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Expected contraction 
in the distribution ranges 
of demersal fish of high economic 
value in the Mediterranean 
and European Seas
Emna Ben Lamine 1,2*, Alexandre Schickele1,3, Eric Goberville4, Gregory Beaugrand5, 
Denis Allemand2,6 & Virginie Raybaud1,2

Fisheries and aquaculture are facing many challenges worldwide, especially adaptation to climate 
change. Investigating future distributional changes of largely harvested species has become 
an extensive research topic, aiming at providing realistic ecological scenarios on which to build 
management measures, to help fisheries and aquaculture adapt to future climate-driven changes. 
Here, we use an ensemble modelling approach to estimate the contemporary and future distributional 
range of eight demersal fish species of high economic value in the Mediterranean Sea. We identify 
a cardinal influence of (i) temperature on fish species distributions, all being shaped by yearly 
mean and seasonality in sea bottom temperature, and (ii) the primary production. By assessing the 
effects of changes in future climate conditions under three Representative Concentration Pathway 
(RCP2.6, RCP4.5 and RCP8.5) scenarios over three periods of the twenty-first century, we project a 
contraction of the distributional range of the eight species in the Mediterranean Sea, with a general 
biogeographical displacement towards the North European coasts. This will help anticipating 
changes in future catch potential in a warmer world, which is expected to have substantial economic 
consequences for Mediterranean fisheries.

Our oceans are getting warmer, less oxygenated and more  acid1, altering the growth, survival, and produc-
tivity rates of marine fish organisms, leading to distributional  shifts2, ensuing changes in potential fish catch 
availability to  fisheries3. This sensitivity of species to changing environmental conditions is triggering complex 
ecological, conservation and management  challenges4, considering not only the direct response of individual 
and populations to physical, chemical and climate conditions, but also indirect responses through alterations in 
species interactions, community changes, and their consequences at the ecosystem and socio-economic  levels5. 
Projecting the expected response of commercial fish species to climate change is therefore crucial for ensuring 
food security and sustainable resource  management6, especially for countries relying on fisheries protein  supply7.

The Mediterranean Sea, the largest semi-enclosed sea in the world, is a biodiversity hotspot with a high 
endemism rate (about 20%8), and a receptacle for exotic  species9. Depending on the phylum considered, marine 
organisms in the Mediterranean Sea represent 4–18% of the world marine  biodiversity10. However, the Mediter-
ranean Sea is under considerable threat from the combined effects of anthropogenic pressures (e.g., pollution, 
overfishing) and rapid warming, sea surface temperatures increasing two to three times faster than the global 
 ocean11. In contrast and in line with global trends, fish farming has become as productive as wild fishing in the 
Mediterranean Sea over the recent decades, both quantitatively (in landing) and commercially (in revenue)12.

Although based on simplifying assumptions—such as species niche  conservatism13 or the equilibrium 
 hypothesis14—Species Distribution Models (SDMs) are popular statistical tools built by correlatively linking 
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observed species distributions and environmental  data15 to assess the past, present or future spatial distribution 
of a species of interest, for conservation, fisheries, or aquaculture management  purposes16,17. When combined 
with a multi-GCMs (General Circulation Models) and multi-IPCC (Intergovernmental Panel on Climate Change) 
emissions scenarios approach, ensemble modelling computed from a large range of modelling algorithms (multi-
SDMs) is the best-practice needed in biodiversity assessments to capture (i) the variability related to the ecological 
niche estimation and (ii) uncertainties from future climate  projections18.

Here, we focus on demersal fish species of high economic value i.e., the eight commercial fish species with 
the highest total economic value of landings in the Mediterranean and the Black Sea, according to the Food 
and Agriculture  Organization12. While most of the previous studies on these species investigated distributional 
changes at a local scale—or at the scale of a scientific  survey8—we aimed to address current knowledge gaps in 
both their present and future spatial distributions over the whole Mediterranean and European Seas. Considering 
 that19 recently investigated changes in the distribution of Mediterranean small pelagic fish, we focused here on 
fish species representing more than 32% of total Mediterranean landing  value12: the surmullet Mullus surmuletus, 
the red mullet Mullus barbatus, the European hake Merluccius merluccius, the common sole Solea solea, the com-
mon pandora Pagellus erythrinus, and the anglerfish Lophius spp. (Lophius budegassa and Lophius piscatorius). 
We processed the two anglerfish species as one group: both species are extremely similar  morphologically20, 
leading to difficulties in splitting in fisheries  statistics8. We also included the gilthead seabream Sparus aurata 
and the European seabass Dicentrarchus labrax that represent 33% and 27% of the total Mediterranean aqua-
culture,  respectively12,21.

For the eight species, we examined long-term and large-scale distributional range projections under three 
RCP scenarios—RCP2.6, RCP4.5 and RCP8.5—using an ensemble modelling  approach9,22. We then evaluated 
predicted changes in species’ environmental suitability at a manageable level, i.e., for each Mediterranean Exclu-
sive Economic Zone. By estimating changes in future environmental suitability per EEZ by the end of the century, 
we stress that SDMs provide a relevant and reliable basis for ensuring effective fisheries management and for 
supporting conservation plan in the most exposed Mediterranean  regions23.

Results
Species distributions models and environmental variables. Based on both Continuous Boyce Index 
(CBI) values and the examination of species response curves (i.e. ecological significancy and low inter-algorithm 
divergence; supplementary material 1 & 2), we retained the algorithms that reproduce the best species distribu-
tions (Table 1): for each ensemble model and fish species, the minimum number of models retained was 3 (for 
the European hake) and the higher was 4 (e.g., for the remaining species). Whatever the species, the MARS and 
NPPEN algorithms were always retained (Supplementary material 1). Sea Surface Temperature (SST), seasonal 
(SSTr) and monthly (SSTvar) variations, and salinity (SSS), did not contribute substantially to the construction 
of our models. The three most contributing parameters, independently of the algorithm, were (i) mean Sea 
Bottom Temperature (SBT), (ii) mean annual Sea Bottom Temperature range (SBTr; seasonal variability), and 
(iii) primary production (Log_PP). Despite their high pairwise correlation (r = 0.80; Supplementary Material 
3), seasonal variability in Sea Bottom Temperature (SBTr) and mean monthly Sea Bottom Temperature vari-
ance (SBTvar)—a proxy of short-term climatic variability—have dissimilar ecological influences. Models built 
using SBTr were more likely to reproduce observed species geographical distributions. We then used the models 
retained by the numerical procedure—in combination with the most contributing variables—to reproduce the 
contemporary geographical distributions of each species (Fig. 1).

Contemporary environmental suitability. The contemporary spatial range (1990–2017) of all species 
were reproduced well by our models (Fig. 1, 2A versus Fig. 1, 2B), except in the Black Sea and along the Mau-
ritanian, Moroccan and Algerian coasts, where predicted Environmental Suitability Index (ESI) values varied 
between 0.4 and 0.8, while no occurrence was reported. Such discrepancies may result from species under-
sampling in Northern African countries, from local factors—such as the way in which biotic interactions can 
shape realized assemblages of species despite suitable environmental conditions—and/or from possible limiting 
environmental drivers, such as oxygen, nutrients or pH, not included in our simulations because of data avail-
ability at the time of the analysis and/or at a macroecological scale.

The highest ESI values (> 0.8; Figs. 1B and 2B) over the period 1990–2017 were modelled in the Mediter-
ranean, Celtic and North Seas, but for common sole (ESI between 0.2 and 0.6 in the Mediterranean Sea) and 
common pandora (ESI < 0.2 in the North Sea). According to our models, only two species had suitable habitat 
up to Scandinavian coasts: anglerfishes and European hake. For all species, ESIs ranged from 0.4 to 0.8 in the 
Black Sea and the Moroccan Atlantic coasts and were lower in the Baltic Sea and the Mauritanian Sea (ESI < 0.4).

For all species, our projections showed medium to low SD in the Mediterranean Sea, with values ranging 
from 0.1 to 0.5 (Figs. 1, 2C). This suggests an overall spatial convergence of our simulations based on a multi-
SDM framework. Our models showed higher (~ 0.5) standard deviation (SD) values in geographical cells that 
correspond to intermediate or low ESI values, suggesting a lower convergence among algorithms at the edge of 
spatial range (e.g., Black Sea, Moroccan Atlantic Coasts, and the Baltic Sea) due to the variability in environ-
mental conditions.

Future environmental suitability. For each of the eight studied species, distributional ranges under the 
scenario Representative Concentration Pathway (RCP) 8.5 conditions for the end of the century (2090–2099), 
and both their standard deviations and differences between contemporary and future distributions, are detailed 
in Figs. 3, 4 (B, C and A, respectively). Other scenarios and periods are provided in Supplementary Material 4.
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For all species, a decrease in ESI values between the contemporary period (1990–2017) and the last decade 
of the century (2090–2099) was projected in the Mediterranean and the Black Seas, as well as along the Mauri-
tanian coasts (Fig. 3A and 4A and Supplementary Material 4). This predicted decrease ranged from − 0.2 to − 0.4 
(RCP2.6) and from − 0.2 to − 0.6 (RCP4.5 and 8.5). An increase in ESI values (+ 0.2 under RCP4.5 and + 0.6 under 
RCP8.5) was projected in the North Sea for European seabass, red mullet, surmullet and common pandora. For 
the other species, ESIs are likely to decrease between − 0.2 (RCP4.5) and − 0.4 (RCP8.5) in the North Sea. In the 
Baltic Sea, all species ESI are likely to increase by 0.2 (RCP4.5) and by 0.2 to 0.6 (RCP8.5). The biogeographical 
peculiarities of the Baltic Sea—with a strong mixture of marine, brackish, and freshwater  conditions24—impel 
us to interpret these projections with caution. For the end of the century and RCP8.5 (Fig. 2B), very low (< 0.4) 
ESI values were projected in the Mediterranean Sea for all species, except for red mullet and common pandora 
for which ESIs range from 0.4 to 0.6 by 2090–2099. Predicted ESIs were high (0.6 to 1) in the Celtic and North 
Seas for all species, suggesting a northward species distributional range shift. While projected ESIs for common 
pandora ranged between 0.5 and 0.7 in the Celtic Sea, values did not exceed 0.4 in the North Sea and at higher 
latitudes, suggesting an absence of highly suitable conditions in these regions. Our results show a clear conver-
gence among projections in the Mediterranean, Celtic and North Seas, with a low to medium SD (between 0.3 
and 0.5) for all species, but red mullet and common pandora (SD > 0.5; Figs. 3, 4C). For all future time periods, 
the loss in species spatial coverage clearly depend on the level of warming (Table 2). The projected variation of the 
spatial coverage in comparison to the contemporary period that we calculated for each species showed a decline 
ranging from − 16.09% to − 53.01%. European hake is the least impacted species in terms of predicted spatial 
extent (− 21.76% under RCP8.5) as opposed to common pandora (− 53%). Anglerfishes, gilthead seabream and 
common pandora will lose more than 30% of their potential spatial coverage by the end of the century under 
all scenarios (Table 2).

Climatic range shifts in exclusive economic zones (EEZs). Anglerfish, European hake, common sole 
and European sea bass—species of major importance in the European Atlantic and the Mediterranean fisher-
ies, especially along the coasts of the United Kingdom and Norway—were mostly captured along the European 
coasts (Fig. 5A), i.e., in EEZs characterized by high contemporary (1990–2017) and future ESI values, even for 
a pronounced warming (Fig. 5; supplementary material 5). For these four species and by the end of the century, 
we projected a decrease in ESI values in the Mediterranean EEZs (from − 0.2 to − 0.4 under scenarios RCP2.6 
and RCP8.5, respectively; Fig. 5; supplementary material 5).

Table 1.  Environmental variables and SDM retained after application of our modelling procedure. SBT 
Sea Bottom Temperature, SBTr annual range of Sea Bottom Temperature, log_PP log-transformed Primary 
Production, GAM Generalised Additive Model, ANN Artificial Neural Network, FDA Flexible Discriminant 
Analysis, MARS Multiple Adaptive Regression Splines, NPPEN Non-Parametric Probabilistic Ecological Niche 
model. *The selected SDMs had a Continuous Boyce Index CBI > 0.5 and satisfying response curves.

Species Variables and algorithm selected

Anglerfishes Lophius spp.

Variables SBT, SBTr, Log_PP

Algorithms* ANN, FDA, MARS, NPPEN

CBI (mean) 0.816

Surmullet Mullus surmuletus

Variables SBT, SBTr, Log_PP

Algorithms ANN, GAM, MARS, NPPEN

CBI (mean) 0.868

Red mullet Mullus barbatus

Variables SBT, SBTr, Log_PP

Algorithms GAM, FDA, MARS, NPPEN

CBI (mean) 0.856

European hake Merluccius merluccius

Variables SBT, SBTr, Log_PP

Algorithms GAM, MARS, NPPEN

CBI (mean) 0.879

Common sole Solea solea

Variables SBT, SBTr, Log_PP

Algorithms ANN, FDA, MARS, NPPEN

CBI (mean) 0.835

Common pandora
Pagellus erythrinus

Variables SBT, SBTr, Log_PP

Algorithms GAM, FDA, MARS, NPPEN

CBI (mean) 0.827

European seabass
Dicentrarchus labrax

Variables SBT, SBTr, Log_PP

Algorithms ANN, MARS, NPPEN

CBI (mean) 0.822

Gilthead seabream
Sparus aurata

Variables SBT, SBTr, Log_PP

Algorithms ANN, FDA, MARS, NPPEN

CBI (mean) 0.823
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Gilthead seabream, surmullet, red mullet and common pandora are mainly harvested in the Mediterranean 
countries where high ESI values were observed over the period 1990–2017. While the ESI values for these four 
species are expected to decrease in the Mediterranean EEZs by the end of the century for all future periods (Fig. 5; 
supplementary material 5), our simulations reveal that future changes will depend on the level of warming, the 
decline being less intense under RCP2.6. We predicted a stability—or even an increase—in the EEZs ESI of the 
United Kingdom and Norway: a potential reallocation of fish stocks between fishery management zones is likely 
to occur in the coming decades, under all climate scenarios, under assumption of uniform spatial distribution 
of catches in EEZs.

Discussion
Temperature and primary production shaping species spatial distribution. Based on the concept 
of the ecological niche sensu Hutchinson (1978), our models rely on the ecological requirements of each species, 
mean Sea Bottom Temperature (SBT), SBT range -a proxy for temperature seasonality—and primary production 
being the variables that best reproduced the contemporary spatial distribution of Species in the Mediterranean 
and European Seas (Atlantic coasts of Spain, France and England). Temperature is a key factor for the life cycle of 
all aquatic animals, particularly for ectotherms, and especially for species that have a pelagic larval/recruitment 
 phases25. Our results show that the spatial distribution of the studied species in the Mediterranean and European 
Seas (Atlantic coasts of Spain, France and England) is strongly explained by variability in seasonal SBT. Coastal 
Mediterranean fish abundance, including the eight species we considered here, can be influenced by tempera-
ture seasonality in  coastal26 and deep  zones27. The effects of temperature variations on species depend upon the 

Figure 1.  (A) Contemporary (1990–2017) observed distribution, (B) modelled environmental suitability index 
(from 0 to 1) and (C) associated standard deviation, based on the set of retained algorithms and cross-validation 
runs performed for anglerfish, European hake, common sole and the European seabass.
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timing of life cycle, the intensity and duration of exposure, as well as the speed at which changes in temperature 
occur. Acute short-term variations of temperature might have drastic, often detrimental, effects on fish physiol-
ogy, whereas long-term gradual variations can lead to potential acclimation, through variations in metabolic 
and feeding  behavior28. Adaptations are also likely to occur especially on the long-term, including evolutionary 
responses, acclimation or changes in movement or  behavior3. At the individual level, genetic adaptation was an 
observed  response3. Unless adaptation or acclimation can track the rate of warming, it is likely that stocks will 
be affected, both directly through individual physiological tolerances, and indirectly through climate-related 
changes to the abundance of prey, predators, competitors and  pathogens29.

Primary production sustains the whole marine food chain and provides most of the endosomatic energy 
needed for heterotrophic species: previous studies have shown that 8% of the worldwide aquatic primary produc-
tion (but ~ 25% for shelf  ecosystems30) is required to sustain fisheries at the global  scale31. Although obtained from 
estimations integrated within the upper water column (0–30 m depth), our simulations show that the inclusion 
of a proxy for food concentration is important to assess the distributional range of species. While the eight spe-
cies we modelled are carnivores with trophic levels ranging from 3.2  (surmullet32) to 4.4 (European  hake33), the 
indirect relationship between primary production and fish stocks has already been thoroughly  documented34. The 
relationship between primary production and upper trophic levels is also strongly influenced by factors related 
to the trophic processes that define the movement of endosomatic energy along the food chain, but also by other 
physical factors such as chlorophyll  a35, oxygen concentration, or other oceanographic  variables2. Incorporat-
ing trophodynamic in species distribution models such as the direct/indirect biotic and/or trophic interactions 
(e.g., prey/predator relationships)—is needed to infer their relative contribution to community structure and 

Figure 2.  (A) Contemporary (1990–2017) observed distribution, (B) modelled environmental suitability index 
(from 0 to 1) and (C) associated standard deviation, based on the set of retained algorithms and cross-validation 
runs performed for gilthead seabream, surmullet, red mullet and common pandora.
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dynamics, or to quantify the regulating effects of upper (or lower) trophic levels by bottom-up (or top-down) 
 forces36. However, their integration in modelling frameworks is still a methodological  challenge8.

Northward species range shift distribution. Climate-induced changes in the distribution of fish com-
munities have been described in several marine  ecosystems37. Our simulations show a future range shift, from 
the Mediterranean Sea to the North European coasts, in the distribution of all species for all levels of warming. 
In the Mediterranean Sea, a high decline in the ESI of the species is expected by the end of the century under 
a pronounced warming (RCP8.5), while a potential temperature-induced limitation is expected to slow down 
the decline rate in ESI by at least 20% under scenarios RCP2.6 or RCP4.5. The predicted decline in ESI in the 
Mediterranean Sea is likely to be accompanied by an increase in ESI along the North European coasts. From 
a fishery management point of view, assuming that spatial distribution of catches is uniform in each EEZ, our 
results reveal that the Mediterranean countries, catches of all species could considerably decrease by the end of 
the century as climate warms (up to + 3.2 °C under scenario RCP 8.5) as revealed by the decrease in ESI of spe-
cies; North European countries will benefit of stable or increasing species’ catch. This is in agreement with find-
ings  of38 where common sole, red mullet, European hake and European seabass distribution will be negatively 
affected by rising temperature. The magnitude of range shifts in species distributions in the Mediterranean Sea 
may deeply affect ecosystem functioning and economic activities related to  fishing39. Similarly, the spatial range 

Figure 3.  (A) Differences in Environmental Suitability Index (ESI) values calculated between the current 
period (1990–2017) and the decade 2090–2099, under scenario RCP8.5. (B) Modelled ESI for anglerfish, 
European hake, common sole, European seabass, over the period 2090–2099, under scenario RCP8.5. (C) 
Standard deviation based on 50 simulations per algorithm selected in the ensemble model (i.e., 10 cross-
validation runs × 5 general circulation models per algorithm).
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of all species is expected to shrink whatever the scenario and the future time period. Fisheries management 
adaptations to climate change should urgently consider these predictions, as the rapid decrease in covered area 
(period 2030–2039, e.g., for the anglerfishes, the gilthead seabream or the European seabass), may induce a rapid 
and non-reversible change in fisheries resources. Mid- and long-term projections highlight that the loss in the 
spatial extent of species is higher when the warming becomes severe (RCP8.5 versus RCP2.6/RCP4.5). This is 
in phase  with5 which quantify the benefits to marine fisheries—and related economic  outcomes40—of limiting 
global warming to 1.5 °C above preindustrial level.

Fisheries and aquaculture management implications. Here, we highlight the importance of simulat-
ing long-term changes in fisheries under several climate change scenarios, especially in the context of uncertain 
future outcomes for food and nutritional  security41. Rising temperature, pollution and overfishing are weakening 
the resilience of fisheries and fish stocks to climatic  stressors38. Overfishing and climate change can be considered 
as the “biggest threats” that fisheries are  facing42. Overfishing decreases fish stocks resilience to climate change 
by disturbing the food web structure and causing habitats  destruction42. Considering the combined threats on 
fisheries, developing and implementing fisheries management climate-adaptive strategies that can help address 

Figure 4.  (A) Differences in Environmental Suitability Index (ESI) values calculated between the current 
period (1990–2017) and the decade 2090–2099, under scenario RCP8.5. (B) Modelled ESI for gilthead 
seabream, surmullet, red mullet, common pandora over the period 2090–2099, under scenario RCP8.5. (C) 
Standard deviation based on 50 simulations per algorithm selected in the ensemble model (i.e., 10 cross-
validation runs × 5 general circulation models per algorithm).
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shifts in species distribution (under spatial uniformity assumptions) can be of interest to help adapting to climate 
change, in particular through change in commercially-targeted species, spatial reallocation of fishing effort, 
improvement of fishing techniques and engines, or the implementation of fishing rights based on historical stock 
 distribution43. Transformative adaptation of current fisheries and aquaculture, as well as their management, is 
urgently needed, especially for the most vulnerable countries such as northern African countries where socio-
economic exposure, vulnerability and risk to climate change are high in comparison to European  countries6. 
While aquaculture has been suggested as an alternative to the dramatic decline in Mediterranean and Black Sea 
 fisheries44, our simulations detect that the two most farmed Mediterranean fish—i.e., the European seabass and 
the gilthead seabream—may also be impacted by warming by the mid/end of the twenty-first century, with a 
reduction in the potential for coastal aquaculture suitable sites. Assessment of the impact of climate change on 
Mediterranean coastal aquaculture is yet to be developed, however, to consider a large panel of  abiotic45 and 
biotic factors including the risk of increasing disease  outbreaks46, as well as regional economic peculiarities such 
as heterogeneity in national economies, national food self-sufficiency and human habits for foods.

Because of the high sensitivity and exposure of Mediterranean fisheries to climate  change6, coordinated 
actions and mitigation activities must be undertaken to stem the repercussions of the ongoing decline in marine 
resources. As a way of adaptation, changes to the food commodity market and/or its diversification, through 
the commercialization of lower economic value and/or non-indigenous fish species must be  considered47: in 
the eastern and central Mediterranean Sea, respectively, marbled rabbitfish Siganus rivulatus and the blue crab 
Callinectes sapidus are now commercially  exploited48.

To conclude, our study predicted the potential decline in demersal fish species distribution in the Mediter-
ranean Sea and their potential reallocation in the North European coasts, under different RCP scenarios and 
three time period. Whatever the future warming conditions in the upcoming decades, an adaptation of the 
fisheries and aquaculture strategies is urgently needed, for all countries, and mostly, the most vulnerable ones. 
We therefore support further initiatives aiming to predict the ecological and economic consequences of climate 
change on the fisheries and aquaculture, at the Mediterranean and European Seas scale.

Methods
Input data. Occurrence data collection. For the eight species, we compiled contemporary occurrence data 
from three available public databases: The Ocean Biogeographic Information System (OBIS, http:// www. iobis. 
org), the Global Biodiversity Information Facility (GBIF, https:// www. gbif. org) and Fishbase (http:// www. fishb 
ase. org). Occurrence data may be collected from various sources (e.g., scientific surveys, on-board observers, 
geo-referenced fisheries catch or diving observations), independently of the sampling protocol (e.g. gear, mesh 
size). However, because such data are not mainly based on scientific surveys (e.g. MEDITS, ICES trawling sur-
veys), they may suffer from spatial heterogenous sampling effort (e.g. due to accessibility or survey  equipment49), 
potentially leading to a risk of spatial niche truncation (i.e., when only a subset of the environmental conditions 
experienced by a species across its full range is  characterized18). To alleviate this risk and build the most up-to-
date datasets, (i) we also retrieved all available species observations from the literature (Supplementary Material 
1), especially in limiting environmental conditions (i.e. at the edge of the environmental niche) and (ii) evaluated 
the species response curves to detect any niche truncation (see “Species distributions models and environmental 
variables” and “Ensemble model selection”). The resulting occurrence data ranged from 1950 to 2017. Recent 
records (i.e., since 1990) represented 72.82 ± 6.12% of the total species occurrences. Past records (i.e., before 
1990) represented 10.79 ± 3.7% of the total species occurrences. Undated—and therefore discarded—species oc-
currences represented 16.37 ± 4.58%) of the total species occurrences. To avoid a biased estimation of the niche 
due to low quality occurrence  records50, past or undated occurrence were only kept along the distribution edge 
when confirmed by recent records from the literature (Supplementary Material 6).

For each species, we preprocessed the data and improved the quality of the eight occurrence record datasets 
by removing (i) unreliable observations—such as preserved specimen- and incorrect taxonomic identifications, 
(ii) duplicate occurrences and (iii) locational errors, such as geographical outliers. The resulting number of 

Table 2.  Projected loss in the geographical distribution areas of the eight fish species, expressed in percentage 
in comparison with the reference period 1990–2017, under RCP scenarios 2.6, 4.5 and 8.5, and for three future 
periods: 2030–2039, 2050–2059 and 2090–2099. Low (high) values are in yellow (red).

Species 

Loss in the area (%) 

Covered area (in km²) for the 
reference period 1990-2017 

Period 2030-2039 Period 2050-2059 Period 2090-2099 

RCP2.6 RCP 4.5 RCP8.5 RCP2.6 RCP 4.5 RCP8.5 RCP2.6 RCP 4.5 RCP8.5 

Anglerfishes 385 727 -26.31 -27.43 -28.68 -29.62 -30.64 -32.04 -34.43 -35.11 -35.83 
European hake 396 069 -16.09 -17 -17.52 -16.89 -19.4 -19.37 -19.91 -20.99 -21.76 
Common sole 238 490 -28.39 -28.71 -32.07 -28.97 -28.98 -31.57 -28.62 -31.2 -33.06 
European seabass 209 877 -29.79 -30,8 -33,12 -30.92 -32.88 -33.51 -29.26 -35.78 -39.52 
Gilthead seabream 220 646 -31.63 -32.36 -35.7 -36.02 -38.35 -38.92 -36.98 -41.91 -42.32 
Surmullet 283 178 -27.34 -31.84 -31.93 -28.81 -30.09 -31.65 -27.68 -27.71 -31.71 
Red mullet 283 051 -24.33 -24.8 -28.54 -23.91 -27.41 -26.35 -20.71 -24.34 -31.01 
Common pandora 225 172 -26.85 -38.79 -47.64 -44.61 -47.53 -51.3 -41.77 -46.48 -53.01 

http://www.iobis.org
http://www.iobis.org
https://www.gbif.org
http://www.fishbase.org
http://www.fishbase.org
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observations ranged from 1211 for gilthead seabream to 15,827 for common sole. For each species, we aggre-
gated occurrences on a 0.1° × 0.1° spatial grid (from 70°N to 70°S and from 180°E to 180°W) that corresponds 

Figure 5.  (A) Contemporary (1990–2017) mean catch (in log) for each studied species in the Mediterranean 
Sea. (B–D) Projected changes in the Environmental Suitability Index (ESI) per Exclusive Economic Zone (EEZ) 
for all species, for the end of the century (2090–2099) under RCP2.6 (B; bottom left), RCP4.5 (C; top right) 
and RCP8.5 (D; bottom right) scenarios. Bar plots for ESI are scaled from 0 to 1, the full black line corresponds 
to the ESI values for the current period (1990–2017) and colored bar correspond to the ESI values projected 
for 2090–2099. Countries with catches under 1000 tons per year are not shown. Countries are: MAR Morocco, 
DZA Algeria, TUN Tunisia, LBY Libya, EGY Egypt, LBN Lebanon, ISR Israel, TUR  Turkey, GRC  Greece, 
MNE Montenegro, HRV Croatia, ITA Italy, FRA France, ESP Spain, UK United Kingdom, BEL Belgium, DEU 
Germany, IRL Ireland, DNK Denmark, SWE Sweden, NLD Netherlands, NOR Norway.
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to the resolution of the preprocessed environmental variables (see “ Environmental filter and pseudo-absence 
selection”).

Environmental variable pre‑treatment. To model the contemporary (1990–2017) spatial distribution of species, 
we considered Sea Bottom Temperature (SBT), Sea Surface Temperature (SST), salinity (SSS), primary produc-
tion (PP), bathymetry and distance-to-coast (Table 3). For all parameters, except bathymetry and distance-to-
coast, we calculated a yearly averaged climatology for the period 1990–2017. Contemporary environmental vari-
ables were then bilinearly interpolated at a 0.1° × 0.1° spatial resolution in the geographical domain ranging from 
70°N to 70°S and from 180°E to 180°W to match the spatial resolution and extent of occurrence data.

To prevent possible biases associated with multicollinearity and unnecessary model  complexity14, the combi-
nation of environmental variables tested by the model considered a set of uncorrelated factors (i.e., selecting only 
one variable among each set of intercorrelated factor; Pearson’s r > 0.7). To avoid model over-parametrization, 
bathymetry and distance-to-coast, were tested in a hierarchical filtering  approach19. First, using information 
from Fishbase (http:// www. fishb ase. org), we applied a bathymetry filter, which corresponds to the observed 
depth range of each species from 150 m (e.g., for the European seabass) to 1000 m (e.g., for the anglerfish). The 
absence of coastal shelf in the Mediterranean may prevent identifying suitable environment for the species, so 
we also considered a 50 km distance-to-coast filter to the geographical cells outside the observed depth range of 
species to allow including near-coastal areas as suitable environment.

Description of the modelling framework. Modelling algorithms. The contemporary (1990–2017) dis-
tributions of the eight species were estimated by means of the Environmental Suitability Index (ESI), a spatial-
ized index ranging from 0 to 1 that reflects suitable environmental conditions, i.e., where a species can live and 
reproduce. We performed the ensemble modelling framework designed  by9,19,22 in order to (i) reduce sampling 
biases (e.g. the use of the convex hull method to generate pseudo-absences), (ii) improve model evaluation, and 
(iii) quantify methodological uncertainties by incorporating a large range of techniques (using a multi-GCMs 
and multi-scenarios approach, we also considered uncertainties about future climate  conditions51). By using an 
ensemble modelling procedure over a single algorithm, our framework quantifies the intra- and inter-algorithm 
uncertainty in the response of species to environmental variables and the potential consequences on both con-
temporary and future  projections52. Our procedure identifies and retains the statistical algorithms that best 
reproduce observed spatial distributions among the following  methods53: (i) the Non-Parametric Probabilistic 
Ecological Niche model (NPPEN), (ii) the Generalized Linear Model (GLM), (iii) the Generalized Additive 
Model (GAM), (iv) the Generalized Boosting Model (GBM), (v) the Artificial Neural Network (ANN), (vi) the 
Flexible Discriminant Analysis (FDA), (vii) the Multiple Adaptive Regression Splines (MARS) and (viii) the 
Random Forest (RF). Each algorithm was calibrated using the default parameters available in Biomod2, that 
correspond to the traditional parameters adapted for presence/pseudo-absence data (e.g. binomial distribu-
tion family (link = ‘logit’) for regression-based algorithms;  see53 for details). For each algorithm and species, we 
performed a 10-time random cross-validation run, training each algorithm on 70% of the data and keeping the 
remaining 30% for evaluation-only.

Table 3.  Contemporary and future (from General Circulation Models; GCMs) environmental variables 
used in this study. Sea Surface Temperature corresponds to the 30 m surface layer temperature. Sea 
Bottom Temperature corresponds to the 30 m bottom vertical layer down to a maximum depth of 500 m. 
*Environmental variable kept constant in time.

Environmental variable Contemporary Future

*Bathymetry: spatial seafloor depth (m) Global seafloor topography (Smith and Sandwell 1997)

*Distance to coast: distance to the nearest coast (km) NASA Goddard Space Flight Center (2009) (https:// ocean 
color. gsfc. nasa. gov/ docs/ distf romco ast/)

*SSS: sea surface salinity Levitus’ climatology (Levitus 2011) completed with ICES 
data (http:// www. ices. dk/)

SBT: mean annual sea bottom temperature (°C)

CORA : Coriolis Ocean database for ReAnalysis (Cabanes 
et al. 2013) IPSL-CM5A-LR (Dufresne et al. 2013, Hourdin et al. 

2013),
MPI-ESM-LR (Stevens et al. 2013, Giorgetta et al. 2013),
CNRM-CM5 (Voldoire et al. 2013),
HadGEM2-ES (Jones et al. 2011) and
GISS-E2-R (Schmidt et al. 2014) models

SBTr: mean annual sea bottom temperature range (°C)

SBTvar: mean monthly sea bottom temperature variance 
(°C)

SST: mean annual sea surface temperature (°C)

AVHRR Very High Resolution Radiometer (Casey et al. 
2010)

SSTr: mean annual sea surface temperature range (°C)

SSTvar: mean monthly sea surface temperature variance 
(°C)

PP: Primary Production (mol C.  m−2.s−1). Averaged from 
five general circulation models (IPSL, MPI, CNRM, 
HadGEM and GISS

IPSL-CM5A-LR (Dufresne et al. 2013, Hourdin et al. 2013),
MPI-ESM-LR (Stevens et al. 2013, Giorgetta et al. 2013),
CNRM-CM5 (Voldoire et al. 2013),
HadGEM2-ES (Jones et al. 2011) and
GISS-E2-R (Schmidt et al. 2014) models

http://www.fishbase.org
https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/
https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/
http://www.ices.dk/
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Environmental filter and pseudo‑absence selection. Spatially biased sampling effort in presence-only species 
datasets—i.e., when data sources are not comprehensive across the study area—can induce a bias in the envi-
ronmental space in which the spatial distribution of species is  modelled54. To consider this potential effect for 
each species, we used an environmental filter to keep only a single observation among a group of occurrences 
characterized by a similar combination of environmental values (Supplementary Material 3), as performed in 
the GARP (Genetic Algorithm for Range Prediction) modelling system (program  RASTERIZ55). We determined 
the following resolution for environmental filtering: 0.5 °C for temperature-related variables, 0.5 psu for SSS and 
0.5 mol C.m−2.s–1 for PP (used in logarithm). The same environmental domain was used to generate pseudo-
absences outside the space delimiting environmental suitable conditions using the convex hull  method56 while 
excluding the 2.5 and 97.5 percentiles. The latter is defined as the smallest convex hyper-volume in the environ-
mental space, containing occurrences points within the 2.5 and 97.5 percentiles for each environmental param-
eter (i.e. alleviating the weight of environmental extremes corresponding to first records). Pseudo-absences are 
then randomly generated in equal numbers to filtered presences, in the environmental space outside this convex 
hyper-volume, therefore minimizing prediction variance (see "D-designs”  theory57)This procedure alleviates 
model over-prediction and biases associated with heterogenous or discontinuous sampling effort, increasing 
therefore the ability of the model to mirror the observed distributional  range58.

Ensemble model selection. For each species and combination of environmental variables, the algorithms that 
best reflected the observed distribution were selected according to the Continuous Boyce Index (CBI), an evalu-
ation metric specifically designed for presence/pseudo-absence datasets. We retained algorithms with a CBI 
value over 0.558. To ensure the ecological realism of our models, we discarded spurious responses to environ-
mental factors (e.g., bimodal response to temperature) and selected the simulations for which response curves 
matched a priori expectations  (see22 for further details). The inter-algorithm divergence in responses curves (i.e. 
a major criticism of ensemble modelling  procedure19 have been quantified by means of the standard deviation 
(SD) computed from all retained simulations (Figure S2. in the supplementary material 2).

Future projections. Time scales and climatic scenarios. Following a multi-GCMs and multi-scenarios ap-
proach to evaluate the potential future distributions of the eight species while considering uncertainties about 
future climate conditions, we retrieved information from five high-resolution General Circulation Models (IPSL-
CM5A-LR, MPI-ESM-LR, CNRM-CM5, HadGEM2-ES, GISS-E2-R; see references in Table 1) and three RCP 
scenarios from the 5th Coupled Model Intercomparison Project (CMIP5) according to the radiative forcing: the 
low RCP2.6, the medium–low RCP4.5, and the high RCP8.5. To alleviate inter-annual stochasticity in species 
distributions and to highlight the main patterns of changes, we averaged future temperature-related variables 
and PP for three different decades: 2030–2039 (short-term projections), 2050–2059 (mid-term projections) and 
2090–2099 (long-term projections). Future SSS was considered constant in time as the temporal variations are 
known to be  negligible59 in contrast to spatial variations (i.e. discriminate marine from brackish waters). To 
match the spatial resolution and extent of contemporary environmental variables, we bilinearly interpolated 
future environmental variables at a 0.1° × 0.1° spatial resolution and in the geographical domain ranging from 
70°N to 70°S and from 180°E to 180°W.

Pre‑treatment of future temperature data. To assess possible bias between contemporary and future tempera-
ture-related variables, we performed Taylor  diagrams60 to estimate the consistency between current and future 
climate data (Supplementary Material 7): considering a common period (i.e. 2006–2017), we calculated the 
Pearson correlation coefficient, the Root-Mean-Square Difference (RMSD) and the standard deviation (SD) dif-
ference for each temperature-related variable. For each GCM and RCP scenario, we then corrected model-based 
temperature data according to their difference with observation-based data for each geographical cell. This pro-
cedure ensured a perfect correlation (Pearson coefficient r = 1), no RMSD and the same SD between model- and 
observation-based datasets for a common  period61.

Projected changes in species environmental suitability index. For each future period, we estimated 
the occurrence of each species per geographical cell (0.1° × 0.1°) by combining our ensemble modelling method 
with environmental data originating from the five GCMs and the three RCP scenarios. For each species and 
future period, we calculated the proportion (in  km2) of the studied area that was projected to contain a suitable 
habitat in order to quantify (as percentage) potential changes in the spatial extent of species, relative to the con-
temporary (1990–2017) period. As an index of the potential consequences of distributional shifts at the scale of 
each Mediterranean and European EEZs—we assessed the potential consequences of distributional shifts at the 
scale of each Mediterranean and European EEZs under the assumption of uniform spatial distribution of catches 
in EEZs. We calculated ESI by EEZ as the mean by pixel (0.1° × 0.1°) in each  EEZ62, stretching from the coastline 
out to 200 nautical miles over which a country has special rights regarding the use of marine resources. We also 
calculated the total catch landings for each species over the period 1990–2017 (in logarithm). For each species 
and EEZ, we downloaded the mean catch data from the Sea Around Us database (http:// www. seaar oundus. org/) 
for the period 1990–2017 (i.e., the most recent available information). Focusing on EEZs allowed the estimation 
of changes at the scale of basic units for fisheries management (e.g. attribution of maximum allowed catches by 
EEZs) and conservation  perspectives62. In addition, EEZs are relevant regions for biogeographic research, and 
are commonly investigated for assessing the socio-economic consequences of climate change on  fisheries5.

http://www.seaaroundus.org/
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Data availability
These data were derived from the following resources available in the public domain: the Ocean Biogeographic 
Information System Mapper (OBIS, http:// www. iobis. org/ mapper/), the Global Biodiversity Information Facility 
(GBIF, https:// www. gbif. org/) and Fishbase (http:// www. fishb ase. org/).
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