibited the increase in gonads size

observed during the increasing photoperiod and affected the

size of the gonadotropes in the pituitary; the author concluded

that pineal melatonin exerts an inhibitory effect upon gonad

function, possibly by inhibiting the release of a gonadotropic

factor. In the Japanese medaka, Oryzias latipes, pineal-

ectomy, and/or eyectomy impacted the gonadosomatic index

(GSI) in a manner, suggesting that during the breeding

season, gonadal growth was stimulated by the pineal,

whereas during the nonbreeding season, an antigonadal factor

released by the pineal induced gonadal involution (Urasaki,

1972, 1976). In addition, the author suggested that the effects

of photoperiod were exerted on the pineal through the eyes.

The studies that followed, however, led to conflicting

conclusions, i.e., some reporting no effect, while others

describing either antigonadal or progonadal effects, or both,

depending on the species or time of the year at which the

experiments were performed (de Vlaming & Olcese, 1981;

Joy & Agha, 1991; Mayer et al., 1997). In 1981, de Vlaming

and Olcese concluded that, while not essential for repro-

duction, the fish pineal organ “does modulate or ‘fine tune’
reproductive cycles in some ectothermic vertebrates”
(de Vlaming & Olcese, 1981). Here, we summarize our

current knowledge on the functional organization of the fish

pineal organ, the place it occupies in the fish circadian

organization, and its role in setting the daily and seasonal

rhythms of fish reproduction. “Fish” consists of three classes

of vertebrates occupying very different positions on the

evolutionary scale: The jawless fish are represented by

myxines and lampreys; jawed fish include two clades, the

cartilaginous fish (sharks, rays, and chimeras) and the bony

fish (Actinopterygians [including teleosts and chondrostean]

and Sarcopterygians [from which tetrapods emerged]).

Actinopterygians represent the vast majority of the

�33,000 living species of fish. This chapter is mainly about

teleosts, where most of the work has been done.

2 FUNCTIONAL ORGANIZATION
OF THE FISH PINEAL ORGAN

The fish pineal organ is located just below the skull in the

so-called “pineal window,” where the bone is often thinner

and translucent, and the skin covering it is less pigmented

(Oksche, 1984) (Fig. 3). However, some fish species exhibit
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no such specialization (R€udeberg, 1969). In most of the

fishes studied, the pineal organ is usually shaped as a vesicle

that occupies a midline position and is connected to the

epithalamus by a slender stalk (Falcón, 1999; Falcón,

Besseau, & Boeuf, 2007; Oksche, 1984). However, in pleur-

onectiform species, such as the Senegal sole, which exhibits

a real metamorphosis during early developmental stages

that induces an asymmetry of the rostral forebrain areas,

the pineal organ leaves its midline position and shifts its

photosensitive pineal vesicle toward the upper-right

pigmented side, where both eyes are also placed

(Confente et al., 2008). The lumen of the fish pineal organ

is opened to the third ventricle (3rd V) and thus filled with

cerebrospinal fluid (CSF). However, it is worth mentioning

that a range of anatomical situations are observed among

fish, from a purely vesicular to a fully glandular (i.e.,

without lumen) organ (Omura & Oguri, 1969; Sastry &

Sathyanesan, 1981) (Fig. 3F), highlighting the existence

of a great diversity among the �33,000 species of fishes.

Such a diversity is reflected also at the level of the cellular
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organization of the pineal epithelium, which appears in

many respects as a simplified retina (Fig. 4); many analogies

are found between the pineal and the retina at the tissular,

cellular, and molecular levels (O’Brien & Klein, 1986).

The early electron microscopy studies identified three main

cell types in the pineal epithelium: photoreceptors, neurons,

and glia (Collin, 1971; Ekstr€om & Meissl, 1997; Falcón,

1999; Falcón, Besseau, & Boeuf, 2007; Oksche, 1984).

However, a more complex situation appears to exist, as evi-

denced from electrophysiological recordings, detection of

cell-specific molecules, or single-cell mRNA sequencing

(mRNA-Seq), as detailed next (Fig. 4).

2.1 Photoreceptor cells

Photoreceptors usually distribute at the apical part of the

epithelium, in contact with the CSF, and are generally iso-

lated from the peripheral vasculature by the glia. Struc-

turally, the fish pineal photoreceptor is analogous to the

retinal cone displaying a typical bipolar organization (Fig.

4). At one side of the cell body is the inner segment, from

which emerges the outer segment, the photoreceptive pole

made of infoldings (30–150 stacks) of the plasmamembrane

that generally protrude into the pineal lumen. This outer

segment contains the phototransduction machinery that
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FIG. 4 The different cell types of the pineal epithelium. The arrows show the directions of the light input depending on the position in the epithelium as

shown in the upper drawing (for details, cf. Section 2).
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allows the conversion of light energy into an intracellular

signal (references in Ekstr€om & Meissl, 1997; Falcón,

1999; Falcón, Besseau, & Boeuf, 2007; R€udeberg, 1969).
At the other side of the cell body is the neurotransmitter

pole, made of one or two synaptic pedicles, which accu-

mulate numerous clear synaptic vesicles. The neurotrans-

mitter pole establishes synaptic contacts with downstream

neurons or with other photoreceptor cells by means of

ribbon-type synapses as seen in the retina (Falcón, 1999;

Falcón, Besseau, & Boeuf, 2007). In some species, part of

the photoreceptor cell population shows atypical, more or

less disorganized or even degenerated outer segments

(Falcón, 1979a; Wagner & Mattheus, 2002). In the northern

pike, Esox lucius, these photoreceptors do not establish

contact with the second-order neurons, although they

remain photosensitive (see next) (Falcón, 1979a) (Fig. 4).

The identification and localization of specific photoreceptor

proteins (including opsins) by immunocytochemistry (ICC)

or mRNA by in situ hybridization (ISH) and mRNA-Seq

allowed the identification of several populations of photore-

ceptors, as earlier suspected from electrophysiological

recordings (Dodt & Meissl, 1982; Ekstr€om & Meissl,

1997; Falcón & Meissl, 1981; Morita, 1966; Shainer

et al., 2019; Wada et al., 2021). The opsins found in the

pineal organ of fishes belong to the nonvisual opsins family

(pinopsin, parapineal opsin, exorhodopsin, vertebrate

ancient opsins [VA and VAL], melanopsin) (Dekens

et al., 2022; Eilertsen et al., 2014; Kawano-Yamashita

et al., 2020; Porter et al., 2012; Vuilleumier et al., 2006).

These opsins diversified after the teleost-specific whole-

genome duplication (WGD) event ( Jaillon et al., 2004).

They localize in the same or in distinct cells (Wada et al.,

2018, 2021). Although the pineal photoreceptors are all

cone-shaped, the majority of them expresses rod-specific

genes, whereas only a minority expresses cone specific

genes, as shown by single-cell mRNA-Seq in the zebrafish

(Shainer et al., 2019). In addition, a cell type-expressing

melanopsin (opn4xa), but displaying a neuronal-like rather

than a photoreceptor-like shape, has also been identified in

the zebrafish; these cells send projections to the brain

(Sapède et al., 2020). It is noteworthy that decades ago a

subset of pineal cells expressing intracellular photoreceptor

characteristics, but no outer segment was identified in the

dogfish, Scyliorhynus canicula (R€udeberg, 1969). Opsin-
like proteins have been detected in pineal cells of rainbow

trout and European minnow, which send their axons directly

to the brain (Ekstr€om, 1987; Ekstr€om, Foster, et al., 1987).

In lampreys, dye application to the optic tectum led to the

labeling of a few photoreceptor-like shaped cells in the

pineal vesicle in addition to the ganglion cells (Pombal

et al., 1999). These cells might be analogous to the

“intrinsic photoreceptive retinal ganglion cells” of the retina

that express melanopsin and send their axons to the brain

and project in the suprachiasmatic nuclei (SCN) of the

hypothalamus (Dı́az et al., 2016; Fu et al., 2005).

2.2 Neurons

The pineal neuronal population consists of a few inter-

neurons and a larger number of ganglion cells (or second-

order neurons) (Ekstr€om & Meissl, 1988, 1997; Ekstr€om,

van Veen, et al., 1987). Interneurons connect photoreceptor

cells to each other and to second-order neurons (Fig. 4). The

vast majority of the pineal neurons are ganglion cells, which

send their axons to the brain and establish synaptic contacts

with photoreceptor cells or with other ganglion cells (Figs. 4

and 5). Their axons form bundles that converge dorsally at

the level of the pineal stalk to form the pineal tract (or pineal

nerve) (Ekstr€om & Meissl, 1997; Falcón, 1999; Falcón,

Besseau, & Boeuf, 2007) (Figs. 5 and 12). Most probably,

some of the fibers of this tract belong to long-axon photore-

ceptor cells (Ekstr€om &Meissl, 1997) (Fig. 4). Some axons

of the pineal tract possess a myelin sheath and dense-cored

vesicles, others do not.

2.3 Glia

Glial (interstitial) cells occupy the whole height of the

pineal epithelium (Falcón, 1979b) (Fig. 4). Thin in their

center, they enlarge at both their ends. A large base, con-

taining the nucleus, allows glial cells to isolate photore-

ceptors and neurons from the extra-pineal spaces and

peripheral vasculature. At the apex, the glia display a

brush-like border bathed in CSF. The glial cells establish

junctions (desmosomes, gap-, and tight-junctions) with their

neighboring photoreceptors. The glial cells incorporate

hemal elements released from the fenestrated blood vessels

that surround the organ, allowing their distribution to other

cell components of the pineal epithelium and their release

into the pineal lumen (Omura et al., 1985). However, the

passive intercellular transport of high-molecular-weight

substances from the bloodstream to the CSF is prevented

by the tight-junctions glia and photoreceptors establish at

their very apical parts bordering the pineal lumen (Omura

et al., 1985). Glial cells display all signs of an intense

secretory activity (well-developed Golgi apparatus and

endoplasmic reticulum, in which secretory-like material

accumulates). They may also contain vortices of mem-

branes, suggesting that in addition to a nutritive role, they

also recycle photoreceptor outer segment material

(Falcón, 1979b; Falcón, Besseau, & Boeuf, 2007). These

cells are necessary to maintain the integrity and survival

of photoreceptors. Indeed, in the northern pike and rainbow

trout, isolated pineal photoreceptor cells in culture maintain

their structural integrity and reconstitute 3D pineal-like ves-

icles, providing glial cells are present in the culture medium

(Bolliet et al., 1996; Falcón et al., 1992). In the zebrafish, the
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knock down of a subpopulation of glial cells induces loss of

the photoreceptor cells (Elazary et al., 2023).

2.4 Macrophages

Two populations of macrophages are found in the pineal end

vesicle located: one in the lumen and the other within the

pineal epithelium. Both accumulate lysosomes and mem-

brane infoldings from detached photoreceptor outer

segments (Falcón, 1979b; McNulty et al., 1988; Omura

et al., 1986; R€udeberg, 1969). However, the two populations
display a different intracellular appearance (Falcón, 1979b).

It is suspected that macrophages inhabiting the luminal

space may be involved in scavenging and/or digesting outer

segments that detach from photoreceptor cells. In addition,

these macrophages can engulf particles and/or residual

bodies released from the pineal epithelial elements as dem-

onstrated in the rainbow trout (Omura et al., 1986).
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2.5 Retinal-pigmented epithelium-like (RPE-like)
cells

A small population of pineal cells, expressing the character-

istic repertoire of genes of the retinal pigment epithelial

cells (RPE) of the retina, has been identified in the zebrafish

pineal (Shainer et al., 2019). In the retina, RPE cells con-

tribute to many functions related to photoreceptor devel-

opment and function, including retinomotor movements

and visual cycle (Burnside, 2001; Strauss, 2005). These

cells might correspond to the “unidentified macrophage-like

cells” observed in the pineal epithelium of the northern pike

(Falcón, 1979a, 1979b). According to Shainer et al. (2019),

these cells participate in the pineal retinoid cycle (as is the

case in the retina) and perhaps form a barrier that regulates

transport of molecules between the pineal photoreceptors

and the vasculature or the CSF or both; they also produce

the Agouti-related peptide-2 (AgRP2) (cf. Section 5.3).

3 THE PINEAL INPUTS: DIRECT
PHOTOSENSITIVITY

The first direct evidence that the fish pineal organ is photo-

sensitive came from early studies inO. mykiss (Dodt, 1963).
Spontaneous discharges recorded from the pineal nerve at

night were inhibited by light. Since then, four types of elec-

trical responses have been recorded in vivo or in vitro, as

extensively detailed elsewhere (Ekstr€om & Meissl, 2010;

Falcón, Besseau, & Boeuf, 2007; Meissl & Dodt, 1981)

(Fig. 5).

– The early receptor potential is a millisecond-fast elec-

trical signal recorded from cone photoreceptors. It is

generated by the light-induced charge transfer across

the cell membrane resulting from the photoisomeri-

zation of opsins (Boyle et al., 2020). It is the earliest sign

of photoreceptor activity. It has only been recorded from

the pineal organ of the northern pike (Falcón & Meissl,

1981) and the bullfrog Lithobates catesbeianus
(Morita & Dodt, 1975). In both species, the retinal

and pineal early receptor potentials display very similar

characteristics in latency and spectral sensitivity.

– The electropinealogram is analogous to the electroreti-

nogram; it is a slow graded response believed to rep-

resent the sum of extracellular currents generated by

the photoreceptors (Falcón & Meissl, 1981; Hanyu

et al., 1969; Tabata et al., 1975).

– The photoreceptor intracellular recordings have been

obtained in lampreys (species?) (Morita et al., 1984;

Pu & Dowling, 1981; Uchida & Morita, 1990) and

numerous teleosts (Meissl et al., 1986; Meissl &

Ekstr€om, 1988a, 1988b; Nakamura et al., 1986) (Fig.

5A). In response to light, the cells hyperpolarize with

an amplitude proportional to the intensity and duration

of the stimulus. The amplitude of the response is

species-dependent (2.5–8 log units). Distinguishing fea-

tures between retinal and pineal photoreceptor cells are

the slow time courses of the rising and recovery phases

of pineal cells, which are even slower than those of

retinal rods. In addition, indication was provided that

several receptor subtypes with rod- and/or cone-like

characteristics exist in the teleostean pineal (Meissl &

Ekstr€om, 1988b; Shainer et al., 2019; Tabata et al.,

1975). Intracellular recordings have also been obtained

from the neuronal population (Fig. 5A). The data

indicate that two populations exist, one consisting of

interneurons and the other, more abundant, of efferent

neurons (Meissl et al., 1986). The hyperpolarization of

the photoreceptor cells is correlated to an hyperpolari-

zation of the neuron and inhibition of its spontaneous

discharges (Morita et al., 1985) (Fig. 5).

– The extracellular recordings are mass potentials

recorded from the pineal nerve (Dodt, 1963, 1973;

Meissl et al., 1986) (Fig. 5B). The great majority of

the neuronal recordings are of the “achromatic” type, i.-

e., the neurons exhibit spontaneous firing in the dark,

which is inhibited by light, either transiently under brief

illumination, or in a manner that depends on intensity

and duration of the stimulus under prolonged illumi-

nation (Ekstr€om & Meissl, 1997; Falcón & Meissl,

1981; Meissl et al., 1986) (Fig. 5D). The relationship

is linear over a range of 2 (Lampetra japonica) to 8

(C. auratus, E. lucius) log units (Fig. 5E), and the

spectral sensitivity reflects that of the photoreceptors

(Ekstr€om & Meissl, 1997). In the rainbow trout, two

types of ganglion cells have been distinguished

according to their degree of spike inhibition by light dis-

playing, one, a long-lasting suppression by light and the

other a moderate inhibition (Tabata & Meissl, 1993). In

some teleost species (e.g., O. mykiss, E. lucius), a

“chromatic” response has also been recorded from some

neurons, characterized by a long-lasting inhibition of the

spike discharge by a UV light stimulation, whereas light

of longer wavelengths causes excitation. Several expla-

nations may account for this chromatic response, which

may come from: (i) interneurons that could transfer

information from one cone system to another

(Meissl & Dodt, 1981); (ii) two different photoreceptor

cell types, contributing to the generation of color oppo-

nency in the pineal ganglion cells (Wada et al., 2021);

(iii) one single photoreceptor cell co-expressing two

photopigments driving cell depolarization for one, and

cell hyperpolarization for the other (Ekstr€om &

Meissl, 2010); (iv) or expressing a bistable opsin photo-

pigment, each state displaying different signaling abil-

ities (Wada et al., 2018); (v) the subpopulation of

melanopsin projection neurons, which might be respon-

sible for the light-on response (Sapède et al., 2020). It is

of interest to mention that in addition to light, ambient

temperature has also a modulatory influence on the
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spontaneous spike discharges and their response to light

in the pineal organ of O. mykiss (Tabata et al., 1993;

Tabata & Meissl, 1993). In this species, the two types

of ganglion cells mentioned previously responded to

light between 10 and 20°C for one, and between

15 and 20°C for the other; the spike discharges were

strongly diminished at higher temperatures and insen-

sitive to light at lower temperatures (cf. Section 6.2

and Fig. 9).

4 THE PINEAL CLOCK

4.1 The circadian clock machinery

A circadian clock is characterized by a free-running

rhythmic activity, which in the absence of external cues

oscillates with a period (τ) of 24�4h. Circadian clocks

are critical for the synchronization of biochemical, physio-

logical, and behavioral processes to the external cues. In a

large majority of cases, these processes display daily

(e.g., feeding, locomotor activity, spawning) and seasonal

(e.g., growth, migration, reproduction) rhythms. The clocks

allow anticipating these variations of the environment. The

24-h LD cycle (photoperiod) is the most reliable and pow-

erful synchronizer of the circadian clocks particularly in

temperate and polar areas. Other external factors displaying

also rhythmic fluctuations (e.g., rainfalls, temperature) may

also play a role in tropical areas where the 12L/12D cycle is

constant (Andrade & Braga, 2005; Ikegami et al., 2014).

However, compared to photoperiod the daily and seasonal

fluctuations of these other factors are less reliable, a fact

worsened by the ongoing global changes (cf. Chapter 14,

this volume).

A circadian clock machinery consists of core clock genes

and proteins interconnected by a transcription/translation

feedback loop, robustness, and stability of which is rein-

forced by auxiliary molecular mechanisms (Isorna et al.,

2017; Ko & Takahashi, 2006; Pagano et al., 2017;

Stanton et al., 2022; Vatine et al., 2011; Zhang & Kay,

2010). In mammals, four groups of genes encode the pro-

teins that form the core oscillatory feedback loop system.

A couple of positive elements, CLOCK and BMAL1, het-

erodimerize and initiate transcription of genes that contain

E-box cis-regulatory enhancer sequences. This is the case of

period (per1, per2, and per3) and Cryptochrome (cry1 and

cry2). In turn, the PER:CRY heterodimers repress the

CLOCK:BMAL1 complex (Hurley et al., 2016). A similar

process is observed in fishes. However, teleost fishes may

display additional copies of these genes as a result of the

teleost-specific and salmonids-specific WGDs mentioned

previously (Gómez-Boronat et al., 2022; West et al.,

2020). Investigations in the zebrafish and Atlantic salmon

indicated that duplication resulted in functional

diversification, and only some of the duplicates serve cir-

cadian function (Liu et al., 2015; West et al., 2020).

4.2 A clock in the fish pineal photoreceptor cells

The first studies indicating an intrapineal circadian activity

were performed in the goldfish and Asian stinging catfish.

In the photoreceptor cells of C. auratus, the number of syn-

aptic vesicles, aswell as the position and shape of the synaptic

ribbons, displayed significant LD changes that persisted in

fish exposed to constant darkness (DD); an internal auton-

omous control of these cellular movements was suggested

(McNulty, 1981). In H. fossilis, the daily locomotor activity

rhythm that free ran under DD, disappeared after pineal-

ectomy (Garg & Sundararaj, 1986). The development of

in vitro static and superfused cultures of isolated pineal glands

and cells allowed the direct demonstration that the daily mel-

atonin production rhythm observed in vivowasmaintained in

the absence of external cues inmany species (cf. Section 5.2),

indicating the existence of an endogenous circadian control

(e.g., northern pike (Bolliet et al., 1995, 1996; Falcón et al.,

1987); white sucker, Catostomus commersoni (Zachmann

et al., 1992); Policiliidae g. (Okimoto & Stetson, 1999);

and ayu, Plecoglossus altivelis (Iigo et al., 2003) (Fig. 8).

Single-cell monitoring indicated this is a photoreceptor cell

property (Bolliet et al., 1996; Wang et al., 2020). In addition,

clock genes (three clock, three bmal, four per and seven cry)
from the core clock loop have been identified in the pineal

organ of several teleost species, as reviewed elsewhere (Lee

et al., 2021; Saha et al., 2019; Saha et al., 2022a), and a clock

gene of an accessory clock loop (nr1d1 [also called rev-erbα],
a repressor of bmal) has been localized in the pineal photore-
ceptors of the zebrafish (Wang et al., 2020). In the African

sharptooth catfish, Clarias gariepinus, mRNA abundance

of these genes oscillates in a daily and seasonal manner under

LD and constant conditions, both in vivo and in vitro,

speaking in favor of the existence of a functional circadian

machinery in the pineal of this species (Saha et al., 2022b).

The photoreceptor cells of the fish pineal thus constitute

full cellular circadian systems that produce melatonin,

which reflects the rhythmic function of the molecular clocks

synchronized by photoperiod (Falcón, 1999; Falcón,

Besseau, & Boeuf, 2007) (cf. Section 5.2). Virtually, all cells

of the organism express clock genes and a functional clock

machinery (Barclay et al., 2012). The question is what role

does the pineal organ and its messenger melatonin play in

the whole circadian organization of fishes.

4.3 The pineal gland in the fish circadian
organization

In mammals, a master circadian clock synchronizing other

brain and peripheral oscillators is located in the SCN

(Barclay et al., 2012; Kolbe et al., 2019). The photoperiodic
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information perceived through the retina is conveyed to the

SCN via the retino-hypothalamic tract (RHT). From the

SCN, the main output pathways reach the hypothalamus

(subparaventricular zone and dorsomedial nucleus) and

the thalamus (paraventricular nucleus, PVN) thus spreading

the rhythmic information. From the PVN, a polysynaptic

pathway involving the intermediolateral cell column of

the thoracic spinal cord, and ultimately the superior cervical

ganglion, ends with a sympathetic innervation of the pineal

gland to control melatonin production (Barclay et al., 2012;

Coomans et al., 2015; Klein et al., 1997). It seems that an

interplay between the SCN and the other brain and

peripheral clocks is necessary to maintain solid rhythmic

regulations; this includes a feedback impact of melatonin

on the SCN clocks (Arendt & Aulinas, 2000).

In fishes, the existence of such a system remains to be dem-

onstrated. In most species, the photoperiod-dependent pro-

duction of melatonin relies solely on the pineal, whether

under circadian control (most species) or not (salmonids)

(Falcón, 1999; Falcón et al., 2010; Migaud et al., 2010).

It is interesting however that in some species, this pro-

duction also depends partially (Nile tilapia, Oreochromis
niloticus; C. gariepinus) or totally (D. labrax; Atlantic
cod, Gadus morhua) on the lateral eyes (Bayarri et al.,

2003; Martinez-Chàvez & Migaud, 2009; Migaud,

Cowan, et al., 2007; Nikaido et al., 2009). Also, per2 cir-

cadian expression has been detected in the SCN, as well as

the pineal and pituitary glands of the flounder, Para-
lichthys olivaceus, and amberjack, Seriola dumerili, but
not of the medaka (Watanabe et al., 2012). The authors

concluded that some interspecific variation exists

regarding the extent to which fish species depend on an

SCN circadian activity. Although the pineal organ has

received much attention, it is not the only site of extra-

retinal photoreception. Photopigment molecules of the

opsin family have also been identified in the skin and brain

areas, including olfactory bulb, thalamus, hypothalamus,

habenula, preoptic area (POA), SCN, and optic tectum

(Baker et al., 2015; Binder & McDonald, 2008; Chen

et al., 2014; Eilertsen et al., 2021; P�erez et al., 2019).

The roles these deep brain photoreceptors play remain to

be explored in depth. It is interesting that some of these

photoreceptive structures are found in areas that receive

inputs from both the pineal gland and/or the retina

(Eilertsen et al., 2021). Also, in vivo and in vitro studies

in the zebrafish show that all the fish cells exhibit a

light-dependent synchronization of circadian clocks. It

was concluded that the circadian system exists as a decen-

tralized collection of clocks in this species (Moore &

Whitmore, 2014; Whitmore et al., 2000). Nevertheless,

the zebrafish pineal clock seems necessary for the gener-

ation of daily behavioral rhythms, possibly as part of a

multiple pacemaker system, as revealed by genetically

modified zebrafish, in which the molecular clock is selec-

tively blocked in the melatonin-producing cells (Ben-

Moshe Livne et al., 2016). However, this situation may

not apply to the thousands of known fish species as they

display great morpho-functional diversity, and differences

in habitats and responses to light stimuli (Watanabe et al.,

2012). It is conceivable that the way light reaches the

organism changes from one fish species to another,

depending, for example, on the size of the fish and/or

opacity of its tegument and internal tissues (Fig. 3).

Species in which light does not penetrate deeply into the

organism would need one or two “master clocks” to syn-

chronize “weak oscillators,” as suspected from studies

on the locomotor activity of pinealectomized fishes.

Indeed, the circadian free-running locomotor activity

rhythm observed under DD was either lost (H. fossilis),
or split into two components (C. commersoni), or main-

tained with a different period (burbot, Lota lota) (see

Fig. 1 in Underwood, 1989). A total loss indicates a master

role for the pineal gland, while the other two situations

suggest other oscillators contribute to controlling the cir-

cadian activity rhythm, and the coupling strength between

these oscillators determines the behavior of the system

after pinealectomy. Thus, in some species, the pineal gland

appears as a key element, occupying a top position in the

hierarchy of oscillatory units, either alone or in con-

junction with another organ or area (Underwood, 1989).

Finally, whereas it is possible that no master clock is

needed in a species like the zebrafish, it is noteworthy that

time-lapse imaging of the promoter of the clock gene

nr1d1. This indicates that its rhythmic expression initiates

in the pineal photoreceptor cells before spreading to other

brain regions (Wang et al., 2020), which would suggest a

master role for the pineal in this species. This is a complex

situation, and other factors add to the complexity. Aging is

one such factor in the killifish, Nothobranchius furzeri,
where the molecular clock elements are spatially confined

to the pineal gland upon aging (Lee et al., 2021). The syn-

chronizing cue is another factor. For example, in the

goldfish and seabream, central oscillators are light-

entrained (LEO) and peripheral oscillators (i.e., liver)

are food-entrained (FEO) (Gómez-Boronat et al., 2022;

Vera et al., 2013). In brief, the role the pineal organ plays

in the fish circadian organization is not a simple question

and Underwood (1989) concluded “it is becoming increas-
ingly apparent that the relative roles that these sites play
between species can vary” perhaps reflecting “the different
selection pressures operating on animals which occupy
diverse ecological and temporal niches.” Watanabe et al.

(2012) suggested that the function of the SCN as a cir-

cadian pacemaker arose in a common ancestor of teleosts

and tetrapods that existed about 500 MYBP and that most

teleost have retained this system although others have not.
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5 PINEAL RHYTHMIC OUTPUTS

5.1 The nervous message: Glutamate

The photoreceptors’ neurotransmitter is likely to be glu-

tamate, as is the case in the retina (Debreceni et al., 1997;

Meissl & George, 1984, 1985; Vigh & Debreceni, 1995;

Wada et al., 2021), while the population of pineal inter-

neurons uses gamma-aminobutyric acid (GABA)

(Ekstr€om, van Veen, et al., 1987; Meissl & Ekstr€om,

1991). Glutamate is released from the photoreceptor syn-

aptic vesicles at night, which stimulates the activity of the

second-order neurons. The release of the neurotransmitter

is proportional to the amount of light perceived over a var-

iable range depending on the species, and this is at the basis

of the “achromatic” response (cf. Section 2.2.4. and Figs. 4

and 5D and E). Thus, the organ functions as a perfect lumi-

nance detector and accordingly as a day-length indicator

(Dodt, 1963, 1973; Ekstr€om & Meissl, 1997, 2010;

Falcón, 1999; Falcón, Besseau, & Boeuf, 2007; Falcón &

Meissl, 1981). The evidence that the number of synaptic

vesicles and ribbons displays daily and circadian variations

in the goldfish (McNulty, 1981) might suggest that the sen-

sitivity to light varies along the daily cycle, although there is

no evidence that the production of the nervous message

itself is under circadian control.

5.2 The hormonal message: Melatonin

A highly conserved feature of vertebrate physiology is the

daily rhythm in melatonin production within the pineal

gland (Klein et al., 1997). Melatonin is produced at night

from tryptophan in four steps as detailed elsewhere

(Falcón, 1999; Falcón, Besseau, & Boeuf, 2007; Klein

et al., 1997) (Fig. 6). In brief, tryptophan hydroxylase
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FIG. 6 Melatonin and 5-methoxytryptophol synthesis pathways. AAAD, aromatic amino acid decarboxylase; AANAT, arylalkylamine N-acetyltrans-

ferase; ADH, aldehyde dehydrogenase; ASMT, acetylserotonin N-methyltransferase; MAO, monoamine oxidase; MDA, melatonin deacetylase; TpOH,

tryptophane hydroxylase. The graphs in the right represent the daily profiles of, from top to down, serotonin, AANAT, N-acetylserotonin, ASMT and

melatonin. Day¼white boxes; night¼gray boxes. For details, see text.
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(TpOH; EC 1.14.16.4) catalyzes the conversion of tryp-

tophan into 5-hydroxytryptophan, which is then decarboxy-

lated by the aromatic amino acid decarboxylase (EC

4.1.1.28) to produce serotonin. The arylalkylamine

N-acetyltransferase (AANAT; EC 2.3.1.87) catalyzes the

conversion of serotonin into N-acetylserotonin, which is

then O-methylated by the action of the acetylserotonin

N-methyltransferase (ASMT; EC 2.1.1.4; formerly

HIOMT). Other indoles, including 5-methoxytryptamine,

5-hydroxyindole acetic acid, 5-hydroxytryptophol, and

5-methoxytryptophol, may also be produced after either

serotonin oxidative deamination (by monoamine oxidase),

or serotonin acetylation (by AANAT), or via melatonin dea-

cetylation (Ceinos et al., 2005; Falcón et al., 1985;

Pomianowski et al., 2020; Yáñez & Meissl, 1995) (Fig. 6).

Melatonin and other indoles are released into the blood

stream and CSF (Ceinos et al., 2005). The variations in

plasma melatonin levels reflect those of its production by

the pineal gland; i.e., they are higher at night than during

day (Falcón et al., 1987; Gern et al., 1978), and these vari-

ations are seasonally dependent (Garcı́a-Allegue et al.,

2001; Iigo & Aida, 1995; Kezuka et al., 1988; Masuda

et al., 2003; Vera et al., 2007) (Fig. 7). In isolated pineal

organs of the northern pike, in culture, addition of [3H]-

melatonin in the incubation medium results in an impressive

accumulation of radioactivity in the surrounding blood

vessels and fibroblasts, far higher in the evening than in

the morning (Falcón et al., 1985). This suggests the possible

existence of a yet unidentified melatonin (or metabolite)

carrier displaying daily fluctuations.

All the elements of the phototransduction cascade and mel-

atonin synthesis pathway have been identified within the

photoreceptor cells of the fish pineal organ (Falcón et al.,

1981, 1984; Falcón, Besseau, & Boeuf, 2007; Herrera-

P�erez et al., 2011; Tamotsu et al., 1990). As mentioned pre-

viously (cf. Section 4.2), the pineal photoreceptor cells are

photoneuroendocrine transducers with the full properties of

a cellular circadian system (Bolliet et al., 1996).

Another well-characterized site of melatonin synthesis is the

retina of vertebrates (Bubenik et al., 1978; O’Brien &Klein,

1986). In fishes, melatonin production occurs in vivo and

in vitro from retinal extracts (Cahill, 1996; Iigo et al.,

2006; Iigo, Furukawa, et al., 2007; Iigo, Hara, et al.,

1997). Aanat and asmt mRNAs are detected in the tissue

(Besseau et al., 2006; Mizusawa et al., 1998, 2000; Paulin

et al., 2015; Pomianowski et al., 2020; Rajiv et al., 2016;

Velarde et al., 2010; Zilberman-Peled et al., 2006), and

the corresponding enzyme activities are measured from

retinal homogenates (Benyassi et al., 2000; Falcón,

Bolliet, & Collin, 1996; Falcón & Collin, 1991). AANAT

and ASMT enzymes colocalize in the photoreceptor cell

layer, basal part of the inner nuclear layer, and in ganglion

cell layer (Besseau et al., 2006; Paulin et al., 2015;

Zilberman-Peled et al., 2006). These areas also display

melatonin-like immunoreactivity (Falcón & Collin, 1991).

It must be noted that the pineal and retinal AANAT enzymes

differ remarkably in amino acid sequence and kinetics (i.e.,

substrate preferences, temperature dependence of activity

and stability) (Benyassi et al., 2000; Coon et al., 1999;

Falcón, Bolliet, & Collin, 1996). Actually, the retinal and

pineal AANAT are paralogs, respectively, named AANAT1

and AANAT2 that appeared after several WGD (two at the

origin of the vertebrates and one specific to teleost fishes)

(Cazam�ea-Catalan et al., 2014; Falcón et al., 2014; Huang

et al., 2022). AANAT2 has been conserved in all fish

species and only one form is found, preferentially expressed

in the pineal gland. In contrast, two isoforms of retinal

AANAT1 exist, AANAT1a and AANAT1b, and fishes

may express either form or both (Cazam�ea-Catalan et al.,

2014). In some groups (salmonids, sturgeons, carps), more

paralogs of AANAT1a and 1bmay be found as these species

have experienced a fourth round of WGD (Huang et al.,

2022). Although less studied, there is evidence that at least

2 asmt genes may be expressed, as is the case in the goldfish

(Velarde et al., 2010) and stickleback, Gasterosteus acu-
leatus (Pomianowski et al., 2020). Although different cell

types of the retina may produce melatonin, it seems likely

that the photoreceptor cells are the main producers; indeed,

quantitative ISH studies showed the abundance of aanat and
asmt mRNAs is far higher in the photoreceptor cell layer

than in the other retinal cell layers (Besseau et al., 2006).

Furthermore, teleost ocular melatonin rhythms exhibit

species-specific variations, with some species showing

higher melatonin levels during the dark phase of the LD

cycle, others during the light phase, and still others display

no daily variation in melatonin levels (Iigo, Furukawa, et al.,

2007). Whatever it might be, melatonin produced within the

retina is most probably an autocrine/paracrine effector

(Behrens et al., 2000; Huang et al., 2013; Ping et al.,

2008; Ribelayga et al., 2004), which is catabolized in situ

(Grace et al., 1991); i.e., it is not released into the blood

stream.

Melatonin might also be synthetized in brain areas other

than the pineal and in peripheral tissues. Indeed, aanat
mRNA is detected and localized in several brain areas

and/or peripheral tissues (Fernández-Durán et al., 2007;

Kulczykowska et al., 2017; Maitra et al., 2015; Muñoz-

P�erez et al., 2016; Paulin et al., 2015; Takahashi &

Ogiwara, 2021; Velarde et al., 2010). However, AANAT-

like immunoreactivity was detected (Western blots) only

from gut extracts of the tropical carp (Yasmin et al.,

2021), and enzymatic activity occurs in homogenates from

goldfish liver and gut (Nisembaum et al., 2013) and from

G. aculeatus skin (Pomianowski et al., 2020), while ASMT

activity has never been measured to date (cf. Section 7).
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Thus, the existence of extra-pineal and extraretinal sites of

melatonin production awaits further experimental evidence.

Also, the AANAT activity found in these tissues may serve

other functions than melatonin synthesis, e.g., dopamine

acetylation (Nisembaum et al., 2013), as this may occur

in some retinal layers (Zilberman-Peled et al., 2006).

5.3 The neurohormonal peptidergic message(s)

5.3.1 Agouti-related peptide (AgRP)

Two AgRP paralogs have been identified in fishes, AgRP1

and AgRP2, which are endogenous antagonists at the mel-

anocortin receptors. AgRP2 is specific to fishes and is

present in cells of the pineal organ and POA of zebrafish

(Shainer et al., 2019; Zhang et al., 2010), turbot and Senegal

sole (Guillot et al., 2012), and sea bass (Agulleiro et al.,

2014). Single-cell sequencing of zebrafish pineal cells iden-

tified AgRP2 is produced by the RPE-like cells (cf.

Section 2.5), from where it is released into the CSF

(Shainer et al., 2019). It is hypothesized that AgRP2 is made

constitutively, while its release is controlled by the LD cycle

(Zhang et al., 2010).

5.3.2 Growth hormone (GH) releasing
hormone

GH-releasing hormone immunoreactivity is detected in the

goldfish pineal parenchyma, possibly reflecting a pro-

duction by photoreceptor cells (Rao et al., 1996). The

function of this pineal peptide, so far detected only in this

species, is not known but deserves attention since GH pro-

duction by the pituitary is modulated by melatonin in

rainbow trout and European sea bass (Falcón et al., 2003,

2021).

5.3.3 Arginine vasotocin (AVT)

Radioimmunoassay and bioassays have suggested the

presence of AVT in fish pineal glands of O. mykiss, brown
trout (Salmo trutta), brook trout (Salvelinus fontinalis), and
Atlantic eel, Anguilla anguilla (Holder et al., 1979).

Moreover, AVT immunoreactive cells were localized in

the stalk of the pineal organ of the plainfin midshipman Por-
ichthys notatus. The projections and functions of pineal

AVT-positive cells have not yet been deciphered, but this

neuropeptide has been correlated with reproductive

behavior and tactics in fish (Foran & Bass, 1998).

6 THE CONTROL OF THE RHYTHMIC
PINEAL PRODUCTIONS

6.1 Photoperiod and circadian clock control

Melatonin secretion increases at night and is inhibited

during day (Fig. 8). This is achieved through controlling a

rhythm in AANAT2 activity, while ASMT activity remains

rather constant (Falcón, 1999; Falcón, Besseau, & Boeuf,

2007) (Fig. 6).

AANAT2 synthesis and activity are under both direct and

indirect light control (Fig. 9). The direct control results from

a cascade of events driven by the photoreceptive pole, which

controls cell membrane polarization (cf. Section 3 and

(Falcón, Besseau, & Boeuf, 2007)). In brief, the current idea

is that: (1) cell depolarization in the dark promotes opening

of cell membrane voltage-gated calcium channels (VGCC)

and calcium (Ca2+) entry into the cell; (2) [Ca2+]i then binds

to a calmodulin-like Ca2+-binding protein that activates the

adenylyl cyclase and thus the production of cyclic-30,50-
adenosine monophosphate (cAMP); (3) cAMP activates

protein kinase A (PKA), which (4) catalyzes AANAT2

phosphorylation; (5) phosphorylated AANAT2 binds to

the chaperone protein 14-3-3, which protects the enzyme

from degradation (Falcón, 1999; Falcón, Besseau, &

Boeuf, 2007) (Fig. 10). Based on indirect facts, it has been

hypothesized that PKA activation at night might phosphor-

ylate the cAMP response element-binding protein, thus

inducing aanat2 gene expression. When the phototrans-

duction is activated by light, the photoreceptor hyperpo-

larizes, and the VGCC close; AANAT2 is no more

phosphorylated as a consequence of a [Ca2+]i depletion,

and unphosphorylated AANAT2 cannot bind the chaperone

protein 14-3-3 anymore, which leads to its degradation

through the proteasome (Fig. 10).

The indirect control operates via the circadian clock.

Indeed, pineal aanat2 transcription exhibits a robust daily

and circadian rhythm in many fish species (B�egay et al.,

1998; Coon et al., 1999; Gothilf et al., 1999; McStay

et al., 2014; Rajiv et al., 2016; Velarde et al., 2010;

Zilberman-Peled et al., 2007). There is compelling evidence

that aanat2 is a clock-controlled gene and that the rhythmic

transcription of aanat2 results from the direct action of cir-

cadian clock genes acting on E-box enhancers present in its

promoter. E-box sequences are targeted by the CLOCK/

BMAL dimers. They are present in aanat2 from zebrafish

(Appelbaum et al., 2005, 2006), European sea bass

(McStay et al., 2014), and northern pike and Mediterranean

seabream (Zilberman-Peled et al., 2007). In the zebrafish,

one such E-box together with three other photoreceptor con-

served elements mediates the synergistic effect of the

photoreceptor-specific homeobox OTX5 and the rhythmi-

cally expressed clock protein heterodimer—BMAL/

CLOCK—on aanat2 expression. In addition, the profiles

of the bmal/clock oscillations described in fish (displaying

peaks around dusk in zebrafish (Cahill, 2002), European

sea bass (McStay et al., 2014), and turquoise killifish

(Lee et al., 2021)) are consistent with the observed increases

in aanat2 mRNA abundance observed between noon and

midnight (previous refs), and genetically blocking zebrafish
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clock affects AANAT2 activity and the circadian production
of melatonin (Ben-Moshe Livne et al., 2016) (Fig. 11). In

addition to this, (i) miR-183, a microRNA that displays

pineal-enhanced and light-induced expression, downregu-

lates aanat2 mRNA levels through binding a target site in

the aanat2 30UTR (Ben-Moshe et al., 2014), and (ii) the

clock gene per2 mediates the effects of light on the onset

of the rhythmic expression of aanat2 in the developing zeb-
rafish (Vuilleumier et al., 2006; Ziv et al., 2005). Not all fish

species exhibit such a clock-controlled expression of

aanat2. In sea lamprey, Petromyzon marinus (Bolliet

et al., 1993), and salmonids (Gern & Greenhouse, 1988;

Iigo, Abe, et al., 2007; Iigo, Hara, et al., 1997), the increase

or decrease in melatonin production reflects exclusively

ambient illumination (Fig. 8C–F). In the rainbow trout

(Coon et al., 1998) and Atlantic salmon (McStay et al.,

2014), pineal aanat2 mRNA levels remain constant under

LD, LL, or DD and unaffected whatever the condition.

Clock genes are indeed present in the Atlantic salmon

pineal, but their rhythmic expression seems to depend on

an extra-pineal master oscillator; and, no E-box regulatory

elements has been identified in Atlantic salmon aanat2 pro-
moter (McStay et al., 2014). Thus, melatonin secretion in

salmonids and lampreys depends exclusively on the LD

control of AANAT2 protein production and stability

(Falcón, Besseau, & Boeuf, 2007).

6.2 Temperature

Temperature modulates the production of melatonin (cf.

Section 3). Whereas photoperiod controls the duration of

the nocturnal melatonin surge, temperature may modulates

its amplitude (Benyassi et al., 2000; Bolliet et al., 1993;

Falcón et al., 1994; Falcón, Bolliet, & Collin, 1996;

Iigo & Aida, 1995; Masuda et al., 2003; Max & Menaker,

1992; Porter et al., 2001; Samejima et al., 2000; Thibault,

Falcón, et al., 1993; Vera et al., 2007; Zachmann et al.,

1991, 1992) (Fig. 9A–C). The melatonin response to tem-

perature is not (or not only) a passive response to changes

in molecular kinetics. From the very few studies available,
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the melatonin response curve to temperature reflects more

or less the aerobic scope of a fish (Cazam�ea-Catalan
et al., 2013; Max & Menaker, 1992; Nisembaum et al.,

2015, 2022; Thibault, Collin, & Falcón, 1993; Thibault,

Falcón et al., 1993), as is the case for the spike frequency

response curve of the pineal neurons (Tabata & Meissl,

1993) (Fig. 9D). Each species may have its own

“fingerprint.” For example, isolated white sucker and

northern pike pineal glands cultured under a similar

photo-thermo-cycle respond in an opposite manner: the

former releases more melatonin at night under warm-days/

cold-nights (12L20°C/12D10°C) than under cold-days/warm-

nights (12L10°C/12D20°C), while the opposite holds true for

the latter species (Falcón et al., 1994; Zachmann et al.,

1991). In addition, the response to temperature changes

depends on the fish’s previous temperature acclimation

history (Nisembaum et al., 2022). The state of the art sup-

ports previous hypothesis that the effects of temperature

are mediated directly in pineal organs lacking an

autonomous clock, whereas the effects are due partly to

entrainment and partly to direct impact (masking) in pineal

organs possessing a circadian clock (López-Olmeda, 2017;

Rensing & Ruoff, 2002).

6.2.1 Direct effects

The direct effects target the AANAT2 enzyme activity in

two ways. The first way is mediated by temperature-

sensitive Ca2+ channels of the transient-receptor-potential

vanilloid (TRPV) family (Fig. 10):

(i) trpv1 and trpv4 mRNA have been identified (ISH)

within rainbow trout and Atlantic salmon pineal photo-

receptor cells, whereas the corresponding proteins are

immunodetected (ICC) in their plasma membrane

(Nisembaum et al., 2015, 2022);

(ii) TRPV1andTRPV4agonists and antagonistsmodulate

melatonin production in vitro, and in a temperature-

dependent manner;
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FIG. 10 Intracellular control of arylalkylamine N-acetyltransferase (AANAT) activity. Both light and temperature are involved in the control of calcium

entry into the cell. Phototransduction controls membrane voltage, which in turn controls the gating of voltage-gated calcium channels (VGCC). VGCC are

opened in the dark, when the photoreceptor is depolarized and are closed upon a light-induced cell hyperpolarization (see also Fig. 5). Temperature acts

through channels of the transient-receptor-potential vanilloid family (TRPV), which activate at specific temperature ranges, thus contributing to con-

trolling [Ca2+]i. In the cell, [Ca
2+]i binds to a Ca

2+-binding protein (CAM) to phosphorylate (P) AANAT; it also activates the adenylyl cyclase (AC)/cAMP

pathway, which contributes to AANAT phosphorylation, via the protein kinase A (PKA). Once phosphorylated AANAT binds to, and is thus protected by,

the 14-3-3, a chaperone protein. A cAMP/PKA activation of aanat transcription via the cAMP-responsive element-binding protein (Creb), as observed in

mammals, remains to be investigated in depth in fish. Low [Ca2+]i reverses the process; the dephosphorylated AANAT dissociates from the 14-3-3, which

results in its degradation through the proteasome. It is noteworthy that internal effectors, such as melatonin, catecholamines, and adenosine, are likely to act

through the AC/cAMP/PKA pathway.
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(iii) in vitro, the temperature-induced changes in cAMP

content, AANAT2 activity and melatonin secretion

display superimposed profiles in a species-dependent

manner (Falcón, 1999; Thibault et al., 1993,b).

Thus, it appears that photoperiod and temperature modulate

melatonin production by using the same intracellular mes-

sengers (Ca2+, cAMP), and corresponding cascade of events

(cf. Section 5.2) (Fig. 10).

The second way is the AANAT2 protein itself. The charac-

terization of AANAT2 activity from pineal homogenates

and from recombinant enzymes indicated marked differ-

ences between fish AANAT1 and AANAT2 with regard

to temperature impacts (Benyassi et al., 2000; Cazam�ea-
Catalan et al., 2013; Falcón, Bolliet, & Collin, 1996;

Zilberman-Peled et al., 2004). Thus, AANAT1 displays

classical kinetics, i.e., activity increases linearly with

increasing temperature and drops abruptly above 37°C.

Conversely, AANAT2 activity peaks at temperatures closer

to the fish thermal preferences. In salmonids, two amino

acid positions of the AANAT sequence play a crucial role

in determining the enzyme thermal stability and catalytic

efficiency of AANAT2 (Cazam�ea-Catalan et al., 2012).

6.2.2 Indirect effects

The indirect effects are observed in species in which aanat2
expression is clock-controlled. Temperature affects the

molecular circadian clock (Lahiri et al., 2005; Rensing &

Ruoff, 2002; Sua-Cespedes et al., 2021). In fishes, the

free-running rhythm in melatonin secretion by pineal glands

cultured under DD is synchronized, but not entrained, by

temperature cycles, and its amplitudedependson the ambient

temperature (Falcón et al., 1994; Zachmann et al., 1992).

Similarly, temperature cycles synchronize the circadian

clock in zebrafish, acting on the core loop in a gene-specific

manner and modulating the amplitude of the oscillations

without affecting their period (temperature compensation)

(Lahiri et al., 2005). There is a strong correlation between

in vivo and in vitro effects of temperature on the molecular

clock genes and the aanat2 gene in the zebrafish, and air-

breathing African sharptooth catfish (Saha et al., 2022b;

Singh et al., 2017; Sua-Cespedes et al., 2021). It is hypothe-

sized that temperature determines the amplitude of E-box-

directed rhythmicexpression, via changes inCLOCKprotein

levels, phosphorylation, and E-box binding (Lahiri et al.,

2005) and, the aanat2 gene promoter possesses BMAL/

CLOCKE-box responsive elements, required for expression

in the pineal gland (Appelbaum et al., 2004, 2006) (Fig. 11).

In brief, it is the combination of the photoperiod and

temperature that shapes the melatonin secretion rhythm,

the former affecting the duration and the latter the amplitude

of the melatonin signal. This provides a strong internal indi-

cation of both daily and calendar time, and the pineal

melatonin-producing cells appear to be “photo-thermo-

receptors” (Fig. 9).

6.3 Other (internal) modulators of pineal
productions

As part of a neuroendocrine loop, the pineal organ of fishes

receives information from a variety of sources, which

contributes to modulating the production of its nervous

and hormonal messengers. The modulators may be

produced locally (melatonin, adenosine), or routed via the

circulation (steroids, catecholamines) or afferent fibers

(catecholamines, peptides).

6.3.1 Autocrine and paracrine regulators

The existence of endogenous pineal factors modulatingmel-

atonin secretion is inferred from studies on isolated pineal
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cells in culture, where the rate of medium renewal and cell

density affected the amount of melatonin secretion (rainbow

trout, northern pike), as well as the expression of the

melatonin circadian rhythm under DD (northern pike)

(B�egay et al., 1992; Bolliet et al., 1996). Melatonin is such

a factor. In isolated, light- or dark-adapted, rainbow trout

pineal glands, 2-iodomelatonin inhibits (i) the release of

melatonin, as well as of 5-methoxytryptamine and

5-methoxytryptophol (Yáñez & Meissl, 1995), and (ii) the

spike discharges of the ganglion cells in rainbow trout

(Meissl et al., 1990). Thus, the hormone is an autocrine

and paracrine regulator of both the nervous and hormonal

pineal messengers, respectively.

GABA, the neurotransmitter of the pineal interneurons (cf.

Sections 2.2 and 5.1 and Ekstr€om&Meissl, 1997) also mod-

ulates the production of the electric and hormonal signals.

GABA receptors have been identified in the Atlantic salmon

pineal gland (Anzelius et al., 1995). In S. salar and

O. mykiss, GABA binds a discrete population of neurons

and glial cells (Meissl et al., 1993). In O. mykiss, the gan-

glion cells spike discharges were either inhibited (a majority

of cases) or stimulated (a minority of cases) or both

(depending on the light or dark adaptation state of the

organs), after application of GABA; and, the responses were

modulated by melatonin (Meissl & Ekstr€om, 1991) in

agreement with the observation that the binding of a benzo-

diazepine GABA receptor ligand was decreased in the

presence of the hormone (Meissl et al., 1993). It was sug-

gested that GABA allows extending the operating range

of pineal ganglion cells under conditions when the system

would otherwise saturate (Ekstr€om&Meissl, 1997). GABA

also slightly inhibits melatonin secretion in vitro in glands

maintained in the mesopic and photopic ranges of illumi-

nation, with no clear-cut effect in the dark-adapted glands

(Meissl et al., 1994; Meissl & Yañez, 1996). Benzodiaze-

pines, which usually potentiated the effects of GABA

through GABA-A receptors, are stimulatory.

Another candidate is adenosine, which contributes to inhi-

biting nocturnal AANAT2 activity and melatonin secretion

in isolated E. Lucius and O. mykiss, pineal glands in culture
(Falcón et al., 1991). The effects involve adenosine

receptors coupled to the adenylyl cyclase. Adenosine is pro-

duced extracellularly from extracellular ATP, and intracel-

lularly from cAMP and S-adenosyl-methionine, the cofactor

of ASMT. It is degraded by the adenosine deaminase, which

is found associated with the plasma membranes of all the

pineal cells, and with the synaptic vesicles within the pho-

toreceptor cells (Falcón et al., 1988). It is not known

whether adenosine also modulates the release of the excit-

atory neurotransmitter, as is the case for the retinal rods

and cones (Stella Jr. et al., 2009).

6.3.2 Catecholamines

In E. Lucius, norepinephrine modulates melatonin secretion

as is the case in Sauropsida and mammals (Collin et al.,

1989; Klein et al., 1997): β-adrenergic agonists stimulate,

whereas α-adrenergic agonists inhibit AANAT2 activity

and melatonin secretion (Falcón et al., 1991). Dopamine

had no effect in the species investigated (E. Lucius;
O. mykiss; D. rerio) (Cahill, 1997; Falcón et al., 1991).

Regarding the nervous response, both norepinephrine (via

β-adrenergic receptors) and dopamine (via D1- and

D2-dopaminergic receptors) increase the firing rate of the

pineal neurons in O. mykiss (Brandst€atter & Hermann,

1996; Ekstr€om & Meissl, 1997; Martin & Meissl, 1992;

Samejima et al., 1994).

How do catecholamines reach the pineal gland. In

mammals, norepinephrine from the sympathetic nerve

endings that innervate the pineal parenchyma triggers the

nocturnal rise in melatonin production, under control by

light perceived through the eyes (cf. Section 4.3) (Collin

et al., 1989; Klein et al., 1997). In some fish species, the eyes

contribute to controlling pineal melatonin secretion (par-

tially in the European sea bass and Atlantic cod; totally in

the African sharptooth catfish and Nile tilapia (Bayarri

et al., 2003; Martinez-Chàvez & Migaud, 2009; Migaud,

Davie, et al., 2007). This suggests the existence of a neural

pathway connecting the retina to the pineal, as in the case of

lizards, birds, and mammals (Klein et al., 1997). The exis-

tence of such a pathway remains to be demonstrated in

fishes. Autonomous nerve endings are found surrounding

the pineal parenchyma in lampreys, chondrichthyans, and

teleosts (Frank et al., 2005), including catecholaminergic

fibers in northern pike (Owman & R€udeberg, 1970).

However, they do not enter the pineal epithelium. Rather,

they appear in close contact with the vasculature. The pos-

sibility that catecholamines reach the pineal cells through

the circulation has been discussed elsewhere (Falcón

et al., 1991; Martin & Meissl, 1992). Catecholamines might

also be synthetized in situ. Indeed, a quite small population

of tyrosine hydroxylase immunoreactive neurons, perhaps

interneurons, has been observed in the pineal parenchyma

of adult rainbow trout (Brandst€atter et al., 1995), and devel-
oping three-spined stickleback, although absent in adult

stickleback (Ekstr€om et al., 1992).

6.3.3 Steroids

Sexual steroids modulate melatonin production. 17β-
estradiol (E2) receptors (ER) have been detected in the

pineal gland of rainbow trout (ERα, B�egay et al., 1994)

and midshipman fish, P. notatus (ERβ, Forlano et al.,

2005). Messenger RNA abundance of erβ displayed
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seasonal variations in P. notatus, being higher during the

prespawning phase than at other phases of the reproductive

cycle in females. E2 has complex effects:

(i) In rainbow trout pineal cells in culture, a 12-h incu-

bation in the presence of E2 inhibited in the nano-

molar range, and stimulated in the micromolar

range, melatonin secretion; but after several LD

cycles, E2 applied every night increased the amplitude

of the melatonin rhythm whatever the concentration.

(ii) In cultured pineal glands of the African sharptooth

catfish, a 6-h incubation with micromolar concentra-

tions of E2, estriol, estrone (E1), and testosterone

(T) resulted in inhibition of AANAT2 activity

(Yanthan & Gupta, 2007). Inhibition was stronger

during the regressive, than during the quiescent phase

of the reproductive cycle.

The fish pineal gland also responds to glucocorticoids

(Benyassi et al., 2001; López-Patiño et al., 2014; Nikaido

et al., 2010; Yanthan & Gupta, 2007). Glucocorticoid

receptors (GRs) and their mRNA are present in pineal

glands of rainbow trout and Mozambique tilapia

(Benyassi et al., 2001; Nikaido et al., 2010). In vivo,

rainbow trout displayed higher levels of serotonin and lower

levels of aanat2 mRNA and AANAT2 enzyme activity 5

and 48h after receiving a cortisol implant, mimicking the

effects of a stressful situation (López-Patiño et al., 2014).

In isolated rainbow and African sharptooth catfish, pineal

glands in culture a 6-h treatment with cortisol, cortico-

sterone or the agonist dexamethazone, inhibited AANAT2

activity dose-dependently over a wide range of concentra-

tions (from the nanomolar to the micromolar range), without

affecting ASMT activity (Benyassi et al., 2001; Yanthan &

Gupta, 2007). The effects of corticosteroids were more pro-

nounced during breeding than during the quiescent repro-

ductive phase in C. gariepinus.

Overall, the data are consistent with the observation that

plasma melatonin and cortisol levels display an inverse rela-

tionship in fishes (Larson et al., 2004; Nikaido et al., 2010).

How steroids affect melatonin secretion remains an opened

question. They may act through (i) glucocorticoid-

responsive elements present in the aanat promoter;

(ii) cell surface receptors modifying Ca2+ and cAMP levels;

or (iii) stimulation of AANAT proteasomal proteolysis

(Benyassi et al., 2001; Nikaido et al., 2010; Yanthan &

Gupta, 2007).

6.3.4 Peptides

The occurrence of fibers innervating the fish pineal is sus-

pected from studies in the brook and rainbow trout, where

axon terminals establish synaptic contacts with

photoreceptor cells (Omura & Ali, 1980). More recently,

afferent fibers carrying peptidergic information have been

evidenced in the pineal of several fish representatives

(P. marinus, S. canicula, and spotted ray, Raja montagui
(Mandado et al., 2001); Acipenser baerii (Yáñez &

Anadón, 1998); D. labrax (Muñoz-Cueto et al., 2020;

Paullada-Salmerón, Cowan, Aliaga-Guerrero, Gómez

et al., 2016; Servili et al., 2011); O. mykiss (Yáñez &

Anadón, 1996); F. heteroclitus (Subhedar et al., 1996);

G. aculeatus (Ekstr€om et al., 1988); D. rerio (Alba-

González et al., 2022); Mrigal carp, Cirrhinus mrigala
(Sakharkar et al., 2005)) (cf. Section 8 for those involved

in the control of reproduction).

Neuropeptide Y (NPY) fibers have been found in Gulf kil-

lifish (Subhedar et al., 1996) and rainbow trout (Blank et al.,

1997). In the latter species, they display predominantly a

perivascular location, suggesting that they represent auto-

nomic nerve fibers. Fibers containing the tetrapeptide

FMRFamide (Phe-Met-Arg-Phe-NH2) have been identified

in the pineal of the three-spine stickleback (Ekstr€om et al.,

1988), but it is possible that these fibers actually represent

gonadotropin-inhibitory hormone (GnIH)-immunoreactive

axons, which share C-terminal amino acids with

FMRFamide (see next). In the three-spine stickleback, they

enter the pineal parenchyma, but their function remains

unknown. The retina of goldfish also receives fibers con-

taining both FRMFamide and gonadotropin-releasing

hormone (GnRH), which in the dark can cause increased

spontaneous activity of ganglion cells and loss of light-

induced inhibition in a season-dependent manner (Stell

et al., 1984).

GnRH and GnIH are two hypothalamic neuropeptides

involved in the control of fish reproduction (cf.

Section 8). GnRH-immunoreactive fibers are present in

the pineal gland of the European sea bass (Servili et al.,

2010), dogfish shark, and spotted ray fish (Mandado

et al., 2001). Among the three GnRH isoforms found in

the European sea bass, only GnRH2 fibers reach the pineal

gland; they originate from cell bodies located in the dorsal

mesencephalic tegmentum (Servili et al., 2010). D. labrax
pineal also expresses Gnrh receptors (gnrhr) mainly

gnrhr2b and, to a lesser extent, gnrhr1a. An in vitro or an

in vivo treatment with GnRH2 resulted in an increase of

the nocturnal release of melatonin (Servili et al., 2010).

Immunoreactive GnIH fibers occur in pineals of several fish

species, including the European sea bass (Muñoz-Cueto

et al., 2020; Paullada-Salmerón, Cowan, Aliaga-Guerrero,

Morano, et al., 2016, Paullada-Salmerón et al., 2019);

tropical gar, Atractosteus tropicus (Di Yorio et al., 2019);

Senegal sole (Aliaga-Guerrero et al., 2018); and pejerrey,

Odontesthes bonariensis (Pahı́-Rosero et al., 2018).
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Another peptide involved in reproduction, kisspeptin (Kp),

has been localized in the pineal gland of the Chinese sucker

Myxocyprinus asiaticus (Su et al., 2020). The role that GnIH
and Kp play in the pineal is not known.

7 THE TARGETS OF THE PINEAL
MESSAGES

7.1 The pineal nerve and its projections

The pineal organ is bidirectionally connected with the brain

through pinealofugal and pinealopetal (afferent) projec-

tions. The axons from the pineal second-order neurons

and from central projecting photoreceptor cells constitute

the pineal tract that innervates specific central areas

(Fig. 12). The fish pineal organ also receives axon terminals

originating from neurons located in different central cell

masses (Ekstr€om et al., 1994; Ekstr€om & Meissl, 2003;

Jimenez et al., 1995; Mandado et al., 2001; Pombal et al.,

1999; Servili et al., 2011; Yáñez & Anadón, 1994, 1996;

Yáñez et al., 1999). Pioneer works by Holmgren

(Holmgren, 1918) and later by Hafeez (Hafeez, 1971;

Hafeez & Zerihun, 1974) studied the pineal efferent tract

using methylene blue staining and silver impregnation tech-

niques. Subsequently, the pineal nerve projections have

been identified using in vivo or in vitro anterograde or ret-

rograde labeling and dyes (e.g., horseradish-peroxidase and

1,10-dioctadecyl-3,3,30,30-tetramethylindocarbocyanine
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FIG. 12 Pineal and retinal targets in the fish brain. The drawing is a schematic presentation of the pineal (red arrows) and optic (green arrows) nerve

projections, together with the areas where the melatonin receptors have been identified (pink dots). A, anterior prethalamic nucleus; Cp, central posterior

thalamic nucleus; Dp, dorsal posterior thalamic nucleus; DT, dorsal tegmental nucleus; Hb, habenula; NFLM, nucleus of the medial longitudinal fascicle;

NG, nucleus glomerulosus; NLV, lateral nucleus of the valvula; OC, optic chiasm; OT, optic tectum; Pa, paracommissural pretectal nucleus; PC, posterior

commissure; PPd, dorsal periventricular pretectal nucleus; POA, preoptic nucleus; RF, reticular formation; SCN, suprachiasmatic nucleus; TPp, periven-

tricular nucleus of the posterior tubercle; Vm, trigeminal motor nucleus; TS, torus semicircularis; VT, ventral prethalamus. (Data from Yáñez, J., Busch, J.,
Anadón, R., & Meissl, H. (2009). Pineal projections in the zebrafish (Danio rerio): Overlap with retinal and cerebellar projections.Neuroscience, 164(4),
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Anglade, I., Drew, J., Randall, C., Bromage, N., Michel, D., Kah, O., & Williams, L. M. (1999). Central melatonin receptors in the rainbow trout: Com-
parative distribution of ligand binding and gene expression. Journal of Comparative Neurology, 409(2), 313–324. https://doi.org/10.1002/(SICI)1096-
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perchlorate [DiI]) injected into pineal cells or applied to dif-

ferent brain areas (lampreys: L. fluviatilis, Ichthyomyzon
unicuspis, P. marinus (Pombal et al., 1999); rainbow trout

(Hafeez & Zerihun, 1974; Yáñez & Anadón, 1996);

Siberian sturgeon A. baerii (Yáñez & Anadón, 1998);

three-spined stickleback (Ekstr€om, 1984; Ekstr€om & van

Veen, 1983); Atlantic eel and European carp, Cyprinus
carpio (Ekstr€om & van Veen, 1984); goldfish ( Jimenez

et al., 1995); zebrafish (Yáñez et al., 2009); and European

sea bass (Servili et al., 2011). The areas innervated are sub-

stantial similar among the different fish species investigated

(Servili et al., 2011).

The main target areas of the pineal organ are reported for

lampreys (Pombal et al., 1999; Puzdrowski & Northcutt,

1989; Yáñez et al., 1993), Siberian sturgeon (Yáñez &

Anadón, 1998), elasmobranchs (Mandado et al., 2001),

and teleosts (Ekstr€om & van Veen, 1983, 1984; Hafeez &

Zerihun, 1974; Herrera-P�erez et al., 2014; Muñoz-Cueto

et al., 2019; Servili et al., 2011; Yáñez et al., 2009), as sum-

marized in Fig. 12. In all of these fishes, the pinealofugal

fibers from the pineal stalk enter the brain through the habe-

nular commissure, and the rostral and caudal parts of the

posterior commissure (PC) and extend bilaterally, inner-

vating the habenula, POA, prethalamus, thalamus, periven-

tricular hypothalamus, periventricular, central and

superficial pretectal regions, posterior tuberculum, and

medial and dorsal mesencephalic tegmentum and optic

tectum (Mandado et al., 2001; Servili et al., 2011;

Yáñez & Anadón, 1998; Yáñez et al., 1993, 2009). In the

teleost fishes investigated, most of these areas also receive

retinal projections (Ekstr€om, 1984; Servili et al., 2011;

Yáñez et al., 2009), which also express melatonin receptors

(Herrera-P�erez et al., 2010) (Fig. 12). Furthermore, some of

these pinealo- and/or retino-recipient areas also contain

hypophysiotropic cells (Anglade et al., 1993;

Holmqvist & Ekstr€om, 1995), and belong to neuroendocrine

centers, including (i) the habenula, which contain Kp1

neurons (Escobar et al., 2013; Kitahashi et al., 2009);

(ii) the POA, which shows GnRH1/3 and GnIH neurons;

(iii) the prethalamus/thalamus, which exhibit catecholamin-

ergic (Batten et al., 1993) and NPY (Cerdá-Reverter et al.,

2000) cells; (iv) the periventricular hypothalamus, showing

galanin neurons (Rodrı́guez-Gomez et al., 2000); (v) the

posterior tuberculum, containing serotonin- and

dopamine-immunoreactive cells (Batten et al., 1993);

(vi) the dorsal mesencephalic tegmentum, displaying both

GnRH2 (Muñoz-Cueto et al., 2020) and GnIH (Muñoz-

Cueto et al., 2017) neurons. In fishes, these aminergic and

neuropeptidergic systems are responsible for the modu-

lation of reproduction, food intake, feeding behavior, and/

or metabolism (Delgado et al., 2017; Lin et al., 2000;

Volkoff, 2016; Zohar et al., 2010). All these different pro-

cesses exhibit daily and/or seasonal variations. It is thus

conceivable that the pineal fibers reaching these brain areas

represent one pathway through which the photic infor-

mation captured by the pineal organ reaches the neuroendo-

crine centers, thus contributing to the daily and/or seasonal

synchronization of reproduction and other hormonally con-

trolled rhythmic processes.

The pineal organ is the target of afferent projections arising

from distinct brain areas as reported in lamprey (Yáñez

et al., 1993), Siberian sturgeon (Yáñez & Anadón, 1998),

elasmobranchs (R. montagui and S. canicula (Mandado

et al., 2001)), or teleosts (D. labrax, S. senegalensis and

D. rerio; Muñoz-Cueto et al., 2019; Servili et al., 2011;

Yáñez et al., 2009). The cell bodies of the pinealopetal

fibers have been detected in most of the areas that already

displayed pineal and/or retinal efferent projections (pretha-

lamic eminence, habenula, prethalamus and thalamus, peri-

ventricular pretectum, posterior tuberculum, and dorsal/

medial tegmental area), which suggests their relevant role

in the integration of photic inputs (Ekstr€om et al., 1994;

Holmqvist et al., 1994; Yáñez et al., 1993). These cell

masses could represent the source of neuro-peptidergic

fibers containing GnRH, NPY, FMRFamide, Kp1, and

GnIH previously detected in the pineal organ of different

teleost species (cf. Section 6.3.4). No afferent projections

are present in the brain of the three-spined stickleback,

crucian carp, European eel, goldfish, and rainbow trout

(Ekstr€om & van Veen, 1983, 1984; Hafeez & Zerihun,

1974; Jimenez et al., 1995), but their presence is suspected

in the latter (Omura & Ali, 1980). Thus, the existence of

central neurons projecting to the fish pineal might represent

a conserved feature in these teleosts.

7.2 The melatonin receptors

7.2.1 Characterization

In vertebrates, melatonin receptors were cloned first the

frog, Xenopus laevis, sheep, Ovis aries, and human, Homo
sapiens (Ebisawa et al., 1994; Reppert et al., 1994). Since

then, an impressive number of receptor sequences were

obtained. Teleost fishes possess four melatonin receptor

subtypes: MT1 (Mel1a), MT2 (Mel1b), MT3 (Mel1c),

and Mel1d (Denker et al., 2019; Li et al., 2021; Maugars

et al., 2020a, 2020b; Sakai et al., 2019). These receptors

probably appeared at the origin of vertebrates, 2-[125I]

iodo-melatonin (125I-MEL) binding occurs in larval and

adult lampreys (P. marinus), but is absent in the cephalo-

chordate amphioxus (Branchiostoma lanceolatum) and

Atlantic hagfish (Myxine glutinosa) (Maugars et al.,

2020b; Vernadakis et al., 1998). Strong similarities are

found between MT1 and Mel1d on the one hand, and

MT2 and MT3 on the other hand. Multiple paralogs of

MT1 and MT2 were retained after the teleost-specific and

salmonids-specific WGDs; in contrast, MT3 and Mel1d
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always appear as a single copy. MT3 has been lost in the

Atlantic salmon (Ciani et al., 2019), while MT3 and Mel1d

have been lost in birds and mammals (Denker et al., 2019;

Maugars et al., 2020b). The melatonin receptors arose pos-

sibly from the duplication of a common ancestor of the mel-

atonin receptor and the opsin genes in a eumetazoan (Feuda

et al., 2012), and melatonin receptor-like sequences have

been identified in the genome of invertebrates (Maugars

et al., 2020b). The melatonin receptors belong to the

G protein-coupled receptors (GPCR) family (Denker

et al., 2019; Gao et al., 2022). The molecular signaling of

the receptors has been studied mainly for the mammalian

MT1 and MT2. One main difference between MT1 and

MT2 is their affinity for melatonin, in the picomolar range

for the former and the nanomolar range for the later. Both

interact mainly with Gi proteins; they prompt inhibition

of the cAMP/PKA pathway. Modulation of the phospho-

lipase C pathway and mobilization of diacylglycerol, ino-

sitol trisphosphate, and [Ca2+]i has also been reported for

MT1, whereas MT2 may also activate the protein kinase

C/cGMP pathway (for extensive details, see Cecon et al.,

2019; Gao et al., 2022; Nikolaev et al., 2021). In teleost

fishes, inhibition of the cAMP pathway occurs in rainbow

trout, northern pike, spotted snakehead, Chana punctatus,
and medaka (Falcón et al., 2003; Gaildrat et al., 2002;

Gaildrat & Falcón, 2000; Ogiwara & Takahashi, 2016;

Roy et al., 2008; Sakai et al., 2019). Stimulation, perhaps

via a Gs protein, has been reported in Atlantic salmon

(Ciani et al., 2019). The receptors may form homodimers

or heterodimers with themselves or other GPCRs (Cecon

et al., 2019; Gao et al., 2022; Nikolaev et al., 2021). This

situation is likely to vary from species to species and within

the same species from one tissue to another, which may have

profound impacts on the responses to a melatonin challenge.

7.2.2 Sites of expression

Several approaches have been used to localize the melatonin

receptors, including PCR from tissue extracts, ISH, and

binding of radiolabeled 125I-MEL tomembrane preparations

or tissue sections (Ekstr€om&Vanecek, 1992; Herrera-P�erez
et al., 2010; López-Patiño et al., 2008;Martinoli et al., 1991;

Mazurais et al., 1999). Whatever the method, the prominent

characteristic is the ubiquitous distribution of the receptors

both in the central and peripheral tissues. The subtypes

expressed and their relative abundance depends on the

species and tissue considered (Herrera-P�erez et al., 2010;

Mazurais et al., 1999). The mapping of the melatonin

receptors was first performed using 125I-MEL binding on

membrane preparations and tissue sections (radioautog-

raphy) and later on using riboprobes (ISH; PCR).

(1) Melatonin receptors are found in the pineal gland and

the retina. The pineal gland of the golden rabbitfish,

Siganus guttatus, expresses MT1 and MT3 receptors

(Park et al., 2006, 2014), which supports previous

information indicating pineal melatonin modulates its

own production, as well as the firing rate of the pinea-

lofugal neurons (cf. Section 6.3.1). In the European sea

bass, MT1 and MT2 receptors are localized in all three

nuclear layers of the nervous retina, as well as in the

RPE (López-Patiño et al., 2008; Sauzet et al., 2008).

This is consistent with retinal melatonin being an

internal autocrine/paracrine modulator of retinal

function (cf. Section 5.2 and Huang et al., 2013).

(2) The telencephalon, diencephalon, mesencephalon,

metencephalon, and myelencephalon express mela-

tonin receptors (Ekstr€om & Vanecek, 1992; Feng &

Bass, 2016; Feng et al., 2019; Herrera-P�erez et al.,

2010; Iigo et al., 1994; López-Patiño et al., 2008;

Martinoli et al., 1991; Mazurais et al., 1999). Only

three studies have provided a precise localization of

different melatonin receptor mRNAs in the teleost

brain: MT1 in the European sea bass (Herrera-P�erez
et al., 2010), MT1 and MT2 in the rainbow trout

(Mazurais et al., 1999), and MT2 in the plainfin mid-

shipman, P. notatus (Feng et al., 2019). The sites of

expression are generally found in areas involved in:

(i) the processing of sensory information, including

visual (cf. Section 7.1 and Falcón et al., 2010;

Herrera-P�erez et al., 2010; Servili et al., 2011),

and vocal-acoustic (Feng & Bass, 2016) and

auditory (Feng et al., 2019) networks;

(ii) eye-body motor/sensorimotor coordination and

behavioral activities (Feng et al., 2019; Herrera-

P�erez et al., 2010); (ii) neuroendocrine and hypo-
physiotropic regulation (Choi et al., 2016; Falcón

et al., 2010; Falcón & Zohar, 2018; Feng et al.,

2019; Herrera-P�erez et al., 2010).

Melatonin receptor-expressing cells are in the

olfactory bulb, dorsal and ventral telencephalon,

parvocellular POA, SCN, anterior, ventral, lateral,

and posterior tuberal hypothalamus, lateral recess,

and inferior lobes of the hypothalamus, periventri-

cular nucleus, and lateral/medial preglomerular and

glomerular nuclei of the posterior tuberculum,

ventral prethalamus and dorsal thalamus, periven-

tricular gray zone of the optic tectum, periventri-

cular, central and superficial pretectum, torus
longitudinalis, torus semicircularis, rostral/dorsal,
medial and lateral midbrain tegmentum, interpe-

duncular nucleus, isthmus, corpus and valvula of

the cerebellum, oculomotor and trigeminal motor

nuclei, vagal sensory and motor areas, vocal pace-

makercolumnof thehindbrain,andmedial reticular

formation (Fig. 12) (Feng et al., 2019; Herrera-

P�erez et al., 2010; Mazurais et al., 1999).

(3) The pituitary gland, which provides a link between the

neuroendocrine brain and the peripheral endocrine
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organs, also possesses melatonin binding sites and mel-

atonin receptors mRNA, although at much lower levels

than in the brain, perhaps explaining that conflicting

results have been obtained regarding this matter.

Binding of 125I-MEL to pituitary membrane prepara-

tions and sections was first mentioned in the goldfish

(Iigo et al., 1994), rainbow trout, and northern pike

(Gaildrat & Falcón, 2000, 2002). In the latter two

species, melatonin modulates pituitary cAMP content

and production (cf. Section 8). Binding occurred in

the antero-ventral part of the pituitary and PCR studies

later extended these observations (e.g., European sea

bass (Sauzet et al., 2008); Senegal sole (Confente

et al., 2010); mudskipper, Boleophthalmus pectinir-
ostris (Hong et al., 2014); cinnamon clownfish, Amphi-
prion melanopus (Kim et al., 2015); and Atlantic

salmon (Ciani et al., 2019)). However, it is unclear

which pituitary cells represent a direct target for mela-

tonin in fishes.

(4) Finally, melatonin receptors are found in peripheral

tissues, including the gills, heart, spleen and blood cells

(macrophages), adipose tissue, skin, kidney, liver,

intestine, muscle, testis, and ovary in salmonids

(S. salar, Arctic charr, Salvelinus alpinus, and

O. mykiss; Pang et al., 1994b); European sea bass

(López-Olmeda et al., 2009; Sauzet et al., 2008);

golden rabbit fish (Park et al., 2006, 2007,b); tench,

Tinca tinca (López-Patiño et al., 2008, 2012); spotted

snakehead (Roy et al., 2008); Nile tilapia ( Jin et al.,

2013); orange-spotted grouper, Epinephelus coioides
(Chai et al., 2013); medaka (Maugars et al., 2020b).

7.2.3 Characterization and regulation

A number of parameters must be taken into account when

investigating the melatonin receptors and their regulation:

(1) the species and tissues investigated; (2) the sex, age,

developmental, and reproductive status of the fish; (3) the

method used (mRNA, 125I-MEL binding); (4) the subtype

investigated; (5) the time at which the experiments are con-

ducted; (6) the number of sampling points along the day or

year.With somany factors to consider, making comparisons

between species and tissues is extremely difficult. The first

studies on the matter investigated the binding of 125I-MEL.

In a general manner, this binding is GTP-dependent (indi-

cating its dependency to a GTP binding protein) and it dis-

plays affinities in the picomolar range of concentrations in

both nervous and non-nervous structures (Bayarri et al.,

2004; Falcón, Molina Borja, et al., 1996; Iigo, Sánchez-

Vázquez, et al., 1997; Kulczykowska et al., 2006; López-

Patiño et al., 2012; Pang et al., 1994a, 1994b; Vernadakis

et al., 1998). The displacement curves usually indicate the

presence of one, sometimes two, binding sites.

Daily variations in the maximal number (Bmax) and/or

affinity (1/kD) of the binding sites have been reported to

occur in some, but not all, species (Amano et al., 2003b,

2006; Falcón, Molina Borja, et al., 1996; Gaildrat et al.,

1998; Iigo et al., 1995; Iigo, Sánchez-Vázquez, et al.,

1997; Pang et al., 1994b) (Fig. 13). Thus, no clear-cut daily

rhythm was found in heart and whole-brain preparations

from salmonids (Atlantic salmon, Arctic charr, rainbow

trout, coho salmon, Oncorhynchus kisutch; Ekstr€om &

Vanecek, 1992; Pang et al., 1994a, 1994b), while studies

on S. salar brain sections indicated the existence of a daily

rhythm in the POA and corpus cerebelli only (Ekstr€om &

Vanecek, 1992). The Bmax of
125I-MEL binding displayed

clear LD variations in the brain of the goldfish (Iigo

et al., 1994), seabream (Falcón, Molina Borja, et al.,

1996), northern pike (Gaildrat et al., 1998), and masu

salmon, Oncorhynchus masou (Amano et al., 2003b). The

affinity also varied in the latter three species. LD variations

of mRNA abundance have been reported in the brain, retina,

pineal gland, or pituitary (Fig. 13) (Chai et al., 2013; Ciani

et al., 2019; Falcón et al., 2021; Ikegami, Motohashi, et al.,

2009; Maugars et al., 2020b; Nisembaum et al., 2021; Park

et al., 2006; Park, Park, Hiyakawa et al., 2007; Park, Park,

Jeong, et al., 2007; Shi et al., 2004). In the species investi-

gated, the Bmax is usually high during the day and low at

night, but the oscillations in mRNA abundance may peak

at different times of the LD cycle in a species-dependent

manner. These discrepancies between the profiles of mRNA

and their corresponding proteins in the regulation of mela-

tonin receptors highlight the fact that both must be taken

into account, and in the end, only the quantity of receptors

reflects their functionality.

In addition to their daily variations, the 125I-MEL binding

characteristics or receptors mRNA abundance may also

display lunar (Hong et al., 2014; Ikegami et al., 2014;

Park et al., 2014) and annual cycle (Amano et al., 2003a;

Bayarri et al., 2010; Chai et al., 2013; Ciani et al., 2019;

Confente et al., 2010; Falcón et al., 2021) variations (Fig.

13). Thus, in the mudskipper, the levels of transcripts of

two isoforms of the MT1, expressed in the diencephalon

and ovary, displayed two cycles within one lunar month

(Hong et al., 2014). It is hypothesized that a close rela-

tionship exists between the transcript levels of melatonin

receptors and the lunar synchronized cycle of oocyte matu-

ration and spawning in the golden-lined spinefoot (Ikegami

et al., 2014). Similarly, the annual variations have some-

times been correlated to the developmental and repro-

ductive status of the fish. For example, daily fluctuations

in mRNA abundance in the Atlantic salmon pituitary for

three melatonin receptors vary between seasons (Fig. 13).

Levels remained low and stable during the 24-hour cycle

in the autumn, but showed strong fluctuation in the spring

when gonad maturation starts (Ciani et al., 2019). In the
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European sea bass, significant variations in the Bmax and/or

affinity were found in the hypothalamus and optic tectum,

with peak values observed during spermatogenesis

(Bayarri et al., 2010) (Fig. 13).

The daily and seasonal variations (mRNA abundance and

Bmax) might be under circadian and circannual control in

some tissues, because they persist in fishes maintained

under LL and DD (Gaildrat et al., 1998; Ikegami, Azuma,

et al., 2009; Park et al., 2006; Park, Park, Hiyakawa

et al., 2007; Park, Park, Jeong, et al., 2007) (Fig. 13). Mel-

atonin from the pineal gland contributes to controlling the

rhythm in the amount of receptors available because their

diel changes observed in the goldfish brain were abolished

after pinealectomy or constant LL exposure (Iigo et al.,
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1995). However, it is probably not the only factor because

the daily variations in Bmax persisted in northern pike main-

tained under LL, a situation that drastically abolishes

plasma melatonin levels and rhythm (Gaildrat et al.,

1998). Similarly, European sea bass maintained for 2 years

under LL exhibited persistent variations of the binding

parameters typically observed under normal LD conditions

(Bayarri et al., 2003) (Fig. 13).

As is the case for melatonin production, temperature and

salinity may also modulate the number of melatonin

receptors available (Davies et al., 1994; López-Olmeda

et al., 2009; López-Patiño et al., 2008). Studies in the tench

indicated that temperature affects the kinetics of 125I-MEL

binding (association and dissociation constants) without

modify the Bmax and Kd (López-Patiño et al., 2008),

although it did affected the Bmax in rainbow trout (Davies

et al., 1994). In the zebrafish, a high temperature (37°C
vs. 25°C) for 3 days induced higher brain melatonin levels,

but resulted in a drastic reduction of MT1, MT2, and MT3

mRNA levels, in most of the brain areas studied

(Loganathan et al., 2018). In the same species, a low temper-

ature (23°C vs. 28°C) for 5 days also resulted in lower

mRNA abundance of two MT1 isoforms in the morning,

but not in the evening (Sua-Cespedes et al., 2021). This

might suggest that the variations in melatonin receptor

mRNA reflect the thermal preferences of the zebrafish, as

is the case for melatonin secretion (cf. Section 6.2).

Sex, development, and aging are also factors to consider

when investigating the regulation of melatonin receptors

(Amano et al., 2003a; Falcón, Molina Borja, et al., 1996;

Jin et al., 2013; Lan-Chow-Wing et al., 2014; Shi et al.,

2004). In the seabream, 125I-MEL Bmax was 20-fold lower

in 1-year-old males compared to brain membranes of

3-year-old female (seabream are males for the first 2 years

and turn to females thereafter) (Falcón, Molina Borja, et al.,

1996). In the chum salmon, Oncorhynchus keta, MT1 and

MT2 mRNA are detected in the brain and retina before

hatching, and remain low until day 50 posthatching fol-

lowed by a dramatic increase on day 100 posthatching for

MT2 only, but a daily rhythm is not apparent until day

180 posthatching (Shi et al., 2004). Similarly in the devel-

oping Nile tilapia, MT1 mRNA abundance started to

increase on day 90 posthatching, peaked day �day 100

and then decreased again ( Jin et al., 2013). The authors con-

cluded this profile paralleled the developmental profile of

sexual maturity and that MT1 receptors might be involved

in the process of maturity. In the Senegal sole, MT1, MT2,

and MT3 mRNA display peak levels, respectively, on 6, 4,

and 4 days postfertilization (dpf ) and decrease thereafter

until metamorphosis (dpf 12). After metamorphosis, MT1

and MT2 mRNA levels continue to decrease (up to

21 dpf ), while those of MT3 increase dramatically at least

up to dpf 21 (Lan-Chow-Wing et al., 2014).

8 THE PINEAL GLAND AND
REPRODUCTION

The components of the BPG axis (cf. see Chapter 2, this

volume) generally display daily and annual variations

(Cowan, Azpeleta, & López-Olmeda, 2017; Falcón et al.,

2010; Juntti & Fernald, 2016; Mateos et al., 2003; Wang

et al., 2023). The effects of the pineal gland on fish repro-

duction have been investigated in vivo and in vitro. The role

of the nervous message, conveyed by the pinealofugal

innervation, in modulating the activity of the BPG axis

remains obscure and can only be speculated from the areas

this innervation reaches in the brain (cf. Section 7.1). More

information is available regarding melatonin. Pinealectomy

and/or melatonin administration (i.c.v., i.p., i.m., implants,

water) provided the first indication of a pineal impact on

the neuroendocrine reproductive system.

8.1 The effects of melatonin depend on season
and species

The first investigations dealing with the effects of the pineal

gland and melatonin on reproduction often led to incon-

sistent or even contradictory results, indicating pro- or anti-

gonadal effects or no effect at all, as reviewed earlier

(Borg & Ekstr€om, 1981). Effects depended on a series of

factors, including the species investigated, gender, time of

the day and year, modes, and amounts of melatonin admin-

istered (Falcón et al., 2011; Falcón, Besseau, Sauzet, &

Boeuf, 2007; Migaud et al., 2010). Examples of in vivo

experiments follow:

(1) Three-spined stickleback. Melatonin injections (i.p.)
resulted in antigonadal effects in November and

January and progonadal effects in July, depending on

the sex and photoperiodic conditions (Borg &

Ekstr€om, 1981).

(2) The Asian stinging catfish. Melatonin administration (i.
p. administration every other day) reduced the GSI,

inhibited vitellogenesis, and glycogen content in the

ovary only during the preparatory and prespawning

seasons, in the oocytes, atresia occurred during the pre-

spawning spawning and postspawning seasons together

with a reduction in ascorbic acid levels in all seasons

( Joy & Agha, 1991). 5-Methoxytryptophol (cf.

Section 5.2) also induced season-dependent inhibitory

effects. GSI was reduced in spotted snakeheads

receiving melatonin injections, but GSI increased or

remained unaltered if melatonin was administered

through the water (Renuka & Joshi, 2010). They con-

cluded that the effects of melatonin on reproduction

in this species depended on the photoperiod and

duration of exposure to melatonin.
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(3) Pacific salmon. Melatonin given through food pellets

diminished GSI, growth and pituitary FSH content

from August to October, pituitary GnRH and LH levels

in August and September, respectively, and plasma

T levels all year long (Amano et al., 2004).

(4) Walking catfish, Clarias batrachus. Melatonin admin-

istration (i.m.) during the prespawning period reduced

plasma levels of E1, E2, and 17α-hydroxyprogesterone
(17αHP) in a dose-dependent manner, while the effects

on T and thyroid hormones (triiodothyronine T3 and

thyroxine T4) were biphasic, inhibitory at the low doses

and stimulatory at the higher ones (Nayak & Singh,

1987a). In the same species, pinealectomy increased

T3 and T4 levels in the thyroid during the gonadal

development and maturation periods only; in the

plasma of the same individuals, T3 was increased,

while T4 was decreased (Nayak & Singh, 1987b).

(5) European sea bass. 150 days after males received a

melatonin implants in October and December, GSI

and locomotor activity (as observed during spermato-

genesis and full spermiation stages) were diminished

and blood levels of T, 11-ketotestosterone (11-KT),

FSH and LH were decreased (Alvarado et al., 2015).

Body weight and condition factor, as well as the hepa-

tosomatic and mesenteric fat indexes, were also

reduced suggesting a concomitant impact of melatonin

on food intake.

(6) Zebrafish. Administration of melatonin through the

water increased GSI and egg production in females,

as well as synthesis and plasma level of vitellogenin,

and E2 receptors in the liver (Carnevali et al., 2011),

a contrasting situation compared to the other case

studies listed previously. In zebrafish, melatonin pro-

motes reproduction by acting both in the brain/pituitary

and in the gonads (cf. Section 8.2.2).

Thus, it appears from the examples taken previously that in

most, but not all, cases studied melatonin has antigonadic

properties, and this occurs at specific times of the year. Con-

sidering the melatonin targets identified previously (cf.

Section 7.2.2), how are the of melatonin effects mediated?

8.2 Melatonin acts at all stages of the BPG axis

Melatonin receptors are found at all stages of the neuroen-

docrine reproductive axis. It is therefore not surprising that

melatonin impacts processes linked to reproduction in these

areas.

8.2.1 Melatonin effects in the brain

The brain centers that control the pituitary function are

mainly located in the POA and hypothalamus in fishes

(cf. Chapter 2 and Zohar et al., 2010). A few studies,

performed mostly in vivo, indicate that melatonin

administration impacts the main brain factors known to

control pituitary gonadotropes, i.e., GnRH, Kp, GnIH, and

dopamine (Ciani et al., 2021). Khan and Thomas (1996)

showed that administration of melatonin into the 3rd ven-

tricle, close to the POA and hypothalamus, decreased

GnRH-induced LH release from the pituitary of Atlantic

croaker, Micropogonias undulatus. Later studies indicated
that melatonin inhibits gnrh transcript or GnRH protein

amounts. Thus, in the European sea bass, the transcripts

levels of gnrh1 and gnrh3, and of three GnRH receptor

genes (gnrhr subtypes), are greater during day than at night,
and i.p. injection of melatonin reduced these transcripts

levels (Servili et al., 2013). These effects were probably

indirect because GnRH neurons and melatonin receptors

expressing cells did not overlap. In this same species, kp1
and kp2 were also reduced 1 and 3 months, respectively,

after the fish received a melatonin implant, and this

treatment also affected testicular maturity (Alvarado

et al., 2015). These data agree with the observation that

pinealectomy affected mRNA levels of kp2 (increased in

August) and gnih (decreased in March) in distinct brain

regions of the sea bass (Cowan, Paullada-Salmerón, et al.,

2017). In the damselfish,Chrysiptera cyanea, fed melatonin

pellets, short- and long-term reductions of gnrh1 and kp2
mRNA abundance were accompanied by reduced fshβ
and lhβ transcript levels, lower GSI, and an increased oocyte
atresia (Imamura et al., 2022). In masu salmon fed mela-

tonin pellets, pituitary GnRH and LH levels were dimin-

ished as was the case of plasma T and GSI (Amano et al.,

2004). In female H. fossilis, i.p. administration of melatonin

reduced gnrh2 and kp2mRNA (Chaube et al., 2020). In con-

trast, in the zebrafish, melatonin administration increased

transcripts levels of kp1, kp2, and gnrh3 in the brain and

of lhβ in the pituitary (Carnevali et al., 2011; Loganathan

et al., 2018). Parallel to the inhibition of the GnRH/Kp

system, melatonin stimulates gnih mRNA levels, as shown

in the Nile tilapia, resulting in a decrease of fshβ and lhβ
mRNA levels in the pituitary, and of E2 and 11-KT in the

plasma (Kim et al., 2018). Again, the data obtained in the

zebrafish were in the opposite direction because in vitro

treatment of whole zebrafish brains by melatonin reduced

gnih mRNA (Yumnamcha et al., 2017).

Melatonin may also act on gonadotropins release by modu-

lating the activity of the dopamine system (Badruzzaman

et al., 2013; Dufour et al., 2010; Popek, Drag-Kozak, &

Luszczek-Trojnar, 2010). Dopamine is inhibitory to gonad-

otropin secretion, thus providing fish with a dual

“dopamine(-)/GnRH(+)” control of reproduction in the brain.

Brain dopamine displays daily and annual rhythms in fish

that are 180° out of phase with the melatonin rhythm

(Badruzzaman et al., 2013, 2021; Le Bras, 1984), as is

the case in the retina where melatonin controls the circadian

rhythm of dopamine production (Ribelayga et al., 2004).
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Melatonin inhibits the hypothalamic-pituitary dopami-

nergic metabolism in rainbow trout (Hernandez-Rauda

et al., 2000). In female Atlantic eels that received a mela-

tonin implant, tyrosine hydroxylase (th) transcript levels

were increased in specific brain areas, including the POA

(from where dopamine axons are sent to the pituitary)

(Sebert et al., 2008). Implantation also resulted in lower

FSH, LH, and 11-KT productions, without affecting E2

plasma levels. In vivo and in vitro studies in the European

carp suggest dual effects of melatonin on hypothalamic

dopamine production, with melatonin being stimulatory in

immature fish but inhibitory during the spawning period

of mature fish (Popek, Drag-Kozak, & Luszczek-Trojnar,

2010; Popek, Natanek, & Luszczek-Trojnar, 2010).

8.2.2 Melatonin effects in the pituitary

In addition to its actions on the brain neuroendocrine centers

that control the pituitary function, melatonin may exert direct

effects on the pituitary, in agreement with the evidence that

melatonin receptors are expressed in the pituitary of some

fish species (cf. Section 7.2.2, for references and discussion,

see Ciani et al., 2021). However, in vitro studies in goldfish

found no effect of melatonin on adenylyl cyclase activity

(Deery, 1975) or release of gonadotropins (Somoza &

Peter, 1991). Similar observations were made in European

carp (Popek, Drag-Kozak, & Luszczek-Trojnar, 2010;

Popek, Natanek, & Luszczek-Trojnar, 2010). In contrast, a

stimulation of LH release was detected in theAtlantic croaker

pituitaries following challenge with melatonin; the effects

were time-dependent (1–12h) and concentration-dependent

(1nM to 10μM) (Khan & Thomas, 1996). Interestingly,

GnRH also stimulated LH release in M. undulatus, but the
melatonin and GnRH effects were not additive; instead,

LH release was diminished in the presence of both factors

compared to the effects of either factor alone. This reveals

the existence of complex regulatory mechanisms. In the

medaka, 10μMmelatonin had no effect on lhβ mRNA abun-

dance, but it reduced fshβ, tshβ, and somatolactin (sl) tran-
script levels (Kawabata-Sakata et al., 2020). The effect on

tshβ mRNA was later confirmed in the same species using

a similar melatonin concentration (Royan et al., 2023). In

the European sea bass, the mRNA of all pituitary hormone

genes were affected by a 12-h melatonin challenge at phys-

iologically relevant melatonin concentrations (10�12 to

10�8 M) (Falcón et al., 2021; Herrero et al., 2010). However,

the effects varied depending on the time of the year and repro-

ductive status of the fish, as well as on previous adaptation to

low or high salinity water (Falcón et al., 2021), thus in sea-

water adapted fish:

(i) in February (spawning phase), mRNA levels of fshβ and
gh (gh) were inhibited, while those of proopiomel-

anocortin (pomc) were stimulated; tshβ mRNA abun-

dance displayed a complex response, increasing at the

picomolar, and decreasing at the nanomolar, range of

concentrations; sl and prolactin (prl) remained

unaffected;

(ii) in August (arrest phase) and, the effects where less pro-

nounced for fshβ, tshβ, and gh, but were inhibitory on

pomc, prl, and sl; lhβ mRNA levels were increased at

the picomolar concentration of melatonin.

Altogether, it appears that melatonin may act directly on the

pituitary to modulate the production of hormones directly

involved in the control of reproduction, namely, FSH,

LH, and TSH, or in other neuroendocrine processes,

including growth, food intake, stress, skin pigmentation,

and salinity adaptation. However, the responses appear

complex as they vary from species to species and from study

to study. In addition, a few species have been investigated

and most studies used a single and nonphysiological con-

centration of melatonin. A clearer and coherent view needs

the use of standardized protocols that take into account the

species (and within the species the specific strain and pre-

vious history), age and gender, the time of day and year,

the concentration of melatonin, and the type of melatonin

receptors expressed, among other factors. The identification

of the cell types responsive to melatonin may also provide

useful information.

8.2.3 Melatonin effects in the gonads

Melatonin and melatonin-synthesizing enzymes are present

in the in the gonads (F�elix et al., 2023; Takahashi &

Ogiwara, 2021), as well as melatonin receptors mRNA

and 125I-MEL binding sites (cf. Section 7.2.2) in the gonads

(Chai et al., 2013; Chattoraj et al., 2009; Confente et al.,

2010; Hong et al., 2014; Jin et al., 2013; López-Patiño

et al., 2012; Molina-Borja et al., 1994; Moniruzzaman &

Maitra, 2012; Ogawa et al., 2012; Sauzet et al., 2008).

Melatonin is present in seminal plasma of European sea

bass, gilthead seabream, and Senegal sole (F�elix et al.,

2023). In all three species, blood levels of the hormone were

much higher at night than during daytime; seminal levels

were detected at night only in the seabream and Senegal

sole, and at significantly lower levels than in the blood.

A recent study reported seasonality of intratesticular mela-

tonin concentration in relation to the dynamics of spermato-

genesis in male walking catfish, where GSI and mature

stages of germ cells (spermatids and spermatozoa) were

positively associated with testicular melatonin levels

(Acharyya et al., 2023). However, it remains to be deter-

mined whether seminal plasma melatonin detected in these

studies comes from the circulation or local synthesis (F�elix
et al., 2023). In sea bass, all three aanats (1a, 1b, and 2)
mRNA, but not asmt mRNA, have been identified in the

ovary (Paulin et al., 2015), while both aanat2 and asmt
amplicons were obtained from goldfish gonadal extracts
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(Velarde et al., 2010). In the medaka, local synthesis was

suspected to occur in the preovulatory follicles of the ovary,

which express aanat1a and asmt mRNA and the corre-

sponding proteins were immunodetected on Western blots

(Ogiwara & Takahashi, 2016). While aanat1a mRNA

increased in the ovary 3–5h prior to ovulation during the

24-h spawning cycle, the levels of asmt2 mRNA remained

constant. Ovarian melatonin levels displayed no LD rhythm

and were equivalent to those measured during daytime in

the blood. Only the addition of serotonin to granulosa cells

(GC) in culture led to the detection of melatonin in the

medium. PCR amplification of tpoh, aanat1, aanat2, and
asmt was also obtained from zebrafish ovary and testis

extracts, and AANAT and ASMT immunoreactivity were

localized in frozen testis sections (Devi et al., 2022; Khan

et al., 2016). In the testes, the amount of tpoh, aanat1,
and aanat2 transcripts had a rhythmic pattern, whereas that

of asmt was arrhythmic, while in the ovary, tpoh, aanat1,
and asmt mRNA abundance varied with the LD cycle

(Devi et al., 2022). Altogether, these data strongly support

the idea that melatonin is produced locally in the gonad

where it could exert autocrine effects. In the medaka, the

machinery for melatonin synthesis and Mel1c receptors

colocalize in the GC of the ovary (Ogiwara & Takahashi,

2016). However, a clearer picture should be provided once

the activity of the melatonin-synthesizing enzymes is mea-

sured from tissue extracts. It is worth mentioning that the

kinetics of the different isoforms of AANATs differ signif-

icantly in terms of substrate affinity or temperature prefer-

ences. Thus, AANAT1 catalyzes the acetylation of

catecholamines, as well as indolamines, and the latter

induce inhibition of AANAT1 activity at high substrate con-

centrations (Benyassi et al., 2000; Falcón, Bolliet, & Collin,

1996). It has been proposed that the main substrate for

AANAT1 in brain and peripheral tissues is dopamine

(Nisembaum et al., 2013; Zilberman-Peled et al., 2006).

Melatonin action in the gonads seems to depend on the dose,

species, reproductive status, and photoperiod condition. It

seems to play different roles in the regulation of repro-

ductive hormones in long-day (inhibitory) and short-day

(stimulatory) breeders (Zhang et al., 2022). Melatonin

effects in the ovary have been reviewed in depth recently,

reflecting its modulatory actions on steroidogenesis, follicu-

logenesis, oocyte maturation, and ovulation (Takahashi &

Ogiwara, 2021). Although a direct effect of melatonin on

E2 synthesis in teleost ovaries has not been reported

(Takahashi & Ogiwara, 2021), a significant decrease in

the androgenic 11-KT plasma levels was observed in female

Atlantic eels treated with melatonin (Sebert et al., 2008).

Moreover, melatonin treatment significantly induced the

17α,20b-dihydroxy-4-pregnen-3-one (DHP; a maturation-

inducing hormone in teleost fishes) both in vivo and

in vitro in the mudskipper (Hong et al., 2014). Although

melatonin affects vitellogenin synthesis and ovarian vitello-

genesis in fishes, these effects seem to be exerted through

the BPG axis and not directly at the ovarian level. However,

both the direct action of melatonin on the ovary and its

indirect effects via the BPG axis seem to operate to pro-

moting oocyte maturation and ovulation in teleost

(Takahashi & Ogiwara, 2021). An influence of melatonin

on the process of oocyte growth and maturation was

reported in the tropical carp (Chattoraj et al., 2005, 2008;

Maitra et al., 2005) and zebrafish (Carnevali et al., 2011).

Oocyte growth of tropical carp was accelerated in the pre-

paratory phase and retarded in the prespawning and

spawning phases of the annual cycle by melatonin treatment

(Mondal et al., 2017). Cooperative actions of melatonin (via

MT1 receptors) and prostaglandin E2 (PGE2) (via its

Ptger4b receptor) appear necessary for follicle rupture and

successful ovulation in medaka. Specifically, melatonin

produced by the GC of preovulatory follicles ensures

PGE2 synthesis throughout the spawning cycle and induces

actin cytoskeleton rearrangement in the follicular cells at

ovulation (Ogiwara & Takahashi, 2016).

Melatonin affects testicular function, gametogenesis, and/or

steroidogenesis in a number of teleost fishes. Melatonin is a

progonadal key factor in the marine four-eyed sleeper, Bos-
trychus sinensis, promoting proliferation and differentiation

of spermatogonia and functional sperm production, mainly

by acting on MT1 receptor and through extracellular signal-

regulated kinase 1/2 (Erk1/2) signaling (Zhang et al., 2022).

In contrast, melatonin is inhibitory on testicular function in

the longnose killifish, Fundulus similis, where it induced a

decrease in GSI, but these effects varied with season and

photoperiod (de Vlaming et al., 1974). In the tropical carp,

the influence of melatonin on seasonal activity of the testis

also varies in relation to reproductive status, inducing tes-

ticular maturation during the preparatory phase and inhi-

biting testicular functions during prespawning and

spawning phases, although the testes did not respond to mel-

atonin during the postspawning phase (Bhattacharya et al.,

2007). Melatonin administration to mimic a short photo-

period stimulated testicular development in precocious

masu salmon, increasing GSI and plasma T levels

(Amano et al., 2000). However, high doses of orally admin-

istered melatonin had the opposite effect; i.e., it inhibited

testicular maturation (Amano et al., 2004). A similar

response was observed in the three-spined stickleback in

which i.p. administration of a high melatonin dose-induced

antigonadal effects in males maintained under long photo-

period conditions (Borg & Ekstr€om, 1981).

9 CONCLUSIONS

With over 33,000 species, distributed in three classes, fishes

represent by far the largest group of vertebrates, with a long
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evolutionary history and a great diversity in habitats (i.e.,

pelagic, estuarine, shallow water, benthic, from tropics to

polar regions). Accordingly, fish have been exposed to a

variety of environmental conditions, including light

intensity and spectral composition, photoperiod, temper-

ature, salinity, water turbidity, food availability, pressure,

and more. Thus, fishes have developed a great variability

of sensory, physiological, and behavioral adaptations to

meet different ecological challenges. They also exhibit

the most diverse modes of reproduction among vertebrates,

displaying differences in reproductive strategies (gono-

chorism, hermaphroditism [either protandrous, proto-

gynous, bidirectional, or simultaneous]), modes of

fertilization (external, internal, self-fertilization), mating

systems (monogamy, polygyny, polyandry, promiscuity),

parental care (no care, nest building, mouth cavity, brood

pouches, protective horny egg capsules, viviparity) or in

secondary sexual characteristics (size, tubercles, fat pad,

fins shape [caudal, pelvic, pectoral, and/or anal], bony

hooks on fin rays, ovipositor, coloration, etc.), among

others. In order to ensure the best survival of progeny, repro-

duction must occur at the most favorable time of the day and

year, which vary from a species to another. Accordingly, the

timing of reproduction also differs among fish species with

differences in daily (diurnal, crepuscular, and nocturnal)

and seasonal (short-days, long-days) spawning times. Con-

trolling these cyclic processes is better achieved with a time-

keeper that allows synchronization to, and anticipation of,

the cyclic changes in the environment. The pineal organ

occupies a key position at the interface between the envi-

ronment and the organism. By converting light and temper-

ature information into a rhythmic neurohormonal message,

the pineal keeps the body informed of the external daily and

seasonal fluctuations.

The great fish diversity is also reflected at the level of the

anatomy, cellular, and functional organization of the pineal

gland. Tremendous progress has been made in our under-

standing of the fish pineal functional organization. The

abundant in-depth investigations not only reinforce the

already long list of analogies between this gland and the

retina (O’Brien & Klein, 1986), they also provide indication

of a more complex molecular, cellular, and functional

diversity and organization than initially believed. This

diversity results, at least in part, from the successive rounds

of WGDs. The resulting duplication of genes, and subse-

quent neofunctionalization or loss of the duplicates, ulti-

mately enriched the repertoire of genes, including those

encoding opsins and components of the phototransduction

cascade, circadian clock machinery, and the melatonin syn-

thesis pathway. Thus, the role of the pineal gland in the fish

circadian organization appears to differ significantly among

species, from being a master clock sustaining all rhythmic

processes and behaviors (e.g., locomotor activity) in some

species, to being one among the organized central and/or

peripheral pacemakers in other species. Similarly, the pho-

toperiodic and circadian control of melatonin secretion

varies greatly and the involvement of a circadian clock is

not a general rule (lampreys and salmonids are well-known

exceptions). In addition, the photoperiodic synchronization

of the rhythm in melatonin production depends solely on the

pineal in some species and solely on the eyes in others,

while intermediate situations also exist. Altogether, there

are reasons to believe there is as much diversity between

early and distant fish, as there is between early and distant

vertebrates (Collin, 1969, 1971).

Importantly, it appears that in addition to being light

sensors, the photoreceptor cells of the fish pineal gland also

sense temperature, i.e., they are “photo-thermo-receptors.”

The response to temperature seems to reflect, at least in part,

specific constraints and adaptation to the fish habitat

(Cazam�ea-Catalan et al., 2012). The integration of the

photo- and thermo-periodic information is reflected in the

daily and seasonal rhythm of melatonin secretion, in a

stronger and more accurate manner than with either factor

alone. This information must be considered in future studies

investigating the impact of the ongoing climate and temper-

ature changes on timed neuroendocrine processes as is the

case of reproduction ((Servili et al., 2020); cf. see

Chapter 14, this volume). More investigation is certainly

needed and on a larger number of species than those inves-

tigated so far, to further elucidate how the fish pineal gland

transduces the temperature information and how it impacts

the production of the nervous and neurohormonal messages

and its relationship to thermosensitive regulatory centers

found in other brain areas and the lateral line of fishes. Sim-

ilarly, more information is needed on the internal factors

known or suspected to modulate the production of mela-

tonin (neuropeptides, neurotransmitters, neuromodulators,

and steroids). These factors may represent elements of reg-

ulatory loops as is the case of, e.g., steroids or Kp for repro-

duction. There is suspicion that melatonin might also be

produced in extra-pineal and extraretinal tissues, including

brain, gut, liver, skin, and gonads, where it might act in an

autocrine/paracrine manner. So far, information remains

fragmentary and contradictory. Future investigations need

to include the full characterization and localization of both

AANAT and ASMT enzymatic activities, and their locali-

zation in the tissues of interest.

The effects of melatonin are mediated by a variety of

receptors belonging to the GPCR family. Melatonin

receptors are widely distributed in both central and

peripheral tissues. In many brain areas, their sites of distri-

bution overlap with those receiving pineal and/or retinal

projections (POA, prethalamus/thalamus, pretectum, pos-

terior tuberculum, optic tectum), suggesting their important

role in integrating the periodic photo-thermic information.
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FIG. 14 Schematic presentation of the photo- and thermo-periodic regulation of the brain-pituitary-gonadal (BPG) axis. The photoperiodic (retina and

pineal) and photo-thermo-periodic (pineal) information reach the neuroendocrine axis through nonvisual retinal and pineal nerve fibers (brown arrows) and

pineal melatonin (red circles) released into the cerebrospinal fluid and circulation. Melatonin acts through specific receptors (purple boxes) found at all

stages of the BPG axis. Deep brain thermoreceptors and photoreceptors might also operate in the basal telencephalon. Melatonin effects have been reported

on the main preoptic (POA) and hypothalamic stimulatory (GnRH1/3, Kp2,�) and inhibitory (GnIH, dopamine,�) factors known to control fish pituitary

gonadotropes (FSH and LH cells). At the pituitary level, melatonin alsomodulates the production of adenohypophysial hormones, including those involved

in the control of reproduction, FSH, LH, and TSH. TSH from the pituitarymay regulate FSH and LH productions via the pituitary folliculostellate cells and/

or the brain deiodinase-2 (Dio2), which allows production of T3 (triiodothyronine) fromT4 (thyroxine). FSH and LH act on the gonads (ovary and testis) to

control the progress of gametogenesis and steroidogenesis. A feedback of gonadal steroids operates on the pineal gland, reproductive brain, and pituitary

(green dotted lines). Estradiol (E2) also acts on the liver of female fish to promote the synthesis and release of vitellogenin (Vg), which reaches the ovary

through the vascular system and contributes to the progression of vitellogenesis. Moreover, nerve projections (colored dotted lines) from the habenula

(hab), containing Kp1-producing cells, and mesencephalic tegmentum (teg), containing Gnrh2 and Gnih neurons, reach the fish pineal gland, whereas

the retina receives Gnrh3 fibers originating from cells in the olfactory bulbs (ob). The saccus vasculosus (SV), present in some fish species, contains

opsin proteins, Tsh and Dio2; it might also act as a sensor of seasonal changes in day length in some fish species. The pineal gland also produces AgRP2

(agouti-related peptide-2), although its function remains unknown. : circadian clock machinery. For details and references, see text.
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As fish move in a 3D environment, information from the

horizontal plane is provided preferentially by the retina

and that from the above preferentially by the pineal gland.

The pineal provides two types of responses: a fast (milli-

seconds) response via the pineal nerve and a slow (hours

and days) response via melatonin release. In contrast to mel-

atonin, clear information regarding a potential role for the

pinealofugal nerve on reproduction is lacking. The presence

of melatonin binding sites and/or receptors in the photore-

ceptive organs (pineal and retina), and along the entire

BPG axis brings strong support to the role of melatonin

as a modulator of reproduction in fishes. The WGDs have

also led to a diversification of these receptors, which display

species-specific expression, distribution, and properties, as

well as age or sex-dependent variations within the same

species. This, together with the observation that the

receptors display daily and annual variations in abundance

and affinity, highlights the complexity of the system. Thus,

understanding the effects of melatonin requires that investi-

gations be carried out not only on the daily and seasonal pro-

files of its secretion, but also on those of its receptors in each

tissue where these receptors are expressed, and perhaps also

on the mechanism of melatonin clearance, which have never

been considered to date.

It is necessary to identify the cell types that express mela-

tonin receptors along the BPG axis, which ultimately

control FSH, LH, and TSH synthesis and secretion.

A recent investigation in the Atlantic croaker led to the

hypothesis that melatonin modulation of gonadotropin pro-

duction is indirect, and mediated by TSH cells responsive to

the hormone (Royan et al., 2023). Finally, better knowledge

is necessary concerning transduction pathways activated by

melatonin receptors, considering also the possibility that

these receptors may form homo and/or heterodimers with

other GPCRs in a given cell type.

Finally, studies suggest that a TSH/deiodinase/thyroid

hormone mechanism in the pituitary and brain acts as a pho-

toperiodic signaling system controlling seasonal repro-

duction in birds and mammals (Nakane & Yoshimura,

2014). A TSH/Dio2 system may also operate in fishes.

Nakane and Yoshimura (2014) suggest this is achieved

through the saccus vasculosus, which contains opsins,

TSH, and Dio2. Experimental evidence for this pathway

is lacking, and many fishes do not possess a saccus vascu-
losus (Tsuneki, 1992). In Atlantic salmon, TSH from the

pituitary did activate on Dio2 in midbrain, optic tectum

and hypothalamus, to convert T4 to T3 but not in the saccus
vasculosus (Irachi et al., 2021). In the medaka, there TSH

may act locally on gonadotropes via the folliculostellate

cells of the pituitary (Royan et al., 2023). These two

examples suggest that the TSH/Dio2/T3 axis may be a

common feature of photoperiodic regulation of seasonality

in vertebrates, but the mechanisms of this proposed control

seems to vary greatly among vertebrate species. The obser-

vation that melatonin modulates pituitary TSH production

in the medaka and European sea bass (Falcón et al., 2021;

Kawabata-Sakata et al., 2020; Royan et al., 2023) suggests

a pineal/melatonin control of pituitary TSH exists in fishes.

This does not exclude the possible involvement of deep

brain photoreceptors, as well as direct actions of pineal mel-

atonin at other levels of the BPG axis, as summarized Fig.

14. It can be assumed that different modalities of this control

exist among the representatives of the largest group of ver-

tebrates. The complexity of the melatonin impact on neuro-

endocrine regulations is part of the reasons why contrasting

results have so often been obtained regarding its effects. It is

becoming clear now that the effects of the pineal and mel-

atonin on fish reproduction depend on the species and,

within the same species, on a number of factors, such as pre-

vious history of the fish, development and aging, gender,

time of day or year, concentration of melatonin, type of mel-

atonin receptor(s) expressed, and more. In brief, we believe

that for now, generalizations should be made with caution,

and conclusions provided on a case-by-case basis.
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Falcón, J., Migaud, H., Muñoz-Cueto, J. A., & Carrillo, M. (2010). Current

knowledge on the melatonin system in teleost fish. General and Com-

parative Endocrinology, 165(3), 469–482. https://doi.org/10.1016/j.

ygcen.2009.04.026.

Falcón, J., Molina Borja, M., Collin, J. P., & Oaknin, S. (1996). Age-related

changes in 2-125I-Iodomelatonin binding sites in the brain of sea

breams (Sparus aurata, L). Fish Physiology and Biochemistry,

15(5), 401–411. https://doi.org/10.1007/bf01875583.

Falcón, J., Thibault, C., Martin, C., Brunmarmillon, J., Claustrat, B., &

Collin, J. P. (1991). Regulation of melatonin production by catechol-

amines and adenosine in a photoreceptive pineal organ—An in vitro

258 Hormones and Reproduction of Vertebrates, Volume 1

https://doi.org/10.1111/j.1600-079X.1984.tb00216.x
https://doi.org/10.1111/j.1600-079X.1984.tb00216.x
https://doi.org/10.1007/BF00214658
https://doi.org/10.1159/000126166
https://doi.org/10.1111/jpi.12854
https://doi.org/10.1371/journal.pone.0070177
http://refhub.elsevier.com/B978-0-443-16009-7.00008-6/rf0615
http://refhub.elsevier.com/B978-0-443-16009-7.00008-6/rf0615
http://refhub.elsevier.com/B978-0-443-16009-7.00008-6/rf0615
http://refhub.elsevier.com/B978-0-443-16009-7.00008-6/rf0615
http://refhub.elsevier.com/B978-0-443-16009-7.00008-6/rf0615
http://refhub.elsevier.com/B978-0-443-16009-7.00008-6/rf0615
http://refhub.elsevier.com/B978-0-443-16009-7.00008-6/rf0615
http://refhub.elsevier.com/B978-0-443-16009-7.00008-6/rf0615
http://refhub.elsevier.com/B978-0-443-16009-7.00008-6/rf0615
http://refhub.elsevier.com/B978-0-443-16009-7.00008-6/rf0615
http://refhub.elsevier.com/B978-0-443-16009-7.00008-6/rf0615
http://refhub.elsevier.com/B978-0-443-16009-7.00008-6/rf0615
https://doi.org/10.1051/rnd:19790313
https://doi.org/10.1016/S0301-0082(98)00078-1
https://doi.org/10.1016/S0301-0082(98)00078-1
https://doi.org/10.1111/j.1600-079X.1985.tb00715.x
https://doi.org/10.1111/j.1600-079X.1985.tb00715.x
https://doi.org/10.1111/j.1365-2826.1992.tb00214.x
https://doi.org/10.1111/j.1365-2826.1992.tb00214.x
https://doi.org/10.1007/BF00215859
https://doi.org/10.1007/BF00215859
http://refhub.elsevier.com/B978-0-443-16009-7.00008-6/rf0645
http://refhub.elsevier.com/B978-0-443-16009-7.00008-6/rf0645
http://refhub.elsevier.com/B978-0-443-16009-7.00008-6/rf0645
http://refhub.elsevier.com/B978-0-443-16009-7.00008-6/rf0645
https://doi.org/10.1210/en.2003-0707
https://doi.org/10.26028/cybium/2011-351-001
https://doi.org/10.26028/cybium/2011-351-001
https://doi.org/10.1016/j.tem.2007.01.002
https://doi.org/10.1007/s004240050149
https://doi.org/10.1007/s004240050149
https://doi.org/10.1159/000126792
https://doi.org/10.1007/BF00340884
https://doi.org/10.1073/pnas.1312634110
https://doi.org/10.1177/32.5.6371
https://doi.org/10.1177/32.5.6371131
https://doi.org/10.1159/000124778
https://doi.org/10.1159/000124778
https://doi.org/10.3389/fphys.2021.774975
https://doi.org/10.1007/BF00612806
https://doi.org/10.1016/j.ygcen.2009.04.026
https://doi.org/10.1016/j.ygcen.2009.04.026
https://doi.org/10.1007/bf01875583


study in the pike and the trout. Journal of Pineal Research, 11(3–4),

123–134. https://doi.org/10.1111/j.1600-079X.1991.tb00467.x.

Falcón, J., & Zohar, Y. (2018). Photoperiodism in fish. In M. K. Skinner

(Ed.), Vol. 6. Encyclopedia of reproduction ((2 ed., pp. 400–408). Aca-

demic Press, Elsevier. https://doi.org/10.1016/B978-0-12-809633-

8.20584-0.

Farley, J. H., Williams, A. J., Hoyle, S. D., Davies, C. R., & Nicol, S. J.

(2013). Reproductive dynamics and potential annual fecundity of

South Pacific albacore tuna (Thunnus alalunga). PLoS ONE, 8(4),

e60577. https://doi.org/10.1371/journal.pone.0060577.

F�elix, F., Gallego, V., Mendes, A., Soares, F., Vera, L. M., Cabrita, E., &

Oliveira, C. C. V. (2023). Novel approaches on melatonin role:

Presence of clock-hormone in fish seminal plasma. Aquaculture,

573, 739578. https://doi.org/10.1016/j.aquaculture.2023.739578.

Feng, N. Y., & Bass, A. H. (2016). "Singing" fish rely on circadian rhythm

and melatonin for the timing of nocturnal courtship vocalization.

Current Biology, 26(19), 2681–2689. https://doi.org/10.1016/j.

cub.2016.07.079.

Feng, N. Y., Marchaterre, M. A., & Bass, A. H. (2019). Melatonin receptor

expression in vocal, auditory, and neuroendocrine centers of a highly

vocal fish, the plainfin midshipman (Porichthys notatus). Journal of

Comparative Neurology, 527(8), 1362–1377. https://doi.org/10.1002/

cne.24629.

Fenwick, J. C. (1969). The functions of the fish pineal organ. University of

British Columbia.

Fenwick, J. C. (1970). Demonstration and effect of melatonin in fish.

General and Comparative Endocrinology, 14(1), 86–97. https://doi.

org/10.1016/0016-6480(70)90010-9.

Fernández-Durán, B., Ruibal, C., Polakof, S., Ceinos, R. M.,

Soengas, J. L., & Mı́guez, J. M. (2007). Evidence for arylalkylamine

N-acetyltransferase (AANAT2) expression in rainbow trout peripheral

tissues with emphasis in the gastrointestinal tract. General and Com-

parative Endocrinology, 152(2–3), 289–294. https://doi.org/10.1016/

j.ygcen.2006.12.008.

Feuda, R., Hamilton, S. C.,McInerney, J. O., & Pisani, D. (2012).Metazoan

opsin evolution reveals a simple route to animal vision. Proceedings of

the National Academy of Sciences of the United States of America,

109(46), 18868–18872. https://doi.org/10.1073/pnas.1204609109.

Foran, C.M., & Bass, A. H. (1998). Preoptic AVT immunoreactive neurons

of a teleost fish with alternative reproductive tactics. General and

Comparative Endocrinology, 111(3), 271–282. https://doi.org/

10.1006/gcen.1998.7113.

Forlano, P. M., Deitcher, D. L., & Bass, A. H. (2005). Distribution of

estrogen receptor alpha mRNA in the brain and inner ear of a vocal

fish with comparisons to sites of aromatase expression. Journal of

Comparative Neurology, 483(1), 91–113. https://doi.org/10.1002/

cne.20397.

Frank, C. L., Czirok, S. J., Vincze, C., Rácz, G., Sz�el, A., &Vı́gh, B. (2005).
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López-Patiño, M. A., Guijarro, A. I., Alonso-Gomez, A. L., &Delgado,M.-

J. (2012). Characterization of two different melatonin binding sites

in peripheral tissues of the teleost Tinca tinca. General and Compar-

ative Endocrinology, 175(1), 180–187. https://doi.org/10.1016/j.

ygcen.2011.11.017.

Maitra, S. K., Chattoraj, A., & Bhattacharyya, S. (2005). Implication of

melatonin in oocyte maturation in Indian major carp Catla catla. Fish

Physiology and Biochemistry, 31(2–3), 201–207. https://doi.org/

10.1007/s10695-006-0025-2.

Maitra, S. K., Mukherjee, S., & Hasan, K. N. (2015). Melatonin: Endog-

enous sources and role in the regulation of fish reproduction. In A.
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Oliveira, C., Vera, L. M., López-Olmeda, J. F., Guzmán, J. M., Mañanos,
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Yáñez, J., & Anadón, R. (1996). Afferent and efferent connections of

the habenula in the rainbow trout (Oncorhynchus mykiss): An

indocarbocyanine dye (DiI) study. Journal of Comparative Neurology,

372(4), 529–543. https://doi.org/10.1002/(SICI)1096-9861(19960902)

372:4<529::AID-CNE3>3.0.CO;2-6.
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