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Setting appropriate conservation strategies in a multi-threat world is a chal-
lenging goal, especially because of natural complexity and budget limitations
that prevent effective management of all ecosystems. Safeguarding the most
threatened ecosystems requires accurate and integrative quantification of
their vulnerability and their functioning, particularly the potential loss of
species trait diversity which imperils their functioning. However, the magni-
tude of threats and associated biological responses both have high uncer-
tainties. Additionally, a major difficulty is the recurrent lack of reference
conditions for a fair and operational measurement of vulnerability. Here, we
present a functional vulnerability framework that incorporates uncertainty
and reference conditions into a generalizable tool. Through in silico simula-
tions of disturbances, our framework allows us to quantify the vulnerability of
communities to a wide range of threats. We demonstrate the relevance and
operationality of our framework, and its global, scalable and quantitative
comparability, through three case studies on marine fishes and mammals. We
show that functional vulnerability has marked geographic and temporal pat-
terns. We underline contrasting contributions of species richness and func-
tional redundancy to the level of vulnerability among case studies, indicating
that our integrative assessment can also identify the drivers of vulnerability in
a world where uncertainty is omnipresent.

Further climate change is inevitable1, but other pressing environmental
and ecological threats are also widespread and intensify on Earth2,
including land use changes, pollution, species invasions, diseases and
resource overexploitation. These human-based impacts pose immi-
nent hazards to people and species that compose and sustain
ecosystems3–5. Quantifying the vulnerability of biodiversity—i.e., the
degree to which biodiversity and associated functions are likely to
change when exposed to multiple threats6—is thus crucial2,7 to ratio-
nalize ecosystem management and conservation actions8. Such a

quantification is especially needed in the current context of budget
limitationswhile newglobal CO2 emission and conservation targets are
being set9. Despitemajor advances in our understanding of ecosystem
vulnerability, shortcomings persist10–13. For example, the majority of
studies only estimate vulnerability based on correlative species-
environment relationships or expert judgements14. Further, vulner-
ability assessments generally focus on specific disturbances such as
fishing15, flood events16, fire17, trawling18, wind farms19 or climate
change20. However, the complexity of biological responses and the
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multi-threat nature of the Anthropocene demands conservation sci-
entists to consider a wide range of disturbances in a more general-
izable, standardized, and operational framework to assess ecosystem
vulnerability21–23.

One of the main difficulties in ecosystem health assessment is
the need for benchmarks, most often called ‘reference conditions’, to
evaluate the status of ecosystems based on indices24–26. A reference
condition is broadly defined as a baseline measure of an ecosystem
variable (biological, chemical, or physical attributes) representative
of minimal human influence or stress24,25,27. Despite the intuitive
relevance of this concept for ecological assessment, the majority of
ecological measures—including community-scale indices—are rarely
compared to reference conditions, preventing end-users from fairly
and operationally gauging impacts or restoration actions. Consider-
ing reference conditions to assess the vulnerability of any observed
community therefore appears as a necessary step: it allows situating
community’s response to disturbances relative to the widest range of
possibilities, i.e., from the ‘least’ to the ‘most’ vulnerable community.
Such conditions—or quasi-pristine areas—are now virtually absent for
most ecosystems on Earth28,29 however, and past data about pre-
human conditions are often biased and limited27. Moreover, the
natural stochasticity in the Earth’s climate (e.g., volcanism, extreme
meteorological events), the lack of data relative to the combined
effects of various disturbances on biodiversity, and the extreme
complexity of biological responses themselves30, still prevent accu-
rate predictions of species community shifts under global
changes31,32. Such unpredictability hampers our ability to cope with
future environmental and socioeconomic changes, weakening man-
agement and conservation efforts. Assessing vulnerability therefore
requires estimating community sensitivity and exposure by con-
sidering a wide range of disturbances rather than focusing only on a
specific threat21–23.

Examining the diversity of organismal traits instead of their
taxonomic classification can provide a more mechanistic under-
standing of community dynamics33–35, including their resilience to
various environmental conditions and human impacts7,36. Here, we
assume that the ‘functional vulnerability’ of a community to a wide
range of disturbances relies on two components: (i) functional
redundancy36,37, i.e. the extent to which different species share
similar traits and are thus likely to sustain similar functions, and (ii)
how species respond to different disturbances15,36. However, com-
munity functional redundancy is still often ignored in functional
vulnerability assessments while responses to multiple threats are
poorly known. Ecological theory predicts that communities com-
posed of species with low redundancy across multiple traits may be
more vulnerable to multiple disturbances since having only few
functionally similar species, if not one, responding in diverse ways to
these disturbances. In contrast, high functional redundancy is
expected to provide many species per threat-response, i.e., a more
even distribution of species redundancy across traits, which may
buffer functional extinction risk38. Moreover, functionally distinct
species are known to be highly vulnerable to many pressures such as
overexploitation39, habitat loss40 and climate change41. Considering
species traits, including their distinctiveness42, and their abundance,
is therefore a necessary step in assessing the functional vulnerability
of communities to multiple threats. Yet, a framework that considers
the irreducible uncertainty and complexity of nature in terms of
current and future environmental disturbances as well as species
responses is still missing.

Here, we develop an integrative trait-based framework to
quantify the functional vulnerability of biological communities to a
wide set of potential disturbances while taking into account extreme
cases of community responses as reference conditions. Based on
species position, species abundances redistribution in the functional
trait space and in silico simulations of disturbances, our framework

considers functional rarity, redundancy and species abundances to
quantify vulnerability in a multi-threats context. This study shows
that our framework constitutes a promising tool to guide protection
efforts even if trait-environment relationships and disturbance
regimes are unknown, unpredictable or poorly documented. To test
the applicability of our framework in both time and space, we con-
sider three contrasting marine case studies: the past temporal
dynamics of species abundances in North Sea fish communities, the
current occurrences of marine mammals at global scale, and the
projections of reef fish communities at global scale according to
future climate.

Results
Functional vulnerability framework
To estimate the functional vulnerability of a given community, our
framework estimates its capacity to maintain its set of traits using in
silico simulations of random disturbances. More precisely, we com-
pared the response of a given observed community with the response
of virtual communities built from the observed community itself.
These virtual communities are based on changes in (i) the distribution
of functional redundancy across the trait space, (ii) abundance dis-
tribution across species, and (iii) relationship between species abun-
dance and functional distinctiveness (Fig. 1a), all of which are key
aspects of ecosystem functioning and resilience to disturbance. This
results in a set of 15 virtual communities (Fig. 1a). Even if the objective
of the framework is not to identify which community characteristic
determines functional vulnerability, we expect the functional vulner-
ability of communities to decrease with (i) species redundancy across
the trait space, (ii) more balanced abundances across species and (iii)
positive relationship between species abundance and functional
distinctiveness.

For any observed community, we built a regular grid cell on a
two-dimensional trait space where species are located according to
their traits43, the limits of the grid being defined by the upper, lower,
leftmost and rightmost species in the trait space. We defined each
cell as a ‘functional entity’ since the position in the trait space can be
considered a proxy of species roles in ecosystems. This framework
could be extended to multidimensional spaces, where the func-
tional entities would then be defined as hypercubes. We then
simulated a series of disturbances on the observed community and
on each of its associated virtual communities. For each disturbance,
we applied a decrease in the abundance of randomly selected spe-
cies and recalculated new abundances. The number of functional
entities, or grid cells, with at least one species still present was then
quantified. These simulated disturbances were applied successively
until total species and functional entity extinction (see rarefaction
curves, Fig. 1b). The functional vulnerability index was then com-
puted by quantifying the position of the rarefaction curve corre-
sponding to the observed community in comparison to the most
vulnerable virtual community and the least vulnerable virtual
community (Fig. 1b, c).

To test the applicability of our framework in both time—e.g.,
recovery after abrupt and intense disturbance—and space—e.g., spatial
prioritization for ecosystem management—we considered three con-
trasting marine case studies.

Temporal vulnerability of North Sea fishes
We first applied our functional vulnerability framework on the past
temporal dynamics of North Sea fishes (Fig. 2a). The North Sea has
been subject to intense overfishing throughout the 20th century but
has been managed since the end of the 1970s by the Common
Fisheries Policy, with a progressive decrease in catch quotas and
improvement in gears’ selectivity. We used abundance data from the
International Bottom Trawl Survey (IBTS), an annual monitoring
campaign designed to monitor fish and invertebrate communities in
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the North Sea annually since the 1980s (Fig. 2a) and to assess com-
mercial species stocks. In combination with species abundance, and
for each fish taxa, we selected eight traits linked to ecosystem
functioning: age at maturity, asymptotic length, fecundity, offspring
size, habitat (water column position), trophic level, feeding mode,
and spawning type.

Our framework revealed a high functional vulnerability of fish
communities in the North Sea. The functional vulnerability of

observed communities was very close to that of the most vulnerable
virtual community, with a value of 90% on average. We found a sig-
nificant decrease in functional vulnerability throughout the last four
decades of about 1.1% per decade (Pearson’s correlation
test, r = −0.79, P < 0.001, n = 36), dropping from 92 to 86% (Fig. 2b).
During the same period, species richness increased from 74 species
in the 1980s to 117 species in the 2010s. The analysis also revealed
that whatever the number of iterations performed, the vulnerability
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Fig. 1 | Conceptual representation of the functional vulnerability framework.
a The various trait spaces correspond to the virtual communities created from the
observed target community. The size of each dot (i.e., species) is proportional to
abundance (Ab.). The blue circle separates virtual communities into three main
categories according to the distribution of functional redundancy: heterogeneous
(Heter.), homogeneous (Homog.), observed (Obs.). The green and orange circle
segments subdivide the virtual communities according to the distribution of
species’ abundance (heterogeneous, homogeneous, observed) and the positive
(Pos.) or negative (Neg.) sign of the relationshipbetween functional distinctiveness

(Di.) and abundance, respectively. b Conceptual figure showing the rarefaction
curves of the observed target community and its associated virtual communities.
The number of randomly selected species at each disturbance does not influence
the final outputs, but impacts the number of successive disturbances needed to
reach only one species left in the community. c Examples of rarefaction curves of
two contrasting communities according to their functional vulnerability (25% and
75%).The red and violet curves correspond to the rarefaction curve of themost and
least vulnerable communities, respectively. The black curve corresponds to the
rarefaction curve of the observed community.
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index remained almost unchanged (relative SD = 0.75%; see
variation between light blue lines in Fig. 2b), indicating a high
robustness in functional vulnerability assessment. The intra-year
variability of functional vulnerability (i.e., the standard deviation
of the 99 vulnerability values at each year; see Fig. 2b) was on aver-
age two times inferior to the inter-year variability, therefore indi-
cating a good capacity of the framework to detect small temporal
changes.

Global patterns of marine mammals vulnerability
To test our framework on occurrence data, we used global range
maps of 122 marine mammal species (http://www.iucnredlist.org).
We transformed these range maps into a presence/absence matrix
by overlaying species’ range maps and summed the number of
species that occurred in each 1° grid cell20. Finally, we collected
fourteen traits usually included in climate change vulnerability
assessments, i.e. diet, foraging water depth, foraging location,
fasting strategy, terrestriality, female sexual maturity, weaning,
gestation length, inter-litter interval, breeding location, social
group size, social behavior, adult body mass, sexual dimorphism
(see ref. 20 for further details).

We detected a latitudinal gradient in the functional vulner-
ability of marine mammal communities, with the most vulnerable
communities living at northern temperate latitudes (Fig. 3a, c).
Opposite to the North Sea case study, we observed a weak but
noticeable positive relationship between species richness and
functional vulnerability for marine mammals (slope = 1.68; Pear-
son’s correlation test, r = 0.32, P < 0.001, n = 19681; Fig. 3b, d). This
result suggests that species-rich communities may have lower trait
redundancy across functional entities than species-poor commu-
nities. However, some species-poor regions display high functional
vulnerability such as the eastern Mediterranean Sea, the Red Sea
and the northeast Pacific. Similarly, certain areas—like Indonesian
Islands or the South African coast—with high species richness have
very low functional vulnerability, therefore supporting the expec-
tation that species-rich communities may have, on average, lower
functional vulnerability. Finally, we observed a substantial variation
in functional vulnerability values in species-rich communities,
starting around 25 species (Fig. 3d) suggesting a species richness
threshold above which functional redundancy counterbalances the
buffering effect of species richness on vulnerability.

Future changes in reef fish vulnerability
We finally estimated how climate change could affect the global pat-
terns of functional vulnerability in shallow-water reef fishes over the
coming 60 years (2041–2070 compared to the period 1981–2015). To
do so, we used species distribution models44 (see supplementary
information) to forecast habitat suitability for 2320 species after
integrating >12 million records of species occurrences extracted from
open accessdatabases (GBIF45,OBIS46) and local SCUBA transects (Reef
Life Survey47,48, SERF49, GASPAR50). We used the SSP1-2.6 climate
change scenario (Shared Socioeconomic Pathways combined with the
Representative Concentration Pathway 2.623) that is inherent to the
Paris Agreement that aims to sustainably limit global warming to less
than 2 °C51. We chose twelve fish traits: age and length at maturity,
maximum age, the asymptotic mass and length, the Von Bertalanffy
growth coefficient (from FISHLIFE52), mobility, period of activity,
schooling, vertical position, diet, and reef association (from the GAS-
PAR traits database50).

Under the 2 °C warming scenario (i.e. SSP1-2.6), the forecasted
functional vulnerability of fish communities on shallow-water coral
and rocky reefs for the period 2041–2070 is expected to be lower in
the tropics (Fig. 4a) where species richness is expected to remain
high (Supplementary Fig. 11). As for the North Sea (case study 1),
functional vulnerability is expected to be negatively related to
species richness (Fig. 2b), yet with a threshold in species richness -of
about 800 species- above which functional vulnerability rebounds
towards higher values (Fig. 4b). As for marine mammals (case
study 2), the distribution of functional redundancy in coastal fish
communities, as well as their abundance distribution, counter-
balanced the buffering effect of species richness above a certain
richness threshold. Future functional vulnerability hotspots are
identified around Southern Latin America, South Africa, Northern
Hudson Bay, Nova Scotia and the Bering Sea (Fig. 4a). Conversely,
the least vulnerable communities are located in Easter Islands,
Northeast of French Polynesia and Saint Helena in the Southern
Atlantic (Fig. 4a).

The global vulnerability of reef fish communities is expected to
increase by 3 ± 10% on average until the end of the 21st century.
Around 65% of the considered area is expected to experience an
increase in functional vulnerability, with amean increase of about 12%.
Likewise, regions with decreasing functional vulnerability would
experience a 11% decrease on average. Globally, polar areas, and
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especially in the Northern hemisphere, would benefit from a decrease
in functional vulnerability whereas tropical, subtropical and some
temperate latitudes would suffer from an increase in functional vul-
nerability over the coming decades (Fig. 4c). We also reveal the exis-
tence of certain peculiar locations like the Mediterranean Sea, Latin
America and Africa (Fig. 4c) where functional vulnerability is expected
to decrease.

Discussion
Decision-makers are forced tominimize risk for adaptivemanagement
using partial or biased knowledge and by testing particular
hypotheses14,53,54, whereas integrative approaches should provide a
safer strategy. To overcome these difficulties, our framework offers a
promising tool for assessing the level of functional vulnerability in
biological communities and guide protection efforts where they are
most needed. Moreover, our framework has the major advantage of
estimating functional vulnerability by considering reference condi-
tions and even if trait-environment relationships and disturbance
regimes are unknown, unpredictable, or poorly documented, a step
forward in comparison with previous works20,39.

Although a few previous works have investigated functional
vulnerability43,55, our framework combines species functional distinc-
tiveness, species abundance distribution and the distribution of
functional redundancy across trait space. Most of all, it gives the

advantage to provide an index with absolute values that allows end-
users to gauge the intensity of functional vulnerability and to compare
sites or periods. Beyond this novelty, our framework is agnostic to how
traits mediate specific driver-effect relationships, so we can consider a
large range of potential threats that could alter biological commu-
nities. Our framework then allows end-users to consider the vulner-
ability of a systemmore broadly than when vulnerability is assessed at
the species scale or for only one given disturbance20. Indeed, con-
sidering the lack of knowledge inherent to the variety of pressures and
the complexity of biological interactions at the community scale is a
necessary step towards efficient ecosystem management56,57. Finally,
our assessment of functional vulnerability can be applied on any kind
of ecosystem or data across space and time (abundance, presence/
absence, probability of presence).

Applied to North Sea fishes, we highlight a progressive recovery
in demersal communities, which is consistent with previous studies
showing the positive ecosystem response to the decrease in
demersal destructive fishing (for example, trawling) observed in
many European countries39,58. Such a congruence between our
algorithm predictions and the recovery of the majority of North Sea
fish stocks59, functionally common and distinct species39, further
supports the robustness of our framework, which is based on no
preconceived trait-environment relationships. This robustness is
also reinforced by finding that functional vulnerability variation due
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to simulated random disturbances was three times lower than inter-
annual variation. Despite the observed decrease in functional vul-
nerability over the study period, these results remind us that North
Sea fish communities remain particularly vulnerable (90% on aver-
age during the last four decades), which is likely explained by the
extreme intensity of human pressures in the North Sea during the
20th century60,61. Since the end of the 1970s, the exploitation of fish
communities in Northeast Atlantic ecosystems has followed the
Common Fisheries Policy, mainly characterized by the reduction of

catch quotas and the improvement of gear selectivity39,62. These
management regulations have therefore contributed to a pro-
gressive recovery of fish communities, including functionally com-
mon and distinct species in the North Sea39, which translates into a
decrease of functional vulnerability. Even if the North Sea fish
communities appear to be slowly recovering, efforts in the eco-
system approach to fisheries management (EAFM) must be main-
tained, as the absolute value of functional vulnerability remains
particularly high. Because of the footprint left by the overfishing era

Fig. 4 | Functional vulnerability of global reef fish communities and associated
trends over the coming 60 years. a Projected functional vulnerability ([2041-
2070]) of coastal fish communities under the SSP1-2.6 scenario. b Relationship
between species richness and functional vulnerability for the period 2041–2070.
Data are presented as loess predicted values ± 5(and 10)*standard error. cGain and

loss of functional vulnerability between future (2041–2070) and contemporary
periods (1981–2015). Source data are provided as a Source Data file. Background
map shapefiles are available on the NOAA website: https://www.ngdc.noaa.gov/
mgg/shorelines/data/gshhg/latest/.
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in this part of the world, the observed decreases in functional vul-
nerability may not translate into healthier ecosystems.

Wefind that even in high-diversity systems, suchas temperate and
tropical regions, the richest communities of marine mammals are
among the most vulnerable, supporting the idea that species richness
should not be always considered as an umbrella but more likely acting
as a buffer against vulnerability55. The higher marine mammal vulner-
ability at northern temperate latitudes was also documented by
Albouy et al.20, who applied a different trait-based approach con-
sidering only the effect of climate change. This spatial congruence
between the two studies supports the validity of our vulnerability
framework, even where trait-environment relationships and dis-
turbance regimes are poorly known. The detection of a positive rela-
tionship between species richness and functional vulnerability
reinforces the idea that redundancy, and more specifically the dis-
tribution of redundancy within a given trait space, is a key element to
consider, as the richest communities are not necessarily the most
functionally redundant. Conversely, low functional vulnerability was
observed in species-poor areas at polar latitudes. So relying on species
richness as a proxy for functional redundancy is no longer valid.

Applied on the forecasted reef fish communities, our quantitative
framework both revealed a latitudinal gradient in functional vulner-
ability and how that vulnerability will change in the next decades
according to climate change. As expected, species richness appears as
a buffer against functional vulnerability (Fig. 4b). However, as for
marinemammals (case study 2), a thresholdwasobservedabovewhich
the benefit of species richness is counterbalanced by other community
characteristics like functional redundancy. The way species traits are
distributed within communities can depend on species richness63

suggesting that themarked functional over-redundancy in species-rich
communities may render them more vulnerable to disturbances. It
should be noted that the forecasting models that we used only con-
sider fishes’ realised environmental niches but ignore biotic habitat
availability, which remains a critical step for further development.
Additionally, sites where forecasted temperatures were outside of the
species’ upper thermal niche limit were excluded to prevent any
extrapolation. Finally, the selected climate change scenario and hor-
izon in this paper are conservative since it follows SSP1-2.6 scenario by
mid-century.

Beyond a simple assessment of functional vulnerability, which is
necessary to better plan management actions, our framework also
provides the fundamental benefit of better understanding how func-
tional redundancy distribution, abundance distribution, and func-
tional distinctiveness drive the vulnerability of communities.
Moreover, despite constructing our indexof functional vulnerability to
be independent of species richness, in order to prevent trivial effects
of species richness, contrasting and highly variable patterns were
observed in the relationship between species richness and functional
vulnerability. A positive effect of species richness was observed in the
North Sea, while a negative relationship was observed for marine
mammals. Such a result continues to fuel the diversity-stability debate
where the positive effect of species richness is not ubiquitous64. Our
study is another example showing that functional redundancy, and
more specifically its distribution within species trait spaces, may
exceed and sometimes counterbalance the effect of species richness,
especially when species synchrony is high under random fluctuations,
which is the case in most communities64,65.

Even if our framework provides an integrative assessment of
functional vulnerability, meaning that it reflects the vulnerability to a
wide panel of potential disturbances, we suggest that future studies
could perform similar approaches based on virtual communities dif-
fering in functional structure (i.e., functional redundancy, abundances
distribution and distinctiveness) where the probability to be impacted
differs according to species sensitivity to specific disturbances instead
of a random selection of species like we did here. We also highlight

that our approach does not consider the extrinsic vulnerability
inherent to the magnitude of environmental changes (i.e. exposure).
Indeed, by performing repeated random disturbances on each com-
munity (i.e. each site or period), the amount of exposure is constant,
so the only factor that drives the level of vulnerability is the species
richness, trait and abundance composition within communities. To
better define management and conservation strategies in space, the
spatial heterogeneity of environmental and anthropogenic
disturbances66,67 needs to be considered in combination with the
intrinsic vulnerability requested by decision-makers. Additionally,
selected traits should reflect well‐defined ecological roles or
functions68 but the lack of data and consensus on the way to choose
traits remains a limiting weakness in functional ecology69,70. In the
worst case where no trait data exist, phylogenetic distances between
species can be used as an alternative to compute phylogenetic instead
of functional distinctiveness, as proposed by Carmona et al.71. We also
highlight that our framework could be applied at very local scales
when intraspecific trait information is available, all the way through to
broad genus or family level traits when trait information is poor.While
we assessed functional vulnerability by considering mean trait values
for each species, we were unable to account for potential spatio-
temporal variation in trait values due to insufficient data. Traits can be
highly plastic and can vary in response to environmental (local adap-
tation) or ecological pressures (phenotypic plasticity) which in turn
partly determine the level of functional vulnerability within commu-
nities. Finally, we argue that trait-based assessments of ecosystem
vulnerability are important to help decision-makers and conservation
policy. However, we raise the critical issue that taxonomic biases in
trait data availability must be alleviated to avoid further conservation
biases orientated towards emblematic and well-studied groups.
Nonetheless, trait information is continuously growing72 for an
increasing number of clades, therefore encouraging the confident use
of trait-based integrative approaches for conservation perspectives.

The present framework provides only a relative assessment of the
functional vulnerability (i.e. relative to all virtual communities con-
structed from the assessed observed community). The relative
approach was chosen to prevent any trivial effect of species richness
on vulnerability assessment71,73. Indeed, without a relative approach, a
species-rich community would need more disturbances to collapse,
therefore leading to higher AUC values (from rarefaction curves) and
thus lower vulnerability values. The most undesired effect of a non-
relative approach would be that some species-poor communities
wouldbe trivially identified as themost vulnerableoneswhile theymay
not be, and that most management efforts would have to focus on
these communities74. For example, whilst species-poor temperate
assemblages often show higher functional diversity than several richer
tropical areas75, D’agata et al.76 and Parravicini et al.55 showed that
species-rich systems are not functionally buffered against trait loss.
Finally, although the spatio-temporal patterns generated by our fra-
mework are congruent with the few previous works that exist, none of
these works has proposed an integrated assessment of vulnerability
that takes a wide set of potential disturbances into account, therefore
preventing an accurate assessment of the robustness relative to vul-
nerability magnitude.

Preventing ecological impacts of specific disturbance regimes
is clearly insufficient, so considering both traits, reference condi-
tions and all potential disturbance regimes appears critical for
ecosystem health assessment. By minimizing the error risk in eco-
system health assessment inherent when integrating multiple dis-
turbances, our framework therefore appears as a reliable tool for
quantifying the effectiveness of management actions towards more
resilient communities and identifying areas where conservation is
and will be needed. Concretely, our framework provides an inte-
grative estimate of ecosystem functional vulnerability that could
provide key insight for achieving some Sustainable Development
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Goals targets77. The present framework will provide a critical tool
for decision-makers to help identify management priorities based
on the inherent vulnerability of ecosystem functions to dis-
turbances and better guide the expansion of the current network of
protected areas towards the next target of 30% coverage by 203078.
Additionally, our framework can contribute to better identify which
properties determine vulnerability to the myriad of threats biolo-
gical communities will face in an uncertain future.

Methods
Virtual communities framework
The first step of the framework is to generate amulti-dimensional trait
space that represents the functional similarity among all species79–81, to
characterize the functional structure of a given community. The sec-
ond step is to compute a distance matrix that quantifies the dissim-
ilarity between all pairs of species based on their trait combinations.
Here, we used the flexible Gower pairwise distance since it can handle
multiple data types (from continuous to categorical traits) and is less
sensitive to missing data than other distances81. We used the compu-
te_dist_matrix() function in the funrar R package82. Finally, we per-
formed a Principal Coordinates Analysis using the pcoa() function (ape
R package) to transform pairwise species distances into a multi-
dimensional space83. From this trait space of the observed community,
we generated virtual communities by creating scenarios crossing three
community properties: (i) distribution of functional redundancy in the
trait space, (ii) distribution of abundance across species and iii) rela-
tionship between species trait distinctiveness and species abundance
(Fig. 1). These virtual communities represented a panel of theoretical
extremes of trait configurations within communities. For each of the
three community properties, we used several modalities to char-
acterize extreme cases.

For functional redundancy, we used three modalities: homo-
geneous, heterogeneous and the distribution of the observed com-
munity (Fig. 1). We achieved homogeneous and heterogeneous
distributions by moving species within the trait space. To do so, we
placed a 20 × 20 regular grid cell on the observed two-dimensional
trait space (note that functional entities can be defined as multi-
dimensional cellswhen the trait space hasmore dimensions), the limits
of the grid being defined by the upper, lower, leftmost and rightmost
species in the trait space. We defined each cell as a ‘functional entity’
since the position in the trait space is a proxy of species roles in eco-
systems. We recommend considering only the two first PCoA axes as
considering more axes would scatter species into a very high number
of functional entities (i.e. grid resolution^number of selected PCoA
axes) resulting inmanymore cells with only few or only one species in
them. In extreme cases, every single functional entity would only hold
one species, reducing the interest of the framework, since it is not
likely to have somany functions and so few species per cell/functional
entity/function. For homogeneous redundancy, the number of species
per functional entity corresponds to the rounded (down) value of the
ratio between the total number of species in the community (i.e.,
species richness S) and the number of functional entities (N) for which
at least one species is present. For heterogeneous redundancy, we
placed only one species within each functional entity and the rest of
the species (S minus N) were all placed in the last functional entity
having over-redundancy43.

We used three modalities to represent the distribution of abun-
dances across species: homogeneous, heterogeneous, and the
observed distribution of abundances between species (Fig. 1). We
obtained the homogeneous distribution by attributing the same
abundance to all species. We obtained the heterogeneous distribution
of abundance by attributing only one individual to each species,
except for the last one to which the rest of the total abundance was
attributed. The total number of individuals in the virtual communities
always equaled the total abundance of the observed community.

To infer the relationship between species trait distinctiveness and
abundance, we selected two modalities: negative and positive (Fig. 1).
Trait distinctiveness Di is an index quantifying how functionally dis-
similar, on average, a given species is compared to all other species in
the regional pool42,82

Di =
∑S

j = 1,j≠idij

S� 1
ð1Þ

where S is the total number of species within the species pool, and dij is
the dissimilarity between species i and j. In this index trait dissimilarity
was standardized and consequently the distinctiveness ranged
between 0 and 1. A functionally distinct species, i.e., with a high value
of Di, corresponds to a species with original trait values compared to
the rest of the regional species pool. Distinctiveness values were
computed using the distinctiveness() function of the funrar R package.
To obtain negative or positive relationships between Di and species
abundance, we ordered Di values and species abundances to attribute
the highest abundances to the least or the most functionally distinct
species, respectively.

For a given community that we aim to quantify the functional
vulnerability, we simulated a series of disturbances on each of its
associated virtual communities and on the observed community itself.
At each disturbance, we applied a decrease in the abundance of ran-
domly selected species (we recommend to apply a decrease of 5% of
the total abundance of the community, the selected number of
impacted species only impacting time calculation) andwe recalculated
new abundances and then the number of functional entities (i.e., grid
cells) with at least one species still present. These simulated dis-
turbances were applied successively until there were no remaining
species in any functional entities (see rarefaction curves, Fig. 1b).
Finally, the functional vulnerability of a community varied between 0
and 100% and was computed as follows:

Functional vulnerability= 100 ×
AUCobs � AUCmin

AUCmax � AUCmin
ð2Þ

With AUCmax being the area under the rarefaction curve relative
to the least vulnerable virtual community (Fig. 1b), AUCmin the area
under the curve (AUC) relative to the most vulnerable virtual com-
munity (Fig. 1b), and AUCobs the area under the curve relative to the
observed community (Fig. 1b). A community for which functional
vulnerability is equal to 0% will be the community that will lose its
functions the slowest among all virtual communities (i.e., when the
curve of the observed real community is superimposed to the one of
the least vulnerable virtual community). By contrast, a community
with functional vulnerability equal to 100% can be considered as the
most vulnerable virtual community (i.e., when the curve of the
observed real community is superimposed to the one of the most
vulnerable virtual community). The entire statistical procedure can
be repeated several times to prevent any overinterpretation (see the
‘Sensitivity analyses’ section).

Adaptation of the algorithm to occurrence and habitat suit-
ability data
Because presence/absence information is more accessible in ecologi-
cal surveys, we developed a second algorithm to assess functional
vulnerability when species abundance data are not available. While the
statistical procedure was the same as the one developed in the
abundance-based approach, the rarefaction curve of the observed
community is here compared to the rarefaction curves of only two
virtual communities characterized by opposite functional redundancy
distributions (Supplementary Fig. 1) and species extinction were used
as disturbance. To account for datasets containing probabilities of
presence (or habitat suitability) usually computed from presence/
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absence data, we developed a third version of the algorithm. Dis-
turbances are here characterizedby a diminution of 0.05 oneach value
of habitat suitability (i.e. 5% of themaximumvalue 1). We applied three
case studies demonstrating the application of our algorithms to these
different forms of biodiversity data (i.e., abundance estimates, range
maps, and habitat suitability models).

Case study 1: Temporal vulnerability of North Sea fish
communities
We applied our quantitative framework to estimate the functional
vulnerability of the North Sea fish communities. We gathered abun-
dance data from the International Bottom Trawl Survey (IBTS), an
annual monitoring campaign that uses stratified random sampling to
surveyfish and invertebrate communities in 1° longitude ×0.5° latitude
cells covering the entire North Sea each year in winter (Fig. 2a). Every
year, at least two hauls were performed within each cell with a 3‐m
vertical opening bottom trawl (GOV trawl) with a 10‐mmmesh codend
during 30min at an average speed of 4 knots. In each survey, fishes
were identified and counted, and the resulting abundances were
standardized to numbers of individuals per hour of trawling. The fish
abundance data set included 168 taxa across 154 survey cells over 38
years (1983-2020), which represents a total of 13,433 hauls. Prior to
statistical analyses, species abundances (across all survey cells and
years) were log10(x + 1) transformed. We calculated the yearly mean
abundance of each species at the scale of the North Sea to obtain one
regional community per year from 1983 to 2020. Abundancedatawere
downloaded from the International Council for Exploitation of the Sea
data portal (ICES; https://datras.ices.dk/Data_products/Download/
Download_Data_public.aspx). For this case study, each simulated dis-
turbance corresponded to a decrease of 5% of the total abundance in
the observed community.

In combination with species abundance, and for each fish taxa,
eight traits encompassing life history, habitat use and trophic ecology—
chosen because they are documented to mediate species influences on
ecosystem functioning39,84—were collected from the PANGAEA traits
database:85 age atmaturity, asymptotic length, fecundity, offspring size,
habitat (water column position), trophic level, feeding mode, and
spawning type. We applied the abundance-based version of the algo-
rithm to estimate the functional vulnerability of the North Sea fish
community per year (https://figshare.com/s/9d3cd1d6f68a73dcea11).

Case study 2: Global distribution of marine mammals
vulnerability
Marine mammals range maps for 122 species were downloaded from
the IUCN website (http://www.iucnredlist.org). From these range
maps, we computed a presence/absence matrix by overlapping the
species’ range maps and counted the number of species that occured
in each 1° grid cell20. We collected fourteen traits covering five main
functions (feeding, habitat, reproduction, social behavior) usually
included in climate change vulnerability assessments (i.e., diet, fora-
gingdepth range, foraging fasting strategy, terrestriality, female sexual
maturity, weaning, gestation length, inter-litter interval, social group
size, adult mass body mass, sexual dimorphism, breeding location,
social behavior; see ref. 20 for further details). For this case study, we
applied the presence–absence version of our algorithm to estimate the
functional vulnerability of each marine mammal community at global
scale (https://figshare.com/s/5dcefa52f529ad34dc02).

Case study 3: Future changes in functional vulnerability of
reef fishes
In this last study case, we applied our algorithm to estimate how cli-
mate change could affect the functional vulnerability of global reef fish
communities in 60 years (2041–2070 compared to the period of
reference 1981–2015). To do so, we estimated the functional vulner-
ability of contemporary and future communities using species

distribution models of 2320 species. The species distribution model-
ing framework is detailed in the supplementary information. In brief,
we integrated > 12 million records of species presence from open
access databases (GBIF45, OBIS46) and local SCUBA transects (Reef Life
Survey47,48, SERF49, GASPAR50) (Supplementary Fig. 12). We extracted
the environmental conditions of species’ presences for 6 environ-
mental variables: sea surface temperature (SST; minimum and max-
imum), pH (minimum), sea surface salinity (SSS; minimum), net
primary productivity (NPP; mean), degree heating weeks (mean;
DHW86) and gravity of human impacts within 500 km2 (mean) and used
these variables as covariates. Although we used three metrics con-
taining information on sea surface temperature, SST-min and SST-max
were not correlated with degree heating weeks which is a measure of
heat stress rather than absolute temperature. We used generalized
linear models, generalized additive models, and random forests—
algorithms that cover a range of complexity relating the response
variable to covariates—to explain the relationship between species
presence and the local environmental conditions (see Supplementary
Methods). For each model, we checked that the Pearson correlation
between pairs of variables was <0.7, and if not, retained the variable
with the highest deviance explained and lowest error rate (depending
on the model algorithm, see below). We iterated this process until we
obtained a set of uncorrelated and maximally explanatory variables.
We used a target-group pseudo-absence approach87, whereby we
generate 5-folds of background data which reduces model biases
occurring in modeling presence-only data. We performed model eva-
luations using spatially blocked 5-fold out-of-sample predictions
retaining only models with a true-skill statistic > 0.3588. Our models
were well-calibrated having a mean sensitivity of 0.89 ±0.06, specifi-
city of 0.75 ± 0.09, TSS of 0.64 ±0.12, and an AUC statistic of
0.84 ±0.07 (Supplementary Fig. 13). Having well-performing models
for 2320 species, we next predicted the habitat suitability of species in
present-day environmental conditions and under environmental con-
ditions for 2041–2070 under SSP1-2.6 climate change scenario (mak-
ing separate suitability predictions based on projection outputs of
seven CMIP6, Coupled Model Intercomparison Project phase 6, Earth
systemmodels89). We then assembled (mean-averaged) all predictions
across all model algorithms, CMIP6 models and background data
iterations to avoid spurious model outputs from these sources of
uncertainty. We presented the SSP1-2.6 climate change scenario
(Shared Socioeconomic Pathways 1 combined with the Representative
Concentration Pathway 2.623) as it is inherent to the Paris Agreement
that aims to limit global warming to less than 2 °C51. We modified the
SST, SSS, pH, and NPP under future conditions but retained all other
variables at their current day values. We only included DHW as a static
variable formultiple reasons: (i) primarily to capture the effects of past
thermal disturbances on current distributions, (ii) most locations
globally will have degree heating weeks well beyond current values,
leading to a high level of extrapolation in predicting into future
scenarios90 (oppose to temperature which is only extrapolated in the
tropics). Note that DHWhad by far the lowest explanatory power of all
variables on average across all species such thatour results are likely to
be robust to excluding degree heating week projections (if tempera-
ture change is already included as SST-min and SST-max). Finally,
dispersal rates of species were constrained to 10 km per year, corre-
sponding approximately to observed realized latitudinal range shifts
of marine species91. All species maps were produced on a consistent
0.25° global grid that represents coastal and reef systems.

For this last case study, 12 traits were chosen: length at maturity,
age at maturity, maximum age, the asymptotic mass and length, the
Von Bertalanffy growth coefficient (from FISHLIFE52), mobility, period
of activity, schooling, vertical position, diet, and reef association (from
theGASPAR traits database50). We applied the suitability-based version
of the algorithm to estimate the functional vulnerability (https://
figshare.com/s/2c5fb050f2d2b9e01170).
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Sensitivity analyses
To test the potential influence of the number of disturbances series
on AUC value and, therefore, on the functional vulnerability index,
we performed sensitivity analyses (Supplementary Fig. 2). Applied
to the North Sea fish community (case study 1), this analysis
revealed that the relative standard deviation of AUC values
remained particularly low (always less than 2% by median), regard-
less of the number of disturbances. For a good compromise
between computation time and robustness, we applied 2 series of
500 disturbances on each community, which corresponds to 1.8% in
uncertainty (see Supplementary Fig. 2). A sensitivity analysis was
also carried out to test the influence of the grid resolution applied
to the species traits space. A 20 × 20 grid cell resolution was the
minimal resolution needed to get the most representative values of
functional vulnerability (Supplementary Fig. 3).

Several analyses were performed to quantify the effect of missing
trait data (i.e., Not Available, or NA in traits datasets) on final vulner-
ability values. To do so, the spatio-temporal distribution of NAs was
firstly investigated and vulnerability values were recomputed by
removing all species for which a NAwas observed for at least one trait.
We then compared thenewvulnerability values to thoseobtained from
the entire trait dataset (i.e., with all NAs). Additionally, we re-ran the
analyses considering implemented traits tables (i.e., with all NAs
replaced by estimated values), which were obtained using a random
Forest technique (missForest: MissForest R package; Stekhoven and
Bürhlmann92). For all case studies, vulnerability values presented a very
low sensitivity to the NA items present in traits datasets, as their
deletion and/or imputation did not substantially affect spatio-
temporal patterns of vulnerability (Supplementary Figs. 4–9).

To investigate the effect of trait deletion on vulnerability patterns,
the algorithm was applied for several trait combinations and by vary-
ing the total number of selected traits. For each number of selected
traits, we performed 20 iterations (i.e. 20 combinations of randomly
selected traits). We then compared final outputs to our reference
values coming from the analysis based on all traits. For all case studies,
vulnerability values present a very low sensitivity to trait deletion, as
spatio-temporal patterns of the vulnerability were similar to those
obtained from analyses using all traits (Supplementary Fig. 10).

All statistical analyses were performed under the R environment
(version 4.1.0; R Core Team, 2021).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Abundance data of the North Sea fish communities (case study1) are
available through https://datras.ices.dk/Data_products/Download/
Download_Data_public.aspx and at https://figshare.com/s/9d3cd-
1d6f68a73dcea11 (input table for analyses). Traits data of the North
Sea fish communities are available through the PANGAEA traits data-
base at: https://doi.org/10.1594/PANGAEA.900866. Presence/absence
and traits data for marine mammals (case study 2) are available at:
https://figshare.com/articles/Input_data_for_Global_vulnerability_of_
marine_mammals_to_global_warming_/11323304. All fish species
occurrences used for SDM models (GASPAR, SERF, RLS, OBIS & OBIS)
and associated forecasted habitat suitability data (case study 3) are
available at [https://figshare.com/s/2c5fb050f2d2b9e01170]. Traits
data used for case study 3 (GASPAR & FISHLIFE) are available at:
[https://figshare.com/s/2c5fb050f2d2b9e01170]. Projection of envir-
onmental variables from the CMIP6 Earth system model are available
through https://esgf-node.llnl.gov/projects/cmip6/. Source data are
provided with this paper: [https://doi.org/10.6084/m9.figshare.
20099219]. Background map of Fig. 2a was obtained through the
maps r package (v.3.3.0). Backgroundmap shapefiles for Figs. 3a, b, 4a,

c are available on theNOAAwebsite: https://www.ngdc.noaa.gov/mgg/
shorelines/data/gshhg/latest/.

Code availability
Codes to run vulnerability analyses are available at:

Case study 1: https://figshare.com/s/9d3cd1d6f68a73dcea11
Case study 2: https://figshare.com/s/5dcefa52f529ad34dc02
Case study 3: https://figshare.com/s/2c5fb050f2d2b9e01170
The R code used to generate figures is available in the figshare

repository: [https://doi.org/10.6084/m9.figshare.20099219].
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