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Abstract 

Background  Animal-borne sensors (‘bio-loggers’) can record a suite of kinematic and environmental data, which 
are used to elucidate animal ecophysiology and improve conservation efforts. Machine learning techniques are used 
for interpreting the large amounts of data recorded by bio-loggers, but there exists no common framework for com‑
paring the different machine learning techniques in this domain. This makes it difficult to, for example, identify pat‑
terns in what works well for machine learning-based analysis of bio-logger data. It also makes it difficult to evaluate 
the effectiveness of novel methods developed by the machine learning community.

Methods  To address this, we present the Bio-logger Ethogram Benchmark (BEBE), a collection of datasets 
with behavioral annotations, as well as a modeling task and evaluation metrics. BEBE is to date the largest, most 
taxonomically diverse, publicly available benchmark of this type, and includes 1654 h of data collected from 149 indi‑
viduals across nine taxa. Using BEBE, we compare the performance of deep and classical machine learning methods 
for identifying animal behaviors based on bio-logger data. As an example usage of BEBE, we test an approach based 
on self-supervised learning. To apply this approach to animal behavior classification, we adapt a deep neural network 
pre-trained with 700,000 h of data collected from human wrist-worn accelerometers.

Results  We find that deep neural networks out-perform the classical machine learning methods we tested across all 
nine datasets in BEBE. We additionally find that the approach based on self-supervised learning out-performs 
the alternatives we tested, especially in settings when there is a low amount of training data available.

Conclusions  In light of these results, we are able to make concrete suggestions for designing studies that rely 
on machine learning to infer behavior from bio-logger data. Therefore, we expect that BEBE will be useful for making 
similar suggestions in the future, as additional hypotheses about machine learning techniques are tested. Datasets, 
models, and evaluation code are made publicly available at https://​github.​com/​earth​speci​es/​BEBE, to enable commu‑
nity use of BEBE.
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Background
Animal behavior is of central interest in ecology and 
evolution because an individual’s behavior affects its 
reproductive opportunities and probability of sur-
vival  [1]. Additionally, understanding animal behavior 
can be key to identifying conservation problems and 
planning successful management interventions  [2], for 
example in rearing captive animals prior to reintroduc-
tion  [3], designing protected areas  [4], and reducing 
dispersal of introduced species [5].

One increasingly utilized approach for monitoring 
animal behavior is remote recording by animal-borne 
tags, or bio-loggers  [6–8]. These tags can be composed 
of multiple sensors such as an accelerometer, gyro-
scope, altimeter, pressure, GPS receiver, microphone, 
and/or camera, which record time-series data on an 
individual’s behavior and their in situ environment. 
Additionally, bio-logger datasets can include data from 
many-hour tag deployments on multiple individuals.

To give a behavioral interpretation to recorded bio-
logger data, it is useful to construct an inventory of 
what types of actions an individual may perform  [9]. 
This inventory, or ethogram, is then used to classify 
observed actions (Fig. 1A). Using an ethogram, one can 
quantify, for example, the proportion of time an animal 
spends in different behavioral states, and how these 
differ between groups (e.g., sex, age, populations), or 
change over time (e.g., seasonally), with physiological 
condition (e.g., healthy vs. sick) or across different envi-
ronmental contexts (e.g. [10]).

For classifying the behaviors underlying bio-logger 
data, researchers are increasingly using supervised 
machine learning (ML) techniques  [11]. In a typical 
workflow, a human annotates some of the recorded 
bio-logger data with the tagged individuals’ behavio-
ral states using a pre-determined ethogram, based on 
observations made simultaneously with data record-
ing. These annotated data are used to train a ML model, 
which is then used to predict behavioral labels for the 
remaining un-annotated portion of the dataset. A test 
dataset, which is held out from the training stage, can 
be used to evaluate how well the trained model is able 

to perform this behavior classification task. Using the 
predicted behavioral labels allows large datasets to be 
leveraged to address scientific questions, for example, 
through estimating activity budgets that vary by time or 
individual [12] or by environmental conditions [13]. In 
this manner, ML can help scientists to minimize man-
ual effort required to ascribe behavioral labels to bio-
logger data, or extend behavioral labels to data where 
manual ground-truthing is not possible.

Much research has applied ML to bio-logger data 
to establish its use with particular species, as well as to 
investigate the impact of different decisions made when 
using ML models for this purpose. Research questions 
include characterizing which methods are the most 
accurate, precise, sensitive, interpretable, or rapid (e.g., 
[14–21]), how to reduce the extent of ground-truthing 
necessary in species that are difficult to observe (e.g., 
[22–28]), and what kinds of behaviors are detectable with 
particular sensors and models (e.g., [15, 29–34]). How-
ever, the majority of studies focus on data from a single 
or a few closely-related species, making it difficult to 
identify patterns in how behavior classification methods 
are applied across multiple datasets.

A commonly used tool in ML for improving our 
understanding of analysis techniques is the benchmark 
(e.g.  [42]). A benchmark consists of a publicly available 
dataset, a problem statement specifying a model’s inputs 
and the desired outputs (a task), and a procedure for 
quantitatively evaluating a model’s success on the task 
(using one or several evaluation metrics). In a common 
use-case for a benchmark, researchers report the per-
formance of a proposed technique on the benchmark, 
helping the field to draw comparisons between different 
techniques and consolidate knowledge about promising 
directions. Developing benchmarks has been identified 
as an area of focus for ML applications in wildlife conser-
vation [43] and animal behavior [44, 45].

For behavior classification from bio-loggers, a bench-
mark could assess model performance across a breadth of 
study systems in order to identify relevant patterns, such 
as how modeling decisions can influence classification 
performance. Indeed, researchers have analyzed multi-
species datasets to identify best practices for other key 

Fig. 1  A Examples of ethograms in BEBE. Left: gull ethogram with three behaviors. Right: a subset of the dog ethogram, with four behaviors. B 
BEBE consists of a supervised behavior classification task on nine annotated datasets, along with a set of metrics that compare model predictions 
with the annotations. Datasets and code are publicly available at https://​github.​com/​earth​speci​es/​BEBE. C Datasets in BEBE, with a photo 
of a representative individual and a 5-minute clip of annotated tri-axial accelerometer (TIA) data for each. Each accelerometer channel is min-max 
scaled for visualization. Top row: black-tailed gull (Larus crassirostris) [35], domestic dog (Canis familiaris) [29, 36], carrion crow (Corvus corone) [37] 
(see Methods). Middle row: western diamondback rattlesnake (Crotalus atrox) [17], humpback whale (Megaptera novaeangliae) [38], New Zealand fur 
seal (Arctocephalus forsteri) [39]. Bottom row: polar bear (Ursus maritimus) [22, 40], sea turtle (Chelonia mydas) [18], human (Homo sapiens) [41]. Gaps 
indicate that the behavior annotation is Unknown. For image attributions, see acknowledgments

(See figure on next page.)

https://github.com/earthspecies/BEBE
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Fig. 1  (See legend on previous page.)
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challenges in bio-logging, such as sensor calibration [46] 
and signal processing  [47, 48]. Previous studies have 
applied one or more behavior classification techniques 
on multiple bio-logger datasets, with varying degrees of 
variability in the species and individuals included [20, 23, 
49–55], but none have attempted to compile a managed, 
publicly available and diverse database that others could 
compare against as a benchmark.

In order to fill this gap, we present the Bio-logger 
Ethogram Benchmark (BEBE), designed to capture chal-
lenges in behavior classification from diverse bio-logger 
datasets. BEBE combines nine datasets collected by vari-
ous research groups, each with behavioral annotations, 
as well as a supervised behavior classification task with 
corresponding evaluation metrics (Fig.  1B). These data-
sets are diverse, spanning multiple species, individu-
als, behavioral states, sampling rates, and sensor types 
(Fig. 1C), as well as large in size, ranging from six to over 
a thousand hours in duration. We focus on data collected 
from tri-axial accelerometers (TIA), in addition to gyro-
scopes, and environmental sensors. TIA are widely incor-
porated into bio-loggers because they are inexpensive 
and lightweight [6]. Additionally, the data they collect has 
been used to infer behavioral states on the order of sec-
onds, in a wide variety of species [7].

As a first application of BEBE, we make and test several 
hypotheses about ML usage in bio-logger data (Table 1). 
We base these hypotheses on recent trends in ML, as 
well as based on their potential to influence the work-
flow of researchers using ML with bio-logger data. First, 
in many applications of ML, deep neural networks that 
make predictions based on raw data, out-perform clas-
sical ML methods such as random forests, which make 
predictions based on hand-crafted summary statis-
tics or features  [56]. Deep neural networks that operate 
on raw data, such as convolutional and recurrent neu-
ral networks, have previously been applied to behavior 
classification in wild non-human animals [49, 57–59], 
captive non-human animals  [60] and in human activity 

recognition [61–67]. We distinguish these from the mul-
tilayer perceptron, a type of neural network that uti-
lizes hand-crafted features and has been used in several 
bio-logging studies (e.g.,   [14, 52, 68]). Studies differ on 
whether deep neural networks show performance ben-
efits compared to classical methods (e.g., [49, 57]), and 
random forests remain the most commonly used ML 
methods for bio-logger data [69, Table 2], for which fea-
ture engineering is a key challenging step. In line with 
ML trends and results from [49], we predict that deep 
neural networks will outperform techniques using hand-
chosen features (H1).

Second, we examine how data recorded for one spe-
cies can be used to inform behavior predictions for a 
different species. Some previous works (e.g. [22, 23, 49]) 
have adopted a cross-species transfer learning strategy, 
by training a supervised model on one species and then 
applying this trained model to another related species. 
Our approach is different in that we use self-supervised 
learning. In self-supervised learning, a ML model (typi-
cally a deep neural network) is pre-trained to perform 
an auxiliary task on an unlabeled dataset. Importantly, 
training the model to perform this auxiliary task does not 
require any human-generated annotations of the data. In 
this way, self-supervised pre-training can make use of a 
large amount of un-annotated data that is easy to obtain 
(e.g., a species where a large dataset exists). Later, the 
pre-trained model can be trained (or fine-tuned) to per-
form the task of interest (such as behavior classification 
in a different species), using a small amount of annotated 
data. By learning to perform the auxiliary task the model 
learns a set of features, which often provide a good set 
of initial model parameters for performing the task intro-
duced in the fine-tuning step. Inspired by the recent suc-
cess of self-supervised learning in other domains of ML 
(e.g. language [70] and computer vision [71]), we predict 
that a deep neural network pre-trained on a large amount 
of human accelerometer data [61] will outperform alter-
native methods, after fine-tuning (H2). Moreover, the 

Table 1  Hypotheses tested in this work

BEBE provides a means to identify patterns in behavior classification methods applied across multiple species and sensor types

Hypothesis Hypothesis 
confirmed?

(H1) Deep neural network-based approaches will outperform classical approaches based on hand-chosen summary statistics. Yes, 
for the approaches 
we tested

(H2) Self-supervised pre-training using human accelerometer data will improve classification performance. Partly

(H3) Self-supervised pre-training using human accelerometer data will improve classification performance when the amount 
of training data is reduced by a factor of four by removing individuals.

Yes

(H4) In terms of a single model’s predictive performance, there is minimal improvement in some behavior classes when increasing 
the amount of training data by four times by adding individuals.

Yes
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self-supervised pre-training step can reduce the amount 
of annotated data required to meet a given level of per-
formance [72]. Therefore, we predict that this trend will 
hold when we reduce the amount of training data by a 
factor of four (reduced data setting; H3).

Finally, we investigate how the performance of our best 
models varies by behavior class and how this per-behav-
ior performance scales with the amount of training data. 
In recent years, performance on some human behavior 
classification benchmarks has shown little improvement 
in spite of methodological advancements  [73]. This sug-
gests that the sensor data may not contain sufficient 
information to discriminate activities of interest. As 
found for human activity recognition and behavior clas-
sification in other animals [15, 29, 31–34], we expect that 
there will be a large degree of variation in per-behavior 
performance. Here, we test one possibility for improv-
ing classification performance: increasing the amount 
of training data. If some behaviours are not well dis-
criminated by sensor data, we predict that increasing the 
amount of training data will show only minimal improve-
ment (H4).

While we focus on a specific classification task in this 
study, all datasets, models, and evaluation code presented 
in BEBE are available at https://​github.​com/​earth​speci​
es/​BEBE for general community use. Researchers may 
use the standardized task to test classification methods, 
or adapt BEBE datasets for their own research ques-
tions (see Discussion for examples). Given that one aim 
of BEBE is to improve our understanding of classification 
methods in bio-logger data, we are also seeking contri-
butions to create an expanded benchmark with improved 
taxonomic coverage, a broader range of sensor types, 
additional standardization, and a wider variety of mod-
eling tasks. Details about how to contribute in this way 
can also be found at our GitHub.

In summary, the main contributions of this study 
include: 

1.	 Publicly available multi-species bio-logger bench-
mark dataset, centered on tri-axial accelerometers

2.	 Standardized evaluation framework for supervised 
behavior classification, with accompanying code and 
model examples

3.	 Demonstration of benchmark usage to investigate 
patterns in ML behavior classification performance 
(Table 1), including:

•	A comparison of deep learning and classical tech-
niques on non-human bio-logger data

•	Successful cross-species application of a self-
supervised neural network trained on human bio-
logger data (based on [61])

Methods
Benchmark Datasets
We brought together nine animal motion datasets into 
a benchmark collection called the Bio-logger Ethogram 
Benchmark (BEBE) (Table  2). BEBE introduces a pre-
viously unpublished dataset (Crow); otherwise, these 
data were all collected in previous studies. Of the data-
sets included in BEBE, four are publicly available for 
the first time (Whale, Crow, Rattlesnake, Gull) and five 
were already publicly available (HAR, Polar bear, Sea tur-
tle, Seals, Dog). We summarize datasets’ hardware, data 
collection, ethogram definition, and ground-truthing in 
Sect. 2.1.2. For full details, including details on synchro-
nization, calibration, and annotation validation, we refer 
readers to the original papers.

In each dataset, data were recorded by bio-loggers 
attached to several different individuals of the given spe-
cies. Each dataset contains one species, except for the 
Seals dataset which contains four Otariid species. These 
bio-loggers collected kinematic and environmental time 
series data, such as acceleration, angular velocity, pres-
sure, and conductivity (Fig.  2). While each dataset in 
BEBE includes acceleration data, different hardware con-
figurations were used across studies. As a result, each 
dataset comes with its own particular set of data chan-
nels, and with its own sampling rate. We used calibrated 
data as provided by the original dataset authors.

In addition to the time series bio-logger data, each 
dataset in BEBE comes with human-generated behav-
ioral annotations (Fig.  2, colored bars). Seven datasets 
were ground-truthed using either on or off tag video; 
the other two were ground-truthed using audio. In each 
dataset, each sampled time step is annotated with the 
current behavioral state of the tagged individual, which 
can be one of several discrete behavioral classes. At some 
time steps, it was not possible to observe the individual, 
or it was not possible to classify the individual’s behavior 
using the predefined behavioral classes. In these cases, 
this time step is annotated as Unknown. These Unknown 
behavioral annotations are disregarded during model 
training and evaluation.

There are multiple time scales of behavior represented 
across the nine ethograms in BEBE, with some datasets 
including brief activities (e.g. shaking), and some includ-
ing longer duration activities (e.g. foraging). In Table 2 we 
report the mean duration (in seconds) of an annotation 
in each dataset, as a rough estimate of the mean duration 
an individual spends in a given behavioral state.

For previously published datasets, the intentions were 
to validate an ethogram for use in free-ranging indi-
viduals (Polar Bear, Seals), use the ethogram to under-
stand activity patterns (Whale, Sea Turtle, Rattlesnake), 
develop on-device algorithms to detect a specific rare 

https://github.com/earthspecies/BEBE
https://github.com/earthspecies/BEBE


Page 7 of 25Hoffman et al. Movement Ecology           (2024) 12:78 	

behavior of interest (Gull), or provide a publicly available 
dataset (HAR, Dog). The data used for annotation also 
varied from on-sensor (Polar Bear, Whale, Sea Turtle, 
Gull, Crow) to off-sensor (HAR, Seals, Rattlesnake, Dog). 
Given the range of purposes and data collection meth-
ods, the ethograms vary in how much of the animal’s 
time is accounted for and how fine-grained the behavior 
categories are.

In addition to Fig.  2, we provide additional data visu-
alizations in the Supplemental Information. Examples of 
each behavior class with the full set of channels reveal 
varying degrees of stereotypy in the behavioral classes 
(Supplemental Figs.  S1–S10). For example, in the Sea 
Turtle dataset, Stay at surface appears more stereotyped 
than Feed. Summary statistics across different individuals 
for each behavior class suggest the presence of discrimi-
native features for some datasets, as well as differences 
between individuals (Supplemental Figs.  S11–S19). 
For example, in the Rattlesnake dataset, Move shows 
higher variance in raw accelerometer values compared 
to Not Moving, although to different degrees in different 
individuals.

Dataset collection
Datasets had to meet the following criteria to be included 
in BEBE: 

1.	 Include animal motion data recorded by tri-axial 
accelerometer at ≥ 1 Hz;

2.	 Include annotations of animal behavioral states;
3.	 Comprise data recorded from tags attached to at 

least five individuals in order to reflect variation in 
sensor placement and individual motion patterns;

4.	 Contain over 100000 sampled time steps with behav-
ioral annotations;

5.	 Contribute to a diversity of taxa, as well as a balance 
among the categories of terrestrial, aquatic, and aerial 
species;

6.	 Have previously appeared in a peer-reviewed publi-
cation (with the exception of the Crow dataset, which 
is previously unpublished and described in more 
detail below);

7.	 Be licensed for modification and redistribution; or 
come with permission from dataset authors for mod-
ification and public distribution.

Four datasets were not previously publicly available and 
were collected by coauthors (Whale: A. Friedlaender; 
Crow: D. Canestrari, V. Baglione, V. Moreno-González, 
E. Trapote; Gull: T. Maekawa, K. Yoda; Rattlesnake: D. 
DeSantis, V. Mata-Silva). For these datasets, coauthors 
provided permission to publicly distribute the data. 
Through an informal literature search, we found five 

publicly available datasets (HAR, Polar Bear, Dog, Sea 
Turtle, Seals). Of these, four were collected by coauthors 
(Polar Bear: A. Pagano; Dog: O. Vainio, A. Vehkaoja; Sea 
Turtle: L. Jeantet, D. Chevallier; Seals: M. Ladds). Finally, 
we assessed datasets from papers covered by a recent sys-
tematic literature review of automatic behavioral classifi-
cation from bio-loggers [69, Page 12]. The supplemental 
material of [69] provides a table with the results of their 
systematic review, containing metadata on whether a 
paper used supervised learning, species, number of indi-
viduals, and number of timepoints. We looked exclusively 
at the supervised learning papers because these would 
require annotated datasets (criterion 2). Assessing crite-
ria 1, 3, and 4 above resulted in twelve potential datasets 
out of 214. Of the twelve, two were already included in 
BEBE (Rattlesnake, Sea Turtle), nine studied terrestrial 
animals, a category which was already well-represented 
in BEBE, and one did not provide annotations. Therefore, 
no new datasets were added based on the results of the 
systematic literature review by [69].

Dataset summaries
In the following, we summarize the study design and data 
collection protocols for each of the datasets in BEBE. See 
also Table 2.

Human Activity Recognition (HAR) The study  [41] 
was designed to provide a publicly available dataset of 
human (Homo sapiens) activities recorded by smart-
phone tri-axial accelerometers and gyroscopes. Thirty 
human subjects were instructed to perform a sequence 
of activities (Walking, Standing, Sitting, Lying Down, 
Walking Upstairs, and Walking Downstairs) while wear-
ing a waist-mounted Samsung Galaxy S II smartphone. 
Behaviors were annotated based on video footage, and no 
information is provided about synchronization between 
video and motion sensor data. The ethogram used covers 
all behaviors performed by individuals, except transition 
periods between activities (e.g. moving from sitting to 
standing) which are treated as Unknown.

Rattlesnake The study  [17] sought to to quantify and 
evaluate variation in long-term activity patterns in free-
ranging western diamondback rattlesnakes (Crotalus 
atrox) in the Indio Mountains Research Station, located 
in Texas. Individuals were implanted with Technosmart 
AXY-3 or Technosmart AXY-4 tri-axial accelerometers. 
Their behavior was directly observed, and recorded with 
a hand-held video camera. All recorded time steps were 
assigned to one of two behavior categories, Moving and 
Not Moving, in order to accommodate low-frequency 
recording and maximizing recording duration. Annota-
tions were made based on field notes and recorded video.

Polar Bear The study [22, 40] was designed to validate 
the usage of tri-axial accelerometers and conductivity 
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Fig. 2  Example data from BEBE. Each row displays ten 1-minute clips from one dataset, showing behavior labels, three tri-axial accelerometer 
channels (g), as well as speed (m/s), saltwater conductivity (wet/dry), and/or depth (m) if available. Examples were chosen to focus on transitions 
between behaviors. Acceleration traces for behavior classes range from highly stereotyped (e.g., Sit in HAR) to highly variable (e.g., Feed in Seals). 
For examples of each behavior in each dataset, with the full set of dataset channels, see Supplemental Figs. S1–S10
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sensors, for the purpose of constructing daily activity 
budgets of polar bears (Ursus maritimus) on sea ice in the 
Beaufort Sea (Arctic Ocean). Bears were captured and 
equipped with Exeye video collars that also contained 
Wildlife Computers TDR10-X-340D motion loggers. 
Collars were retrieved after they fell off, or after the bear 
was re-captured. Motion data was annotated based on 
synchronized video footage. The ethogram was designed 
to cover all common behaviors observed in this footage, 
but excluded behaviors that were rare (such as fighting, 
breeding, drinking), extremely brief, or nondescript. 
Excluded behaviors were marked as Unknown. Addition-
ally, the video camera was set to a 90-second duty cycle. 
Behaviors were marked as Unknown during time periods 
where the video camera was off.

Dog The study [29, 36] was intended to provide a data-
set for developing methods that could be used to classify 
domestic dog (Canis familiaris) behaviors. Dogs were 
equipped with two ActiGraph GT9X Link loggers. One 
was placed on the neck using a collar, and the other was 
placed on the back using a harness. In an indoor arena, 
dogs were guided by their owners through a series of 
activities: sitting, standing, lying down, trotting, walking, 
playing, and treat-searching. Behaviors were annotated 
based on synchronized video footage. The ethogram 
was designed to reflect all the behaviors commonly per-
formed during these activities. Ambiguous behaviors 
were recorded as Unknown.

Whale The study  [38] characterized daily activity 
budgets of humpback whales (Megaptera novaeangliae) 
in Wilhelmina Bay, Antarctica, late in the feeding sea-
son. DTAG devices [75] were attached via suction cups to 
whales’ dorsal surface or flank. They were programmed 
to release suction after 24  h, and were retrieved after 
release. The ethogram was designed to include com-
mon diving behavior, as well as resting. To identify dif-
ferent behaviors, whales’ feeding lunges were first 
detected using an algorithm, based on recorded acoustic 
flow noise, as well as changes in the accelerometer sig-
nal. Then, dives were classified based on maximum dive 
depth, duration, and the presence and number of feeding 
events. These annotations were reviewed by two of the 
original study authors.

Sea Turtle The study [18] aimed to develop a machine 
learning method to compute activity budgets for green 
turtles from accelerometer and gyroscope data. CATS 
devices (Customized Animal Tracking Solutions, Ger-
many) were attached using suction cups to the carapaces 
of free-ranging immature green turtles (Chelonia mydas) 
in Martinique, France. Behaviors were annotated based 
on synchronized on-device video footage. To design the 
ethogram, forty-six behaviors were initially identified 
in video footage. From these, seven frequent behavior 

categories were identified, and the remaining behaviors 
(such as regurgitation, pursuit of other turtle) grouped 
into an ‘other’ category. The ‘other’ category was consid-
ered Unknown in the present study.

Seals The studies [10, 21]  aimed to validate machine 
learning methods for behavior classification in otariids 
on captive seals, intended for eventual application in wild 
seals. Tags including CEFAS G6a+ accelerometers were 
attached to the backs of captive fur seals (Arctocepha-
lus forsteri and Arcocephalus tropicalis) and sea lions 
(Neophoca cinerea). Behaviors were filmed in a swim-
ming pool, by two or three underwater cameras (GoPro 
Hero 3 - Black edition) and one handheld camera above 
water (Sony HDRSR11E). In observation sessions, indi-
viduals either received a food item or were requested to 
perform behaviors learned through operant conditioning. 
The requested behaviors were chosen to reflect behaviors 
performed by wild seals. Twenty-six behaviors were iden-
tified in the video footage. Based on prior knowledge of 
wild seals, these initial behaviors were grouped into four 
categories or ‘other’ (such as direct feeding by trainer, 
seal out of sight of camera). The ‘other’ category was con-
sidered Unknown in the present study

Gull The study [35]  aimed to develop on-device 
machine learning algorithms to detect rare, ecologically 
important behaviors in accelerometer data (e.g., foraging) 
in order to control resource-intensive sensors like video 
cameras. The bio-loggers included a tri-axial acceler-
ometer (TDK MPU-9250; InvenSense), integrated video 
camera, as well as other low-cost sensors which were 
not used in this study. Using waterproof tape and tef-
lon harnesses, these were attached to either the back or 
abdomen of free-ranging black-tailed gulls (Larus crassi-
rostris) in a colony on Kabushima Island near Hachinohe 
City, Japan. The main behavior of interest in this study 
was foraging, which included a variety of behaviors such 
as surface-dipping and plunging. Two other common 
non-foraging behaviors (flying and stationary) were also 
labeled. Behaviors were labeled based on video footage 
collected by the on-device video camera.

Crow The Crow dataset is presented for the first time 
here, and we provide complete details in the following 
section.

Crow dataset details
The data logger, called miniDTAG, was adapted from a 
2.6 g bat tag integrating microphone, tri-axial acceler-
ometer and tri-axial magnetometer [37] with changes 
that enable long duration recordings on medium-sized 
birds. The triaxial accelerometer (Kionix KX022-1020 
configured for ± 8 g full scale, 16-bit resolution) was sam-
pled at 1000 Hz and decimated to a sampling rate of 200 
Hz before saving to a 32 GB flash memory. The 1.2 Ah 
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lithium primary battery (Saft LS14250) allowed continu-
ous recording for about 6 days both in lab and field set-
tings. Each miniDTAG was packaged with a micro radio 
transmitter (Biotrack Picopip Ag376) and attached to the 
two central tail feathers of carrion crows (Corvus corone) 
with a piece of the stem of a colored balloon following the 
procedure described in [76] (axes: x (backward-forward), 
y (lateral), z (down-up)). The thin rubber balloon material 
progressively deteriorated and finally broke, letting the 
miniDTAG fall to the ground, where it was radio-tracked 
using a Sika Biotrack receiver.

Accelerometer data were calibrated using Matlab tools 
from www.animaltags.org following standard procedures 
[75, 77]. The sensor channel was decimated by a factor of 
4 before calibration, resulting in a sampling rate of 50 Hz. 
We normalized the tri-axial acceleration channels so the 
average magnitude of the acceleration vector was equal 
to 1.

For the present study, we tagged 11 individuals from 7 
different territories near León, Spain, in a population that 
breeds cooperatively. Here crows live in stable kin group, 
in which a dominant breeding pair is assisted by subordi-
nate helpers in raising the young [78]. Of these individu-
als, three were breeding males, two were helper males, 
five were breeding females, and one was a helper female, 
and all were attending an active nest. Data were collected 
in spring 2019, when all the birds were raising their nest-
lings. The miniDTAG plus battery (12.5 g) accounted on 
average (± SE) for the 2.66 ± 0.09% of the crow body mass 
(range 2.29–3.15%). None of the crows abandoned the 
territory or deserted the nest after being tagged. From the 
recordings of these individuals, we selected 20 contigu-
ous segments for annotation (average segment duration: 
5.73  h), favoring segments where begging vocalizations 
and wing beats could be identified at multiple times dur-
ing the recording (see Annotations below).

We divided the recorded data into five-second long 
non-overlapping segments (clips). Each accelerometer 
clip came with synchronized audio, which we used to 
assign behavioral annotations. If there were sounds of 
wingbeats for the entire duration of a clip, we annotated 
all sampled time steps in that clip as Flying. Additionally, 
if there were wingbeats followed by wind noise (inter-
preted as soaring), we also annotated all sampled time 
steps in that clip as Flying. Similarly, if a clip included 
sounds of chick begging calls, and no sounds of wing-
beats, we annotated all sampled time steps in that clip as 
In Nest. Therefore, the label In Nest likely encompasses 
several behavioral states, such as resting, brooding, incu-
bating, feeding chicks, and preening, which may occur 
at or near the nest. Crucially, these states do not include 
flying, and so there is no ambiguity between the two 

labels. Clips that did not fit either of the criteria for being 
labeled Flying or In Nest were labeled as Unknown.

The two behaviours we chose for our ethogram (Fly-
ing and In Nest) are highly relevant for ethology research: 
Individual chick provisioning effort, measured as fre-
quency of nest visits, is one of the key variables in the 
study of parental care behaviour in this species. It may 
be possible to infer nest visits based on alternating peri-
ods of Flying and In Nest. Counting nest visits typically 
requires either many hours of direct observations, which 
is time-consuming and difficult to carry out without 
interfering with the animals, or using video cameras at 
the nest, which requires costly equipment, high effort to 
install, and daily visits to change the battery.

Data pre‑processing
For full implementation details, we refer the reader to 
the dataset preprocessing source code.1 For all datasets, 
we used calibrated data and annotations provided by the 
original dataset authors; with the exception of the Crow 
dataset (described above and below), we refer the reader 
to the original publications for details. For two datasets 
(Sea Turtle, Gull), the average magnitude of the accelera-
tion vector varied by more than 10% between tag deploy-
ments. To control for these differences, we normalized 
the tri-axial acceleration channels so that the average 
magnitude of the acceleration vector was equal to 1. For 
the Gull dataset, there were two possible tag placement 
positions (back or abdomen). To reduce data heteroge-
neity due to differences in tag placement, we rotated the 
calibrated data from some deployments by 180 degrees, 
around the axis parallel to the tagged individual’s body. 
After performing this step, all deployments had, on 
average, positive acceleration in the vertical axis. While 
this step reduced heterogeneity between deployments, 
is unlikely to remove all differences between the data 
recorded by these different tag placements. We do not 
perform any additional special pre-processing steps on 
the datasets in BEBE, and we left each dataset in its origi-
nal measurement units.

Annotations
In all datasets in BEBE, annotations indicated time inter-
vals when the behavior class occurred (even when this 
time interval is only a few seconds long), rather than 
the occurrence of discrete behavioral events. For exam-
ple, multiple discrete feeding events could occur within 
a time interval labeled as ‘foraging’. The modeling task 
(per-time step classification) and evaluation procedure 
(per-time step classification precision and recall) are 
designed with this in mind. These annotations would be 

1  https://​github.​com/​earth​speci​es/​BEBE-​datas​ets/ .

https://github.com/earthspecies/BEBE-datasets/
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those required to describe the amount of time an animal 
spends performing different activities during a day.

With the exception of one dataset (Crow), the anno-
tations in BEBE are derived from annotations made in 
the original studies. As a result, datasets in BEBE are 
annotated in a variety of ways (Table   2, row Annota-
tion method). Datasets also vary in the specificity of their 
behavior classes: a behavior class may include several 
related behaviors and datasets vary in how much behav-
iors are grouped or split. For example, in the Dog dataset, 
there are fine distinctions between different behavioral 
classes (e.g. Sit vs. Pant+sit), relative to the Rattlesnake 
dataset, in which a behavior is only summarized as Mov-
ing or Not Moving.

For the remaining eight datasets, we used annotations 
as provided by the original dataset authors. For behaviors 
with few annotated timepoints in the original dataset, we 
treat these behaviors as Unknown (see dataset pre-pro-
cessing source code for details). For all datasets, we used 
the time alignment between annotations and tag data 
that were produced by the original dataset authors.

Task and model evaluation
We provide a standard method for measuring different 
models’ ability to classify behavior from bio-logger data 
(Fig. 3) that consists of a formal task, as well as a set of 
evaluation metrics. It reflects the following workflow. 
First, the researcher has defined the ethogram categories 
of interest and annotated the dataset. Then, the anno-
tated dataset is split between the train set, used to train 
ML model, and the test dataset, which is used to evaluate 
the performance of the trained model.

Trained models are evaluated on their ability to predict 
behavior annotations. For each individual, we measure 
classification precision, recall, and F1 scores averaged 
across all sampled time steps from that individual and 
averaged across all behavioral classes. We disregard the 
time steps for which the annotation is Unknown. The 
entire pipeline, including training, inference, and evalua-
tion, is repeated for each dataset in BEBE.

We split each dataset into five groups, or folds, so that 
no individual appears in more than one fold  [28]. For 
evaluation, we use a cross validation procedure. During 

Fig. 3  A Summary of training and evaluation. Our process of data analysis follows the standard three steps of creating and evaluating machine 
learning models. In the first step (Training), the model learns from the train set of one dataset, including behavioral annotations. In the second 
step (Inference), the model makes predictions about the behavioral annotation for the test set data, which comprises data from a set of individuals 
distinct to those in the train set. In the third step (Evaluation), the model’s predictions are evaluated based on their agreement with known 
behavioral annotations. B Example data from the Whale dataset [38], and predictions made by a CRNN model. The trained model is fed raw time 
series data, which it uses to make behavior predictions. These predictions are compared with annotations to arrive at performance scores. In this 
case, the model predicts the annotations well. Gaps in the behavior annotations indicate the behavior is Unknown at those samples; those samples 
are ignored in the evaluation metrics. C During hyperparameter optimization, we train a set of models with various hyperparameters and low/high 
frequency cutoffs. We obtain the model hyperparameters and low/high frequency cutoff from the model that maximizes the F1 score on the first 
test fold. D During cross-validation, we compute the test scores for the other four folds. The final score is averaged across all individuals in the test 
folds. The first test fold, used for hyperparameter optimization, is not used for testing
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cross validation, we train a model on the individuals from 
four folds, and test it on the individuals from the remain-
ing fold. For all datasets, Figure  S20 shows the propor-
tion of behavior classes for each fold. This data partition 
reflects a common use case where researchers train a 
model from one set of individuals and then apply it to a 
separate unseen set of individuals (e.g., when behavior 
labels cannot be manually assigned for the latter).

Behavior classification task
Each dataset consists of a collection of multivariate dis-
crete time series, where each time series {xt}t∈{1,2,...,T } 
consists of samples xt ∈ R

D . Here D is the number of 
data channels and T is the number of sampled time steps. 
Note that the number T may vary between different time 
series contained in a single dataset. Each time series is 
sampled from one bio-logger deployment attached to one 
individual and is sampled continuously at a fixed dataset-
specific sampling rate (Table 2).

Each time series in a dataset also comes with a 
sequence of annotations {lt}t∈{1,2,...,T } , where each 
lt ∈ {Unknown, c1, c2, . . . , cC} encodes either the behav-
ioral class cj of the animal at time t, or the fact that the 
behavioral class is Unknown. Here C denotes the number 
of known behavioral classes in the dataset. The behavio-
ral classes cj vary between datasets in BEBE, and could be 
e.g. cj = Foraging, cj = Sniffing, or cj = Flying.

The behavior classification task is to predict the behav-
ioral annotation lt of each sampled time step xt (Fig. 3B). 
During training, models are given access to the behav-
ioral annotations in the train set. We refer the reader 
to [79] for a review of studies with a similar task descrip-
tion. While behavior classification can also be formulated 
as a continuous time problem [80], we focus on a discrete 
time problem formulation in order to match the majority 
of prior studies.

Dataset Splits
A key part of a benchmark dataset is how it partitions the 
data used for model training (the train set) from the data 
used for model evaluation (the test set). This evaluation 
provides an estimate of how well a model performance 
generalizes outside of its train set. Therefore, the spe-
cific partition chosen determines what domains the ML 
model should generalize over.

In BEBE, we split each dataset into five groups (folds), 
which are used in a cross validation procedure. During 
cross validation, each time the model is trained, the train 
set consists of the data from four of these five folds, and 
the test set consists of the data from the remaining fold. 
For each dataset in BEBE, we divided the data so that 
no individual appears in more than one fold, and so that 
each fold has the same number of individuals represented 

( ±1 individual). Therefore, during testing, a model’s per-
formance reflects its ability to generalize to new indi-
viduals, where effects such as tag placement  [46] may 
influence model predictions.

Figure  S20 displays the distribution of annotations 
across folds for all datasets in BEBE. Most datasets in 
BEBE have some behaviors with high representation (up 
to 92.4 percent of known behaviors, Rattlesnakes Not 
Moving), and some behaviors with very low representa-
tion (as little as 0.1 percent of known behaviors, Polar 
Bears Pounce).

Evaluation Metrics
Trained models are evaluated on their ability to pre-
dict the behavioral annotations of the test set. For each 
individual in the test set, we measure macro-averaged 
precision, recall and F1 scores of model predictions. By 
macro-averaging, performance on each behavioral class 
is weighted equally in the final metrics, regardless of their 
relative proportions in the test set. Finally, we average 
these scores across all individuals in the test set. In meas-
uring these scores, we disregard the model’s predictions 
for those time steps xt for which lt = Unknown . More 
precisely, for each individual in the test set we measure:

where for each behavioral class index j ∈ {1, . . . ,C},

Here, TPj , FPj , and FNj denote, respectively, the number 
of sampled time steps correctly predicted to be of class 
cj (true positives), the number incorrectly predicted to 
be of class cj (false positives), and the number incorrectly 
predicted to be not of class cj (false negatives). Precision, 
recall, and F1 range between 0 and 1, with 1 reflecting 
optimal performance. After computing these scores for 
each individual, we calculate the average taken across all 
individuals in the test set. In addition to precision, recall, 
and F1 score, we compute confusion matrices for model 
predictions (see examples in Figures  S26 and  S27, with 
full set available at https://​zenodo.​org/​recor​ds/​79471​04).

Hyperparameter Tuning and Cross Validation
All models we tested require the user to choose some 
parameters (known as hyperparameters) before training. 
To select hyperparameters for a given type of ML model 
and dataset, we performed an initial grid search across a 
range of possible values, using the first fold of the dataset 
as the test set and the remaining four folds of the dataset 
as the train set. We saved the hyperparameters which led 

(1)
Prec =

1

C

C∑

j=1

Precj , Rec =
1

C

C∑

j=1

Recj , F1 =

1

C

C∑

j=1

F1j ,

Precj =
TPj

TPj + FPj
, Recj =

TPj

TPj + FNj
, F1j = 2 ·

Precj · Recj

Precj + Recj
.

https://zenodo.org/records/7947104
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to the highest F1 score, averaged across individuals in the 
test set. The hyperparameter values included in the grid 
search are specified below, and the hyperparameter val-
ues that were saved for subsequent analyses are available 
at https://​github.​com/​earth​speci​es/​BEBE.

While it is common in the field of ML to use a single 
fixed train/test split of a dataset, we chose to use cross 
validation in order to capture the variation in motion and 
behavior between as many individuals as possible. After 
the initial hyperparameter grid search, we used the saved 
hyperparameters to train and test a model using each of 
the remaining four train/test splits of the dataset (which 
were not used for hyperparameter tuning). The final 
scores (precision, recall, and F1) we report are averaged 
across individuals taken from these four train/test splits.

All of the models we trained involve some randomness 
in the training process, which can introduce variance into 
model performance [81]. In addition, model performance 
varies between different individuals. Understanding 
the magnitude of this variation may be important when 
applying these techniques in new contexts.

To quantify variation in model test performance, for 
each model type we compute the standard deviation of 
each performance metric, taken across all individuals 
represented in the four test folds of the dataset that were 
not used for hyperparameter tuning. These values, given 
in parentheses in Figs. 4 and 5, therefore reflect variation 
in these scores due to differences in individual motion, as 
well as due to sources of variation in model training.

We do not perform significance tests using the variance 
in performance metrics computed through cross valida-
tion. In cross validation, data are reused in different train 
sets. The resulting metrics therefore violate the inde-
pendence assumptions of many statistical tests, leading 
to underestimates in the likelihood of type I error  [82]. 

Bootstrapping can produce better estimates of variance 
in model performance, but this involves high computa-
tional investment which may discourage future commu-
nity use of a benchmark [81]. Therefore, as is typical for 
ML, we report variance in model performance in order to 
give a sense for its magnitude.

Low and high frequency components of acceleration
A common technique in analysis of acceleration data is 
to isolate acceleration due to gravity using a high- or low-
pass filter  [53], resulting in separate static and dynamic 
acceleration channels. It has been shown that the choice 
of cutoff frequency can have a strong effect on subse-
quent analyses [47]. Often, this frequency is chosen based 
on expert knowledge of an individual’s physiology and 
typical movement patterns. As an alternative data-driven 
approach, we treated the cutoff frequency as a hyperpa-
rameter to be selected during model training. We use the 
terms “high frequency component” and “low frequency 
component” instead of “dynamic component” and “static 
component”, to reflect that in this data-driven approach, 
the cutoff frequency that leads to the best classification 
performance might not match the cutoff frequency that 
would isolate the acceleration due to gravity.

In more detail, for each raw acceleration channel, we 
apply a high-pass delay-free filter (using a linear-phase 
(symmetric) FIR filter with a Hamming window, fol-
lowed by group delay correction) to obtain the high fre-
quency component of the acceleration vector [83]. The 
high frequency component is then subtracted from the 
raw acceleration to obtain the low frequency compo-
nent of the acceleration vector. The separated channels 
are then passed on as input for the rest of the model. For 
each dataset, the specific cutoff frequencies we selected 
from were 0 Hz (no filtering), 0.1 Hz, 0.4 Hz, 1.6 Hz, and 

Fig. 4  F1 scores on the test set for supervised task. Here and elsewhere, the table is color-coded such that within a dataset (column), the brightest 
color indicates the best performing model for that metric, and the darkest color indicates the worst performing model. Numbers indicate 
the average score across individuals in the test folds, with the standard deviation in parentheses. The F1 score is macro-averaged across classes. Out 
of nine datasets, harnet does best on five datasets for F1, as indicated by the bright yellow entries in its row. CRNN does best on the other four 
datasets. For precision and recall results, see Figure S21

https://github.com/earthspecies/BEBE
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6.4 Hz. We omitted this step in the Rattlesnake dataset, 
where the high frequency components of the data had 
already been isolated. We also omitted this step for har-
net models, since they were pre-trained using raw accel-
eration data, and for models using wavelet features, since 
the wavelet transform already decomposes a signal into 
different frequency components. For the experiments in 
Sect.  3.2 (Fig.  5), we used the cutoff frequency selected 
during the full data experiments in Sect. 3.1 (Fig. 4).

Model Implementation and Training Details
The methods we compared included the classical ML 
models Random Forests (RF), Decision Tree (DT), and 
Support Vector Machine (SVM), which are widely used 
to classify behavior recorded by bio-loggers (reviewed in 
[69, 79, Table 2]). These methods make predictions based 
on a set of pre-computed summary statistics, also known 
as features. For each classical method, we compared 
two different feature sets. The first feature set (denoted 
Nathan) was introduced in [14]. The second feature set 
(denoted Wavelet) consisted of spectral features, com-
puted using a wavelet transform, inspired by  [25] (see 
Methods).

In addition to classical methods, we compared meth-
ods based on deep neural networks that make predictions 
based on raw bio-logger data. We compared two types 
of models that are commonly used in other ML applica-
tions: a one-dimensional convolutional neural network 
(CNN), and a convolutional-recurrent neural network 
(CRNN). These types of methods have been employed by 
some recent studies focused on classifying animal and 
human behavior [60, 63, 84].

Additionally, we compared a convolutional-recurrent 
neural network which had been pre-trained with self-
supervision, using human wrist-worn accelerometer data 
(harnet [61]). This network was pre-trained using over 
700,000 days of un-annotated human wrist-worn accel-
erometer data recorded at 30 Hz  [61]. The model was 
trained to predict whether these data had been modi-
fied, for instance by changing the direction of time, or by 
permuting the channels (Fig.  5A). We adapted this pre-
trained model to our behavior classification task, which 
required small modifications of the network architecture 
(Fig.  5B; see details below). We refer to this modified 
model as harnet frozen (or harnet for short).

Models were implemented in Python 3.8, using 
PyTorch 1.12  [85] and scikit-learn 1.1.1  [86]. We used a 
variety of computing hardware depending on their avail-
ability through our computing platform (Google Cloud 
Platform). Deep neural networks (CNN, CRNN, harnet) 
used GPUs, and the rest of the models used CPUs. Our 
pool of GPUs included NVIDIA A100 and NVIDIA V100 
GPUs. A single GPU was used to train each model. Our 

pool of CPUs included machines with 16, 32, 64, 112 and 
176 virtual CPUs.

For full implementation details, we refer readers to the 
source code,2 which also contains the specific configura-
tions that were evaluated during hyperparameter optimi-
zation. For all models we trained, we weighted the loss 
associated with each behavior class in inverse propor-
tion to the frequency that that behavior occurred in the 
data; in initial experiments we found that this method 
for accounting for differences in behavior representa-
tion improved classification performance. For all the 
experiments presented, we trained over 2500 models for 
the purpose of hyperparameter tuning. For the hyper-
parameters that were then selected and used to obtain 
the reported results, we refer readers to our dataset 
repository.3

Supervised Neural Networks
All neural networks were implemented in PyTorch, with 
model-specific details given below. For each dataset 
in BEBE, we trained each type of model for 100 epochs 
using the Adam optimizer  [87]. In each epoch, we ran-
domly chose a subset of contiguous segments (clips) to 
use for training. The number of clips chosen per epoch 
was equal to twice the number of sampled time steps, 
divided by the clip length in samples. The clip length var-
ied between datasets, and is specified below.

We used categorical cross-entropy loss, weighted in 
proportion to annotation imbalance. We applied cosine 
learning rate decay  [88], and a batch size of 32. We 
masked all loss coming from sampled time steps anno-
tated as Unknown.
CNN and CRNN models CNN consists of two dilated 

convolutional layers, a linear (i.e. width-1 convolution) 
prediction head, and a softmax layer. CRNN consists of 
two dilated convolutional layers, a bidirectional gated 
recurrent unit (GRU), a linear prediction head, and a 
softmax layer. In both CNN and CRNN, all convolutional 
layers are followed by ReLU activations and batch nor-
malization. Each convolutional layer has 64 filters of size 
7, and the GRU layer has 64 hidden dimensions. The out-
puts of these models are interpreted as class probabilities. 
CRNN models for behavior classification have previously 
been used by [49, 57].

We used a default clip length of 2048 samples (the 
time this represents will vary with the sampling rate of 
the dataset). However, two datasets include some deploy-
ments with fewer than 2048 recorded samples. For these, 
we used a shorter clip length (Rattlesnake, 64 samples; 
Seals, 128 samples).

2  https://​github.​com/​earth​speci​es/​BEBE/ .
3  https://​zenodo.​org/​record/​79471​04 .

https://github.com/earthspecies/BEBE/
https://zenodo.org/record/7947104
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For our initial hyperparameter grid search, learning 
rate was selected from {1× 10−2, 3× 10−3, 1× 10−3}, 
and convolutional filter dilation was selected from 
{1, 3, 5}.

Harnet and its variations For harnet, we use the 
pre-trained model described in [61], and obtained model 
weights from https://​github.​com/​OxWea​rables/​ssl-​weara​
bles. For a description of the pre-training setup using 
700,000 h of un-annotated data from human wrist-worn 

Fig. 5  Self-supervised pre-training and reduced data setting. A Pre-training task (performed in [61]): The main component of our harnet model 
has a Resnet architecture [89]. The Resnet was pre-trained with un-annotated human wrist-worn accelerometer data, which was modified with one 
of a set of signal transformations (e.g. f0 = reversal in time). The network was trained to classify which transformation was applied to the original 
data. B In our harnet model, the input to the pre-trained Resnet was animal bio-logger data, without any modification to sampling rate. The 
outputs of the Resnet were passed to a recurrent neural network (RNN), which produced the behavior predictions. This full harnet model 
was then trained as shown in Fig. 3. C In the full data setting, four out of five folds are used to train the model in one-instance of cross validation. In 
the reduced data setting, only one fold is used for training while the test set is the same. In other words, approximately four times more individuals 
are included in the train set in the full data setting, than in the reduced data setting. D F1 scores for full data task. harnet frozen does best 
on five datasets and CRNN does best on three datasets. We omitted the RNN wavelet model from the full data experiments, due to high 
computational resources required for training, and its poor performance in the reduced data setting. E F1 scores for the reduced data task. harnet 
frozen does the best on all nine datasets. F Difference in F1 between reduced and full data tasks. For five datasets, harnet frozen shows 
the smallest decrease in F1 when using reduced data. For precision and recall results, see Figure S22

https://github.com/OxWearables/ssl-wearables
https://github.com/OxWearables/ssl-wearables
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accelerometers, see Fig.  5   and  [61]. As a default, we 
used the weights from the pre-trained model har-
net30 available at this repository. For the Rattlesnake 
and Seals datasets, we used the pre-trained model har-
net5 instead, since it was pre-trained on shorter dura-
tion clips. Both harnet30 and harnet5 consist of a 
sequence of convolution blocks, following [89]. Each pair 
of convolution blocks is separated by a pooling operation, 
which includes downsampling in the time domain. For 
our harnet model, we used the outputs of the second 
convolution block (of either harnet30 or harnet5), 
which had been downsampled by a factor of 4. These 
outputs were then upsampled to their original temporal 
duration, before being passed through a bidirectional 
GRU with 64 hidden dimensions, and finally a linear (i.e. 
width-1 convolution) prediction head. The weights of the 
GRU and linear layers were randomly initialized before 
training.

Because the model trained in [61] operated on tri-axial 
accelerometer data, we only passed tri-axial accelerom-
eter data through the convolutional blocks. To match the 
settings of the original pre-training setup, we normalized 
the acceleration channels so that the average magnitude 
of the acceleration vector was equal to 1. Additional data 
channels (depth, conductivity, and speed) were appended 
before being passed into the GRU. We omitted gyro-
scope channels; the data in these channels were relatively 
complex and outside the scope of the work of  [61]. For 
our harnet model, we froze all weights during training 
except those in the GRU and prediction head. Our model 
harnet unfrozen was identical to harnet, except 
we did not freeze any weights during training.

We evaluated several ablations of harnet (for results, 
see Fig.  5). The first, harnet random, has the same 
architecture as harnet and harnet unfrozen, 
except we used randomly initialized weights instead 
of the weights obtained by the pre-training procedure 
of  [61]. This ablation was intended to disentangle the 
effect of pre-training from the effect of using this particu-
lar model architecture. The weights of harnet random 
were all unfrozen during training.

The second ablation, RNN, omits the convolutional lay-
ers and passes the raw data directly into a GRU and linear 
prediction head. This ablation was intended to confirm 
that the improved performance of harnet was not due 
to the RNN architecture we used for the non-frozen part 
of the harnet model.

The third ablation, RNN wavelet, replaces the con-
volutional layers of harnet with a wavelet transform. 
Each data channel is transformed using a Morlet wave-
let transform, with 15 wavelets, using the scipy.
signal.cwt module  [86] (see details below). These 
wavelet transformed features are then passed into GRU 

and linear layers, as in our harnet model. This ablation 
was intended to confirm that the improved performance 
of harnet could not be matched by computing spectral 
features, which would not require an intensive pre-train-
ing step. We tuned two hyperparameters for the wavelet 
transform, ω and Cmax which are described in the follow-
ing section. We selected ω and Cmax from the same values 
as with the classical models.

For all the models described above, for our initial 
hyperparameter grid search, learning rate was selected 
from {1× 10−2, 3× 10−3, 1× 10−3} . To match the pre-
training setup of [61], we used a default clip length of 900 
samples, and a clip length of 150 samples for Rattlesnake 
and Seals datasets.

Features for classical models
We tested two sets of features for the classical models 
(RF, DT, and SVM). The first set (Nathan) consists of 
summary statistics derived from [14], which have been 
used or adapted in a variety of behavior classification 
problems (e.g.  [39, 68]). The second set are wavelet fea-
tures (Wavelet) [25], which are commonly used to iden-
tify periodic motions like steps or tail beats (e.g. [16, 33]).

For the Nathan feature set, we first defined the feature 
set for tri-axial accelerometer channels in the same way 
as [14]. For each time step t, we first computed the root-
mean-square amplitude q from the x, y, z-axes, as well as 
the high frequency component acceleration (as described 
above). Then, for the x,  y,  z-axes and q, we computed a 
basic set of features over a contiguous segment of data 
(clip) centered at t: mean, standard deviation, skew, 
kurtosis, maximum, minimum, 1-sample autocorrela-
tion, and best fit slope. We also computed three pair-
wise correlations between the x,  y,  z-axes, the circular 
variance of inclination for q-axis, the circular variance 
of azimuth for q-axis, and a quantity analogous to the 
mean overall dynamic body acceleration (ODBA) using 
the high frequency component acceleration. If there 
were any tri-axial gyroscope channels, we computed the 
basic set of features as well as the pairwise correlations 
on the x, y, z-channels. For other channels (conductivity, 
depth and speed), we only computed the basic features. 
Because the datasets included different channels, they 
had a different number of input features. For our initial 
grid search, the duration (in seconds) of the clip used for 
feature computation was selected from {0.5, 1, 2, 4, 8, 16} 
seconds. For the Dog dataset, this duration was selected 
from {0.5, 1, 2, 4, 8} seconds due to memory limitations.

For the Wavelet feature set, we normalized each 
channel independently (z-score), and then for each chan-
nel we followed the procedure in [25]. We computed the 
continuous wavelet transform using scipy.signal.
cwt with the complex Morlet wavelet function (scipy.
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signal.morlet2), using 15 wavelets per data channel. 
We tuned two hyperparameters for the wavelet trans-
form. The first hyperparameter, the dimensionless ω , 
controls the tradeoff between resolution in the time and 
frequency domains. The second, Cmax controls the largest 
wavelength (in seconds) out of the 15 wavelets used. The 
parameter ω was selected from {5, 10, 20} , and Cmax was 
selected from {1, 10, 100, 1000} . Once Cmax was fixed, the 
wavelength of the kth wavelet ( k = 0, 1, . . . , 14 ) was equal 

to Cmin ∗

(
Cmax
Cmin

)k/14
 . The minimum wavelength, Cmin , 

was set to 2/sr , where sr is the dataset-specific sampling 
rate.

Classical models
All classical models were implemented with Scikit-learn 
version 1.1.1, with model-specific details given below. We 
used loss functions weighted to account for annotation 
imbalance (corresponding to class_weight = bal-
anced). During training, we did not include any sampled 
time steps which were annotated as Unknown.

Random Forest RF was implemented using Random-
ForestClassifier from the sklearn.ensemble 
package. For each tree we used 1/10 of the available train-
ing data (max_samples = 0.1). Other than max_sam-
ples and class_weight, we used the default settings. 
The model consists of 100 decision trees.

Decision Tree DT was implemented using Decision-
TreeClassifier from the sklearn.tree package, 
using default settings except for class_weight.

Support Vector Machine SVM was implemented using 
LinearSVC from the sklearn.svm package, chosen 
for its scaling properties to large numbers of samples. 
We selected the algorithm to solve the primal optimiza-
tion problem (i.e., dual = False) because n_samples 
>n_features. Other than dual and class_weight, 
we used the default settings.

Results
Deep neural networks improve classification performance
We used the datasets and model evaluation framework in 
BEBE to compare different methods for predicting behav-
ior from bio-logger data. For each dataset, we compared 
the performance of three classical ML models with three 
deep neural networks. We predicted that neural network 
approaches would outperform the classical approaches 
we tested (Table 1, H1). The F1 scores for these models 
are given in Fig. 4, with precision and recall are presented 
in Supplemental Fig. S21.

In terms of classification F1 score, the methods we 
tested that were based on deep neural networks per-
formed the best on all nine datasets in BEBE, confirming 
hypothesis (H1). The top performing model was always 

either CRNN or harnet. The top performing deep neu-
ral net on a dataset achieved a F1 score that was 0.072 
greater, on average, than the F1 score of the top perform-
ing classical model on that dataset. Deep neural networks 
achieved the best recall on all datasets and the best preci-
sion in seven out of nine datasets.

Self‑supervised pre‑training enables low‑data applications
To evaluate the effectiveness of self-supervised pre-train-
ing for analysis of bio-logger data, we focus on the har-
net neural network. This network was pre-trained using 
over 700,000 days of un-annotated human wrist-worn 
accelerometer data recorded at 30 Hz [61].

We predicted that harnet would out-perform the 
alternative methods we tested (Table  1, H2). We meas-
ured the performance of harnet on each dataset in 
BEBE, after fine-tuning (Fig.  5B). To better understand 
the contribution of the pre-training step on performance, 
we compared these results with various ablations of 
harnet: RNN, RNN wavelet, and harnet random 
(for justification, see Methods). Additionally, we com-
pared harnet with CRNN and RF (Nathan), which 
were the best alternatives to harnet in Sect. 3.1. Finally, 
we also compared harnet with an alternative setup, 
harnet unfrozen, which had more tunable param-
eters (see Methods). The results of these comparisons 
are in Fig. 5D, with precision and recall scores in Supple-
mental Fig. S22. Gyroscope data were not included in the 
pre-training procedure of  [61], and so we omitted these 
channels when obtaining these results in order to con-
centrate on the effect of the pre-training methodology. 
Other channels (e.g. depth) were still included, following 
the procedure detailed in Methods.

In terms of F1 score, harnet achieved the top score 
on five of the nine datasets, partly confirming hypothesis 
(H2). In three of the remaining four cases, CRNN achieved 
the top score, and in the remaining case, the har-
net unfrozen variant achieved the top score. None 
of the ablations we tested approached the performance 
of harnet, indicating that the pre-training step, and 
not another design choice, was responsible for its high 
performance. The alternative setup for the pre-trained 
model, harnet unfrozen, achieved lower scores than 
harnet on eight of nine datasets (average F1 drop:.263).

To investigate the potential of self-supervised learning 
in low-data applications, we performed an additional set 
of computational experiments. For these, during cross 
validation, we trained each model using only one of five 
folds (rather than four of five) of the dataset (Fig. 5C). The 
folds used for testing remained the same. Because the 
folds partition the tagged individuals, this setting reflects 
a situation where the researcher can only annotate train-
ing data from a quarter of the tagged individuals. We 
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predicted that in this setting, harnet would outper-
form the alternative models we tested (Table 1, H3). The 
F1 scores of models in the reduced data setting are in 
Fig. 5E.

After reducing the amount of training data, the pre-
trained harnet model dropped in F1 performance by 
0.056 on average, as compared with a drop of 0.112 by 
CRNN and 0.069 by RF (Nathan) (Fig. 5F). Addition-
ally, harnet achieved the top F1 score on all nine data-
sets in the reduced data setting (Fig. 5E) and across most 
behavior classes (Supplemental Fig.   S23), and harnet 
achieved the best recall across all datasets. The abla-
tions of harnet consistently performed poorly, rela-
tive to other models, in this reduced data setting. Taken 
together, these results confirm hypothesis (H3).

For some behavior classes, model performance improves 
minimally with increased training data
Using BEBE, we investigated the variation in F1 score 
across different behavioral classes within a single data-
set. Using harnet in the full data setting, the inter-
class range in F1 score ranged from small (Crow dataset, 
range: [0.990,0.995], max-min difference: 0.0055) to large 
(Gull dataset, range: [0.0768, 0.955], max-min difference: 
0.878) (Fig.  6A, larger dots). This variation also existed 
in the reduced data setting, and for the CRNN and RF 
(Nathan) models (Fig.  6A, smaller dots; Supplemen-
tal Figs. S24–S25). We found that classes with relatively 
few training examples can perform as well as classes with 
many training examples (e.g., Sea turtle: Stay at surface 
vs. Swim).

Next, we examined the difference in performance 
between the reduced and full data settings. We predicted 
that model performance would improve minimally for 
some behavioral classes, when trained with four times as 
much training data (Table 1, H4; Fig. 6C). For harnet, 
the degree of improvement in per-class scores ranged 
from null (e.g., Rest dive in Whale dataset) to moder-
ate (Swim in Polar bear dataset:.26 improvement in F1 
score), with the median at 0.053 (Fig. 6B). Several classes 
with F1 scores lower than 0.9 in the reduced data setting 
showed small improvements (e.g., Rest in Seals dataset). 
This is consistent with what we would expect if predic-
tive performance for these behaviors had reached an 
invisible ceiling, but does not conclusively demonstrate 
it: increasing the data even further or switching models 
may improve performance on these classes. Nevertheless, 
we expect that such classes are unlikely to become highly 
recognizable even going beyond a fourfold increase in 
training data.

Finally, we quantified the extent to which one could use 
model performance in the reduced data setting to predict 
performance in the full data setting. For the three models 

we tested, there was a high degree of correlation between 
the per-class scores at these two data scales (harnet: 
r(47) = 0.96, p < 0.001 , CRNN: r(47) = 0.89, p < 0.001 , 
RF: r(47) = 0.94, p < 0.001 ; Fig. 6C). Last, we found that 
the rank ordering of classes within a dataset was con-
served when the amount of training data was reduced. 
Within a dataset, the rank correlation between per-class 
scores in the reduced and full data settings was typically 
high (see Supplemental Table  S1), indicating that simi-
lar classes performed better in the reduced and full data 
settings.

Conclusions
To support the development and application of meth-
ods for behavior classification in bio-logger data, we 
designed the Bio-logger Ethogram Benchmark (BEBE), 
a collection of nine annotated bio-logger datasets. BEBE 
is the largest, most diverse, publicly available bio-logger 
benchmark to date. As an example of how BEBE can be 
used by the community, we tested several hypotheses 
about ML methods applied to bio-logger data. Based on 
our results, we are able to make concrete suggestions for 
those designing studies that rely on ML to infer behavior 
from bio-logger data.

First, we found that methods based on deep neural 
networks out-performed the classical ML methods we 
tested (Table  1, H1; Fig.  4). While a similar trend has 
been observed in other applications of ML, the majority 
of studies involving bio-logger data still rely on classical 
methods such as random forests  [69, Table 2]. Contrary 
to this trend, we suggest that researchers use methods 
based on deep neural networks in studies where the main 
objective for ML is to maximize the accuracy of the pre-
dicted behavior labels, and with datasets of comparable 
size to those in BEBE. In particular, for the behavior clas-
sification task we describe in this work, we suggest the 
use of a convolutional-recurrent architecture (which was 
used by both CRNN and harnet). In contrast to random 
forests, these deep neural networks learn their features 
directly from data and therefore do not require an inten-
sive feature engineering step. Additionally, the domi-
nance of CRNN over CNN across datasets demonstrates 
the importance of incorporating time scale as a learnable 
parameter (in contrast to RF and CNN where it is fixed).

While we found evidence that convolutional-recur-
rent networks tend to outperform feature-based meth-
ods like RF, they also tend to be more labor-intensive to 
implement and train. Thus, studies employing ML-based 
behavior classification may want to weigh the benefits of 
adopting these methods against their costs. Classification 
errors can propagate into downstream analyses, increas-
ing the need to correct results for systematic bias  [90]. 



Page 19 of 25Hoffman et al. Movement Ecology           (2024) 12:78 	

Fig. 6  Variation in model performance is conserved across data scales. A Performance of harnet in reduced and full data settings, by behavior 
class. Size of the marker indicates training dataset size (mean across folds). To help visualize the type of behavior, color indicates the percentile 
of the average root-mean-square (rms) amplitude of datapoints in that class, as compared to the root-mean-square amplitude of all labeled 
datapoints. Performance typically improves from the reduced to full data setting, but the rank order of behavior classes remains similar. B 
Histogram of per-behavior improvement in harnet’s F1 score across all datasets, moving from reduced data to full data. Colors indicate F1 score 
in the reduced data setting. C Performance in reduced data setting versus performance in full data setting, for three models. Each point represents 
one behavioral class. If performance is the same in the reduced and full data settings, the point lies on the line. For all three models, there is a high 
correlation between the reduced and full data settings. CRNN shows the greatest improvements in F1 score with increased data (although CRNN 
and harnet have comparable performance in the full data setting; Fig. 5D
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Additionally, classification errors can increase uncer-
tainty in downstream analyses. The uncertainty contrib-
uted by model classification errors can be quantified, 
for example, using bootstrap sampling from a confusion 
matrix  [91]. Researchers may consider beginning with a 
feature-based model, such as RF, and adopting higher-
performance methods if the feature-based method does 
not predict behaviors accurately enough to answer their 
ultimate scientific question.

We also found that a neural network pre-trained with 
self-supervision using a large amount of human wrist-
worn accelerometer data achieved the best performance 
on just over half of the datasets (Table 1, H2; Fig. 4). This 
pattern became more pronounced when the amount of 
training data was reduced (Table  1, H3; Fig.  5F). Deep 
neural networks without self-supervision were not appre-
ciably better than random forests in this reduced data 
setting (CRNN and harnet random vs. RF; Fig.  5E). 
Therefore, we suggest that studies examine adapting 
pre-trained neural networks (such as  [61]), rather than 
training a neural network from scratch. This approach 
is especially promising for improving behavior classi-
fication in  situations where a relatively small amount of 
annotated data is available, for example, due to the dif-
ficulty of obtaining ground truth behavior. Self-super-
vision could complement the use of surrogate species, 
which has had variable levels of success [22, 23, 92]. We 
believe this performance is particularly notable since the 
pre-training data came from only one species (humans, 
represented in only one dataset in BEBE), and came from 
only one attachment position (wrist, not represented in 
BEBE). Additionally, the pre-training data were recorded 
at 30 Hz (different from all datasets in BEBE), and we did 
not adjust for differences in sampling rate during fine-
tuning. Last, one limitation of this approach was that the 
pre-training involved only data from accelerometers. A 
potential future direction would be to perform pre-train-
ing using data from more diverse taxa, using a wider vari-
ety of tag placements, sampling rates, and sensor types.

Finally, we found that model performance improves 
minimally for some behaviors, when increasing training 
data by adding individuals (Table 1, H4; Fig. 6B). Anno-
tating a large train set may not provide sufficient benefit 
if some of the behaviors of interest are inherently difficult 
to identify from the available sensors. We also found that 
per-class model performance is correlated across data 
scales (Fig. 6C). This suggests that, as a part of designing a 
data analysis procedure, it may be worthwhile to attempt 
the analysis after annotating a small portion of the avail-
able data. This could provide a sense of the expected 
relative per-behavior model performance, and allow 
for adjustments to the ethogram if the performance is 
unlikely to reach the range necessary to address the study 

question; for example, one might decide to reduce the 
number of behaviors in the ethogram in order to improve 
classification performance  [15, 21]. With a diversity of 
bio-logging studies represented, BEBE may provide a 
shared resource for practitioners to identify which behav-
iors are easily discriminated from sensor data. While we 
cannot conclusively determine whether we reached ceil-
ing performance for behaviors in BEBE with the experi-
ments presented, we found that some behaviors showed 
minimal improvement with more training data (Fig.  6). 
Therefore, when using BEBE as a benchmark, we sug-
gest that researchers track per-behavior performance 
improvements.

An important aspect of BEBE is that the data and eval-
uation code is openly available. This allows others to test 
hypotheses beyond those in Table  1, and to test future, 
yet to be developed ML methods. For example, future 
work could employ BEBE to systematically test different 
data augmentation techniques such as those suggested 
by  [49], intended to improve performance with a small 
amount of annotated data. Additionally, it is possible that 
one could improve upon the conclusions in this article. 
For example, when testing (H1), for the classical models 
we tested, we used our own implementation of one of 
two types of generic hand-engineered features as model 
inputs  [14, 25]. It is possible that other feature sets or 
model types would improve on the performance of the 
models we evaluated. For example, Wilson et al. [20], sug-
gest using features tailored to the bio-mechanics of spe-
cific behaviors of interest. (For instance, to detect feeding 
in sea turtles, Jeantet et al. [18] pre-segmented data based 
on the variance in the angular speed in the sagittal plane.) 
Using BEBE as a common framework for comparison, 
others can interrogate the results presented here and 
improve suggestions for the bio-logging community.

A number of prior works have tested multiple ML algo-
rithms for behavior classification, typically on a single 
dataset (e.g., [14, 16, 24]). We extend this trend by testing 
multiple ML algorithms on multiple datasets. Bio-logger 
datasets tend to be very heterogenous, and can differ in 
study system, sensor type, sampling rate, ethogram defi-
nition and train-test split design. When comparing the 
results of disparate studies, it can be difficult to disen-
tangle the effect of model design from the effects of the 
dataset. While we observed that there is a large amount 
of variability in model performance between datasets, 
we found that certain techniques performed consistently 
well (relative to alternatives). Therefore, by systematically 
testing techniques in a variety of settings, we are able to 
observe patterns in how ML methods are applied to bio-
logger data, generally.

While this study focuses on supervised behavior classi-
fication, unsupervised behavior classification (which does 
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not rely on labeled data) is of interest where there is lit-
tle knowledge of relevant behaviors or where behavior is 
difficult to observe [25, 50]. Based on an analysis of two 
seabird datasets, Sur et al. [24] argue that these methods 
perform worse than supervised methods in recovering 
pre-defined behaviors. They are also difficult to system-
atically evaluate. It is typically unclear what aspect of 
behavior they target and their outputs therefore require 
interpretation. To address this particular challenge, etho-
grams that are defined hierarchically, i.e., with behaviors 
composed of multiple more specific behaviors (e.g., [15, 
18, 39, 53]), may provide a promising basis for evaluation, 
by providing insight into which aspects of behavior are 
modeled by a certain method.

We note limitations and potential improvements to 
our approach. First, the datasets in BEBE are primarily 
based on tri-axial accelerometers, which may not be able 
to represent motion accurately enough to distinguish 
all behaviors of interest  [73]. Bio-loggers incorporating 
other sensor types, such as gyroscopes, audio, and video, 
will likely give researchers more complete characteriza-
tions of individuals’ behaviors. Other benchmarks exist 
for animal behavior detection entirely from video [44, 
45] but these do not focus on bio-logger data, which may 
present additional challenges such as intermittent video 
logging or a limited field of view [22, 35]. A future bench-
mark could include data types not examined in BEBE.

Second, bio-loggers can shed new light on conserva-
tion problems and interventions, as well as on patterns 
of animal behavior and energy expenditure  [7, 11, 43, 
93, 94]. In this study, we provide a standardized task for 
one extremely common analysis, behavior classification. 
Depending on the intended application, other analyses 
may be useful. These could include detecting unusual 
patterns in data [95] that may indicate changes in behav-
ior or environmental conditions [96], or counting the rate 
at which a specific type of behavioral event occurs  [9]. 
Future studies could use BEBE datasets, but formalize 
new tasks and evaluation metrics for use-cases that arise 
in these settings. In addition, studies based on BEBE 
could explore evaluation metrics to promote advances 
in on-device ML  [35], such as device energy consump-
tion metrics to assess on-device feasibility. This could 
additionally give insight into environmental impacts due 
to model usage [43, 97, 98]. Overall, we expect BEBE can 
support researchers by facilitating access to a breadth of 
study systems, which may involve using our standard task 
or creating different uses of BEBE datasets.

Third, there is variation in how the datasets were col-
lected and annotated, and BEBE has limited taxonomic 
spread and no taxonomic replication. While some varia-
tion is desirable in order to promote generalizable meth-
ods development, it also complicates between-dataset 

or between-behavior comparisons. These types of com-
parisons could illuminate how a model’s predictive abil-
ity is related to biological factors, such as phylogeny or 
body size, and to non-biological factors, such as the 
choice of ethogram or data modalities included. It may 
be possible to quantify the effects of these factors using a 
benchmark with more datasets available and better data 
standardization.

Fourth, in our standardized evaluation framework, we 
exclude Unknown behaviors in the training objective and 
evaluation metric. The presented models assume that 
the provided known behavior labels are the only possible 
categories, and will apply one of them to all datapoints. 
This would be disadvantageous in applying supervised 
learning to bio-logger data where we usually know some 
behaviors have not been labeled. Approaches to account-
ing for unknown behaviors include using an “other” cate-
gory [18, 39] and thresholding classification probabilities 
to make a prediction  [99]. One potential future usage 
of BEBE would be to test these different methodologies 
for accounting for unknown behaviors, to elucidate their 
impact on recovering the behaviors of interest.

Finally, human-generated behavior annotations are 
susceptible to error, due to e.g. difficulty in observing a 
behavior, mistakes during data entry, or differences in 
human judgment. To mitigate this, behaviors can be 
annotated by multiple raters, and then checked against 
one another. However, this can be extremely time con-
suming, and in BEBE only the authors of the Rattlesnake, 
Whale, and Seal datasets performed this step. In spite of 
this potential annotation noise, we were able to observe 
consistent patterns in model performance across multi-
ple datasets in BEBE. In the future, if more studies report 
between-rater agreement in annotations, it may become 
possible to quantify the magnitude of these errors.

Call for Collaboration The code repository includes 
instructions on how datasets outside of BEBE may be 
formatted for use with the methods in BEBE. Inter-
ested researchers may make their formatted datasets 
discoverable from the BEBE repository. These datasets 
would become easily available for others, but would not 
become part of the task in this paper, which must remain 
standardized.

However, it is typical for benchmarks to be updated 
when key challenges are sufficiently met  [100]. In light 
of the preceding discussion, we seek community contri-
butions that could lead to a more comprehensive bench-
mark, with three main objectives: 

1.	 To provide researchers with means to understand 
how modeling decisions influence model perfor-
mance,
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2.	 To enable analyses which compare recorded behavior 
across taxa, and

3.	 To formalize tasks which reflect a variety of real-
world applications, including conservation applica-
tions.

We expect these objectives will be best served by a 
benchmark with more diversity in its representation of 
taxa, data types, tag placement positions, sensor configu-
rations, ethograms, and modeling tasks. Possible contri-
butions include (1) annotated datasets to be made openly 
available to the research community (whether already 
available or not), (2) design of data and annotation stand-
ardization, and (3) design of benchmark tasks that reflect 
applications of ML and bio-logger technology. For any 
ensuing publications, contributors would have the option 
to co-author the manuscript. Interested researchers can 
follow the instructions at https://​github.​com/​earth​speci​
es/​BEBE.

We have proposed that benchmarks can encourage the 
development and rigorous evaluation of ML methods for 
behavioral ecology. We envision many possible future 
outcomes for this line of research: for example, best prac-
tices for bio-logger data analysis, an ML-based toolkit 
that can be adapted to different study systems, or pow-
erful species-agnostic tools that can be applied across 
taxa and sensor types. This could, in turn, inform more 
effective conservation interventions, as well as guide the 
development and testing of hypotheses about animal 
behavior.
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