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Abstract

We introduce a methodology to study the possible matter flows of an

ecosystem defined by observational biomass data and realistic biological

constraints. The flows belong to a polyhedron in a multi dimensional

space making statistical exploration difficult in practice; instead, we pro-

pose to solve a convex optimization problem. Five criteria corresponding

to ecological network indices have been selected to be used as convex goal

functions. Numerical results show that the method is fast and can be

used for large systems. Minimum flow solutions are analyzed using flow

decomposition in paths and circuits. Their consistency is also tested by

introducing a system of differential equations for the biomasses and exam-

ining the stability of the biomass fixed point. The method is illustrated

and explained throughout the text on an ecosystem toy model. It is also

applied to realistic food models.
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1 Introduction

Functional ecology is based on seminal works from the XXth century centered
on the object ecosystem. From the first definition of an ecosystem by [40] to the
construction of its main concepts by [26], [34] or [28], among others, ecosystems
have been described as entities gathering living organisms and their habitat,
and described as dynamic entities, based on exchanges of organic matter. From
those works were derived a system analysis of these exchanges based on emergent
properties; see [35], [36], [41], [12].

The description of ecosystems is often based on networks of interactions, of
different types. For terrestrial ecosystems, recent developments concern different
types of interactions, sometimes gathered into a common model called multiplex
[10]. In marine ecology, the most studied interactions are trophic, i.e. the
interactions between predators and preys; they form a network called a food

web. Food webs in marine ecosystem are highly complex, compared to the
terrestrial ones [1] and have been described by numerous models. These models
have been widely used to describe the impact of human activities on marine
ecosystems [19]. They are also important tools for the sustainable management
of marine and coastal environments [24].

The trophic modeling of food webs has been mainly based on weighted net-
works; see for example the Ecopath-Ecosim-Ecospace models [6]. There, each
link corresponds to a transfer of organic matter between two trophic compart-
ments, collecting individuals of similar feeding behaviors and metabolisms, and
with the same predators. Some fluxes can be estimated using laboratory exper-
iments that are often associated to field studies, however many of them remain
unknown. To take into account these unknown flux values within food webs, a
class of models was developed called Linear Inverse Modeling (LIM) [32]. LIM
assumes a steady state for the biomass of all compartments – a mass balanced
system. This yields a set of linear equations (equalities) describing the steady
state or mass balance. Then, constraints are added from field measurements of
mass transfers like local estimations of primary production, respiration or diet
contents. Additional constraints come from experiments or the study of other
ecosystems. All these constraints constitute a set of linear equalities and in-
equalities defining a bounded multidimensional polyhedron, called a polytope,
within which lie all realistic solutions to the problem. Such solutions are termed
flows in graph theory.

In the literature on ecosystems, the polytope is explored using a random
walk method, called Monte Carlo Markov Chain – see [21],[22], [44] and [45] –
or Monte Carlo Linear Inverse Modeling (MC-LIM) – see [21] and [44]. Linear
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Figure 1: Schematic drawing of the polytope with the optima for different goal
functions.

Inverse Monte Carlo Markov Chain (LIM-MCMC) models are mass balanced.
This stochastic approach is an indirect way to consider the variability of the
living; see [32] [45]. As such, they provide a wide range of possible results,
and not a single value like other approaches. However, for large systems, this
exploration of the polytope can be very long, with a very large number of
simulation runs.

Gathering indices from various domains, from information theory to input-
output analysis in econometry, several Ecological Network Analysis indices have
been introduced for describing the organization of the flows and the functioning
of the ecosystem [25], or as criterions of ecosystem maturity [42]; One such
simple index is the sum of the flow components squared [46]; see [18], [22], [38],
and [43] for many others. These indices assume that the flows are given, but
LIM results can be used to compute approximated values.

In this article, we propose to use these indices as goal functions and combine
them with the constraints to set up an optimization problem. This procedure
has a low computing time compared to the LIM MC-MC method and directly
yields a unique flow solution within the polytope, if the goal function is con-
vex. Note that [38] combined the LIM-MCMC exploration of the polytope to
comparison of different indices to select a unique flow vector.

Fig. 1 presents a schematic picture of the polytope in flow space f together
with three minima corresponding to three convex goal functions. To compare
the optima obtained through optimization of goal functions, say f1, f2 and f3,
a first step is to examine the main flows from an ecological point of view and see
if they appear reasonable. In a more quantitative approach, one can decompose
these flows into paths and circuits and again check these using ecology know-
how. We also suggest, using simple rules, to introduce a dynamical system
satisfied by the biomasses and whose coefficients depend on the flow solution
f1, f2 or f3. This dynamical system has a fixed point – the given biomasses,
whose stability can be determined. If the fixed point is stable, then the model
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is consistent, say for example f2 in Fig. 1. Then the optimum f2 yields an
acceptable solution to describe the ecosystem.

Using a six species toy model inspired by a realistic ecosystem, we proceed
to illustrate this methodology. We do not pretend that the model is realistic
but we focus on the analysis and present it in as much detail as possible. This
detailed presentation is easy to follow on the six species system and naturally
extends to an ecosystem of any size. We write explicitly the constraints defining
the polytope in Section 2. In Section 3, we discuss flow decomposition into
paths and circuits, a general result from the theory of polyhedra. The full
optimization problem is presented in Section 4. First we present the five convex
goal functions, three of which are independent of the constraints and two depend
on the constraints. The results of the optimization problem are analyzed using
the flow decomposition of Section 3. From these flow solutions, we write the
formal dynamical system for the biomasses and examine the stability of the fixed
point in Section 5. We show that the fixed point is always marginally stable,
in the absence of detritus, in Section 6. We show that the detritus controls
the stability and give a sufficient condition for the fixed point to be stable.
Conclusions and application to real data are presented in Section 7.

2 The model and notation

A realistic model of a marine ecosystem with nineteen species was introduced
and analyzed by the authors in [33]. To focus on the method of analysis, we
simplified this model and reduced it to an ecosystem of six species. This method-
ology can be extended to ecosystems or arbitrary size; in Section 6, we give some
results for the realistic ecosystem studied in [33].

The graph of this simplified 6-species ecosystem is presented in Fig. 2. The
ordered types of living organisms with biomasses – circles in Fig. 2 – are:

Phytoplankton ≡ PHY1, Zooplankton ≡ ZOO3 , Bivalve ≡ BIV4,
Fish benthic feeders ≡ FBF5, Bacteria ≡ BAC6.

The other vertices – rectangular boxes in Fig. 2 – are:

Detritus ≡ DET2, Photosynthesis of phytoplankton ≡ FIX7,
Respiration ≡ RES9, Fishing, Trawl, Dredge,... ≡ LOS10,
Import to system (ability of a species to move geographically

in order to feed) ≡ IMP8.

The arrows between the compartments (edges between vertices) represent mat-
ter flows that are inferred by ecologists. Following graph theory, terminology
such oriented edges will be denoted arcs.

We denote by S the set of all vertices including the detritus DET2,

S = {PHY 1, DET 2, ZOO3, BIV 4, FBF5, BAC6},
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Figure 2: The 6-species model ecosystem described in Section 2.
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with S′ = S − {DET 2} the set of all species vertices, and E the set of all arcs
– denoted by ij when going from vertice i to vertice j.

The central mathematical object of this article is the flow.

Definition 2.1 Let the successors and predecessors of a vertice i be N+(i) =
{vertices j, ij ∈ E} and N−(i) = {vertices j, ji ∈ E}.

A flow is a vector, of dimension the number of arcs with non negative com-

ponents, satisfying Kirchoff law on all vertices of S,

∑

j∈N+(i)

fi,j −
∑

j∈N−(i)

fj,i = 0, i ∈ S, (1)

In many situations, all biomasses Bi of the species i can be measured with
accuracy. On the other hand, the flow components fi,j are much more difficult
to evaluate. Therefore, we will adopt here the standard viewpoint that the
biomasses are given and the flows between nodes are unknown.

2.1 Biological constraints

The flow components fi,j between the compartments satisfy biological con-
straints. For example, a fish cannot eat more that a certain percentage of
its biomass. When defining the constraints, we gather all available information,
if possible from studies of the local ecosystem, if not, from ecosystems similar to
ours. In absence of information, the constraints are derived from experiments
or from empirical equations.

Definition 2.2 For all species i ∈ S, the production Pi is

Pi =
∑

j∈S′ fj,i − fi,res − fi,det,

where fi,res is the respiration flow and fi,det is the excretion flow – assuming it

goes to the detritus.

Among non species compartments (vertices), the detritus plays a singular
role as the only one for which flows go in and out of. It is then natural to assume
for it a Kirchoff law where in-going equal out-going flows. For the species vertices
in S′, the following constraints are imposed by biological observations through
nonnegative coefficients c. These coefficients come from field measurements of
mass transfers like local estimations of primary production, respiration or diet
contents. They can also be estimated from experiments or the study of other
ecosystems.

Positivity of the flow components fi,j ≥ 0, for all ij ∈ E.
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Kirchoff law at the vertices Equations (1) express the conservation of mass
at each species vertex.

Primary production constraint The production P1 of the entry in the
ecosystem Phy1 is bounded,

c−pro ≤ P1 ≤ c+pro.

This constraint comes from a local study estimating the carbon incorpo-
rated, with enrichments in 13Cu a stable isotope of carbon, compared with
studies based on an estimation of the activity of photosystems using pulse
amplitude modulation [30].

Respiratory constraints The respiration flow fi,res of each species i is bounded,

c−res,i

∑

j∈N−(i)

fj,i ≤ fi,res ≤ c+res,i

∑

j∈N−(i)

fj,i, for all i ∈ S′.

Excretion constraints The excretion of all species i but the phytoplankton
is bounded,

c−det,i

∑

j∈N−(i)

fj,i ≤ fi,det ≤ c+det,i

∑

j∈N−(i)

fj,i, for all i ∈ S′, i 6= PHY1.

The phytoplankton excretion is bounded too,

c−det,phyPphy ≤ fphy,det ≤ c+det,phyPphy.

Food conversion efficiencies constraints The production of a species i is
constrained by bounds depending on the entering flow of species i

c−eff,i

∑

j∈N−(i)

fj,i ≤ Pi ≤ c+eff,i

∑

j∈N−(i)

fj,i, for all i ∈ S′.

Production related to biomass constraints The production of a species i
is constrained by bounds depending on its biomass Bi,

c−bio,iBi ≤ Pi ≤ c+bio,iBi, for all i ∈ S′,

Diet constraints The entry flow fj,i for species i is constrained by bounds
depending on the sum of the entry flow of this species,

c−diet,i

∑

j∈N−(i)

fj,i ≤ fj,i ≤ c+diet,i

∑

j∈N−(i)

fj,i, for all i ∈ S′.

Diet information is derived from stomach content analyses; see e.g. [9].
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Different empirical equations are gathered to define relationships between
production and biomass or consumption and biomass, or respiration and con-
sumption; see [3], [11]. These equations use the shape of the caudal fin, the
individual weight, temperature, growth, etc. The individual mass and total
biomass per km2 values are estimated from local field studies [8] or field studies
from a similar ecosystem if not available; see, e.g., for zooplankton [37].

All above constraints can be summarized in the following set of equations,
where fi is the total flow entering a species i.

fi,j ≥ 0, ij ∈ E, (2)

fi =
∑

j∈N−(i) fj,i, i ∈ S, (3)
∑

j∈N+(i) fi,j −
∑

j∈N−(i) fj,i = 0, i ∈ S, (4)

f1 − f1,res − f1,det − c+pro ≤ 0, (5)

−f1 + f1,res + f1,det + c−pro ≤ 0, (6)

−c+res,ifi + fi,res ≤ 0, i ∈ S′, (7)

c−res,ifi − fi,res ≤ 0, i ∈ S′, (8)

−c+det,ifi + fi,det ≤ 0, i ∈ S′, i 6= PHY1 (9)

c−det,ifi − fi,det ≤ 0, i ∈ S′, i 6= PHY1 (10)

−c+det,phyPphy + fphy,det ≤ 0, (11)

−fi + fi,res + fi,det + c−eff,ifi ≤ 0, i ∈ S′, (12)

fi − fi,res − fi,det − c+bio,iBi ≤ 0, i ∈ S′, (13)

−fi + fi,res + fi,det + c−bio,iBi ≤ 0, i ∈ S′, (14)

fj,i − c+diet,i,jfi ≤ 0, j ∈ S, i ∈ S′, (15)

−fj,i + c−diet,i,jfi ≤ 0, j ∈ S, i ∈ S′. (16)

For the 6-species ecosystem defined in Fig. 2, these constraints lead to
the bounds on the flows shown in Table 1. More precisely, for example, the
bounds on f1,2 are obtained by minimizing or maximizing f1,2 together with
the constraints (2) to (16).

3 Flow decomposition

Since the constraints (2) to (16) are all linear, the defined domain is polyhedral.
A polyhedron in Rn is an intersection of a finite number of half-spaces, in other
words P = {x ∈ Rn|Ax ≤ b}, where A is an n′ × n matrix with n′ > n and
b ∈ Rn. A bounded polyhedron is called a polytope.

The decomposition P = Q+C for all polyhedrons P , with Q a polytope and
C a cone, is classical; see Nemhauser and Wolsey [31]. Since Q and C are convex
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Components bounds
f1,2 [10.300 ; 51.600]
f1,3 [0.000 ; 136.181]
f1,4 [35.818 ; 172.000]
f1,6 [0.000 ; 96.498]
f1,9 [5.963 ; 95.828]
f1,10 [0.000 ; 129.668]
f2,3 [0.000 ; 27.892]
f2,4 [9.768 ; 92.615]
f2,6 [0.000 ; 271.796]

Components bounds
f3,2 [0.000 ; 82.036]
f3,3 [0.000 ; 16.407]
f3,4 [0.000 ; 39.002]
f3,5 [0.000 ; 35.445]
f3,9 [0.000 ; 49.222]
f3,10 [0.000 ; 78.113]
f4,2 [11.722 ; 111.138]
f4,5 [0.000 ; 35.445]
f4,9 [18.235 ; 197.447]
f4,10 [0.000 ; 78.260]

Components bounds
f5,2 [0.638 ; 35.445]
f5,5 [0.000 ; 6.380]
f5,9 [3.190 ; 31.901]
f5,10 [0.000 ; 6.380]

Components bounds
f6,2 [0.000 ; 112.581]
f6,9 [0.000 ; 180.966]
f6,10 [0.000 ; 192.996]
f7,1 [119.263 ; 319.428]
f8,5 [0.000 ; 35.445]

Table 1: Bounds on the flow components for the 6-species ecosystem of Fig. 2.

sets, any point in P can be expressed as the sum of a convex combination of the
extreme points of Q (the vertices) and a combination of the extreme rays of C
with non negative coefficients :

x =
∑

i∈I

αiq
i +
∑

j∈J

βjr
j , (17)

where I is the index set of the vertices of Q, J the index set of the extreme rays
of C and the coefficients αi satisfy

∑

i∈I αi = 1 and αi, βj are non negative.

For webs of flows, the vertices of Q are indicator vectors of elementary paths
and the extreme rays are – up to a constant coefficient – indicator vectors of
elementary circuits of the web (paths that begin and ends at the same vertex).
Therefore any numerical solution of such an ecological system can be interpreted
in terms of paths and circuits. A linked important notion is the flow value.

Definition 3.1 For a given path of circuit, the flow value is the smallest flux

for all arcs of the path or circuit.

Usually, the decomposition (17) is not unique. However, the largest flow values
of the network will make some paths or circuits necessary in any decomposi-
tion, and hence important for interpreting the obtained ecosystem solution. An
algorithm to find all necessary paths or circuits is the following:

Repeat

• Find the path or circuit with largest value α;
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• Take out α from the flow components of the arcs of this path or circuit;

until stopping criterion is met.

Such an analysis assumes that the numerical values of the flows are known
and satisfy the biological constraints. Unfortunately, such exact numerical val-
ues are generally unavailable, and their a priori approximated values do not sat-
isfy the constraints especially the conservation ones. The next section presents
an optimization approach addressing this issue. A flow solution is computed
from the knowledge of only the biomasses and some approximated values of
the flows, or intervals of approximated values. Then, examples of paths and
circuits extracted using the above method of flow decomposition are given for
the 6-species network.

4 The Optimization problem

4.1 Goal functions

We consider five goal functions, the most classical least squares, Ecological Net-
work Analysis indices, and functions adapted from information theory. All are
convex, yielding a unique optimum corresponding to a unique functioning state
of the system. An important characteristics is whether the goal function in-
cludes information from the constraints or not. This separates the functions in
two classes.

In one class, no information is used from the constraints. The first function
corresponds to the quadratic energy, the classical least squares method, and the
solution will be the minimum of

F1(f) =
∑

ij∈E

f2
i,j . (18)

The second function is minus Shannon entropy from information theory [5],
introduced for ecological systems in 1955 in [28],

F2(f) =
∑

ij∈E

pi,j ln(pi,j) =
∑

ij∈E

fi,j

f..
ln

(

fi,j

f..

)

, (19)

where the sum of all flows is f.. =
∑

ij∈E fi,j , and the proportion of flows from
vertex i to vertex j is

pi,j =
fi,j

f..
. (20)

Classically, entropy is a concave function and is to be maximized. Here, for prac-
tical purposes, we only deal with convex goal functions and therefore changed
the sign. With this sign, F2 is convex – see Appendix 2.
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Finally, the third function is minus the system redundancy (overhead) in-
troduced in [42] as

F3(f) =
∑

ij∈E

pi,j ln

(

pi,j

pi.

pi,j

p.j

)

=
∑

ij∈E

fi,j

f..
ln

(

f2
i,j

fi.f.j

)

, (21)

where the marginal proportions are

pi. =
∑

j∈S: ij∈E

pi,j and p.j =
∑

i∈S: ij∈E

pi,j ;

note that the sum is on all i or j such that ij is an arc of E. As for the entropy,
with this choice of sign, F3 is convex – see Appendix 2.

In information theory terms, −F2 is the Shannon entropy of the system and
−F3 is a symmetrized conditional entropy; see [5] and also [43] for details on
such entropic indexes. Note that, although it is a well-known Ecological Network
Analysis index, we do not consider the ascendency of [15] because it is neither
convex nor concave – see Appendix 2.

In the other class, the goal functions incorporate information from the con-
straints. The most classical quantity in this aim in information theory is the
Kullback-Leibler divergence introduced in [23], that measures a ”distance” be-
tween two distributions,

F4(f) = K(f |f∗) =
∑

ij∈E

pi,j ln

(

pi,j

p∗ij

)

, (22)

where the proportions are given in (20). The divergence is not a mathematical
distance because it is not symmetric in p and p∗. Still, it is nonnegative and
null only if p = p∗, and minimizing K determines the projection in terms of
divergence of the reference f∗ (or p∗) on the set of solutions f to the constraints;
see [5] and [7]. A natural way, that makes sense in ecology, to include the
information from the constraints is to set all f∗

ij as the middle of the constraint

intervals [fij
min, fij

max]. Note that F2 is the Kullback-Leibler divergence where
f∗ is the uniform distribution on the flows. This uniform distribution is usually
not a flow; this confirms the importance of using graph theory to describe such
systems.

Finally, a simple generalization of the quadratic function F1 is

F5(f) =
∑

ij∈E

(fi,j − f∗
i,j)

2. (23)

4.2 The full optimization problem

Combining the biological constraints (2) to (16) with the goal functions (18) to
(23) yields the well posed convex optimization problem in a positive polytope
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of Rn,

min
f

F, (24)

with constraints (2)− (16),

where F can be any one of the five goal functions given in (18) to (23).

A well suited method to solve (24) is the Sequential Quadratic Program-
ming (SQP) which uses an Augmented Lagrangian Solver; see [2] contained
in the R library NlcOptim [4]. We used the R software infrastructure for the
optimization. The algorithm is presented in Appendix 1.

The flows corresponding to the optimum for the five different goal functions
and the 6-species ecosystem are presented in Table 2. Using the flow decom-
position estimation introduced in the previous section, we computed the main
paths and the circuits for each flow solution. These are shown respectively in
black and green in Fig. 3.

For instance for the graph minimizing F1, the main paths/circuits are:

FIX7
33
−→ PHY1

33
−→ LOS10,

FIX7
29
−→ PHY1

29
−→ BIV4

29
−→ RES9, (25)

BIV4
17
−→ DET2

17
−→ BIV4.

Fig. 3 shows the graph with the largest obtained flows. The flows obtained
for F4 and F5 appear as the most expected results as the largest flow components
are located at the low trophic levels, corresponding to the classical pyramidal
view of energy flows proposed by [26] and [17].

Note that the common path (25) appears for the five optimization functions,
showing the well-known importance of phytoplankton in coastal ecosystems.
This path is the main input of energy in the system. Pathways with largest
flows also display the role of the bivalves in the system: they are important
consumers of phytoplankton and producers of detritus. Their role as recyclers
shows in solutions for all goal functions. In such ecosystems, bivalves are not
the only recyclers, bacteria also recycle through the bacterial loop. This shows
in solutions yielded by F4 and F5. One odd path is the importation path to
fish FBF in the solution of F2; its importance displays a state of the food web
where the connection to other systems is crucial for the high trophic level FBF
compartment. This solution corresponds to an extreme case, where the system
is unable to sustain the FBF compartment and thus relies more on importation.

12



Component Solution
1

Solution
2

Solution
3

Solution
4

Solution
5

f1,2 10.300 10.300 10.940 15.924 39.948
f1,3 25.469 45.800 41.130 44.577 51.098
f1,4 38.784 36.175 35.818 55.847 83.598
f1,6 5.272 13.237 14.186 25.257 27.971
f1,9 5.963 7.907 16.766 18.026 29.146
f1,10 33.472 7.787 12.040 21.268 9.331
f2,3 4.499 7.722 6.576 6.515 10.465
f2,4 17.814 23.020 22.668 26.501 52.497
f2,6 12.302 50.156 33.101 70.547 140.374
f3,2 5.993 12.382 9.910 19.171 30.782
f3,3 0.000 1.658 1.847 2.614 0.000
f3,4 8.525 6.577 6.638 8.270 15.900
f3,5 3.244 11.057 9.144 5.068 5.322
f3,9 8.990 15.208 14.866 7.682 6.156
f3,10 3.213 8.297 7.147 10.899 3.402
f4,2 16.542 18.746 18.165 27.340 58.398
f4,5 4.508 11.591 10.462 6.327 10.692
f4,9 29.045 27.294 27.421 41.977 74.061
f4,10 15.028 8.212 9.075 14.973 8.845
f5,2 0.901 21.596 10.197 12.091 22.394
f5,5 1.232 3.834 3.513 2.278 6.380
f5,9 5.681 24.845 16.380 8.072 16.014
f5,10 1.201 2.545 2.866 1.741 0.000
f6,2 0.878 17.874 13.131 29.036 51.814
f6,9 8.384 22.759 20.390 32.476 55.258
f6,10 8.384 22.759 13.766 34.310 61.273
f7,1 119.263 121.207 130.883 180.919 241.095
f8,5 0.031 26.411 9.838 10.508 22.394

Table 2: Flow solutions for the 6-species system, obtained for the goal functions
F1 to F5.
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Figure 3: The largest flows for the 6-species system and the goal functions: top
F1 (left) and F2 (right), middle F3, bottom F4 (left) and F5 (right). Red lines
are paths and green lines are circuits. 14



5 Consistency of the solution: stability of the

ecosystem

Solving the optimization problem (24) for each goal function Fi yields a series
of flows f between the species (including detritus) vertices. From these flows,
using a set of biological rules to be given below, we obtain a formal dynamical
system where the variables are the biomasses Bi. This system involves coupling
coefficients α that will differ for the different goal functions.

All these systems have, by construction, the same fixed point corresponding
to the given biomasses. Then, by examining the eigenvalue with maximal real
part of the Jacobians of these different dynamical systems at the fixed point, we
can evaluate the structural stability of the ecosystem for this set of biomasses.

5.1 The dynamical system

Each flow solution f of the optimization problem (24) can be used to derive a
system of differential equations satisfied by the biomasses. The following rules
will be used to derive these systems of differential equations.

If living organisms of species i eat organisms of (either living or detritus)
species j, the flow fi,j is given by a law of mass action or Lotka-Volterra coupling
– see [29],

fi,j = αi,jBi Bj . (26)

Other flows are assumed to be proportional to the biomass of the start vertex,
with a coefficient of proportionality depending also on the finish vertex,

fi,j = αi,jBi. (27)

Thus, the dynamics of the system is given by the flow f = (fi,j), that is to
say by α = (αi,j).

For the 6-species ecosystem of Fig. 2, the formal rules (26) and (27) lead to
the system of differential equations

Ḃ1 = f7,1 − f1,9 − f1,2 − f1,4 − f1,3 − f1,6 − f1,10, (28)

Ḃ2 = f1,2 + f6,2 + f3,2 + f4,2 + f5,2 − f2,4 − f2,3 − f2,6, (29)

Ḃ3 = f2,3 + f1,3 − f3,9 − f3,2 − f3,5 − f3,4 − f3,10, (30)

Ḃ4 = f2,4 + f1,4 + f3,4 − f4,9 − f4,2 − f4,5 − f4,10, (31)

Ḃ5 = f8,5 + f3,5 + f4,5 − f5,9 − f5,2 − f5,10, (32)

Ḃ6 = f2,6 + f1,6 − f6,9 − f6,2 − f6,10. (33)

By construction, the fixed point of the dynamical system is obtained at the
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Cost function F1 F2 F3 F4 F5

max(Re(λ)) 0.093 0.021 0.104 0.149 -0.193

Table 3: Maximum values of the real parts of the eigenvalues of the Jacobian
associated to the five goal functions for the 6-species ecosystem.

known biomasses of the 6-species ecosystem,

B0
1 = 3.24, B0

2 = 19, B0
3 = 1.72, B0

4 = 19.5, B0
5 = 3.19, B0

6 = 0.75. (34)

At the equilibrium point Ḃi = 0 for all i, and we get, using (28)-(33),

α7,1B1 − α1,9B1 − α1,2B1 − α1,4B1B4 − α1,3B1B3 − α1,6B1B6 − α1,10B1 = 0,

α1,2B1 +

α6,2B6 + α3,2B3 + α4,2B4 + α5,2B5 − α2,4B2B4 − α2,3B2B3 − α2,6B2B6 = 0,

α2,3B2B3 +

α1,3B1B3 − α3,9B3 − α3,2B3 − α3,5B3B5 − α3,4B3B4 − α3,10B3 = 0,

α2,4B2B4 +

α1,4B1B4 + α3,4B3B4 − α4,9B4 − α4,2B4 − α4,5B4B5 − α4,10B4 = 0,

α8,5B5 + α3,5B3B5 + α4,5B4B5 − α5,9B5 − α5,2B5 − α5,10B5 = 0,

α2,6B2B6 + α1,6B1B6 − α6,9B6 − α6,2B6 − α6,10B6 = 0.

5.2 Stability of the fixed point

A standard way to compute the stability of the fixed point is to evaluate the
eigenvalues of the Jacobian matrix of the system. If the real part of one or more
eigenvalues is positive, then the fixed point is unstable.

For the 6-species system, the Jacobian is

J = (35)

















0 0 −α1,3B1 −α1,4B1 0 −α1,6B1

α1,2 −α2,4B4 − α2,3B3 − α2,6B6 α3,2 − α2,3B2 α4,2 − α2,4B2 α5,2 α6,2 − α2,6B2

α1,3B3 α2,3B3 0 −α3,4B3 −α3,5B3 0

α1,4B4 α2,4B4 α3,4B4 0 −α4,5B4 0

0 0 α3,5B5 α4,5B5 0 0

α1,6B6 α2,6B6 0 0 0 0

















Using the optimal solutions obtained in Table 2 for the different goal func-
tions, the biomass values (34), and rules (26) and (27), we can compute the
maximal real part of the eigenvalues of J , shown in Table 3.

Table 3 shows that only F5 yields a stable biomass fixed point. Further,
Fig. 4 shows the spectra in the complex plane of the Jacobians for the five goal
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Figure 4: The spectra in the complex plane of the Jacobians for the goal func-
tions: top F1 (black ×), F2 (red o), F3 (blue *); bottom F4 (black ×), F5 (red
o).
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functions. Again, the systems are unstable for F1 to F4. For all four cases, the
eigenvalues with maximum real part are close and have a large imaginary part
indicating strong oscillations. These goal functions give rise to similar dynamical
behaviors. On the contrary, F5 gives rise to a weakly stable fixed point with no
oscillations. There are then at least two main regions in the parameter space,
giving different behaviors.

6 Ecosystem dynamics with or without detritus

From line 2 of the Jacobian J in (35), we see that the detritus acts in a different
way than the regular species. To understand this effect, we will detail the
equations governing the dynamical systems with and without detritus.

6.1 Lotka-Volterra models for the ecosystem without and

with detritus

First, we assume that the detritus species is absent so that we have a pure Lotka-
Volterra coupling, of which the theory is well established. Since the considered
ecosystem involve no coupling Bi − Bi , a Lyapunov function can be found to
show that the equilibrium point is (globally) stable. We will follow [27], see also
[14].

Consider the Lotka-Volterra model for n species without detritus

dBi

dt
= Bi



βi +

n
∑

j=1

αjiBj



 , i = 1, . . . , n,

where αij = −αji for all i, j for the couplings (26) and βi =
∑

j αji for the
couplings (27).

The nontrivial equilibrium (B̃1, . . . , B̃n) is the solution of the system

βi +

n
∑

j=1

ajiBj = 0, i = 1, . . . , n.

This equilibrium is feasible, that is B̃i > 0, for all i. Moreover, A is a skew-
symmetric matrix so that A + AT = 0, where AT denotes the transpose of A.
These two conditions induce that the Lotka-Volterra model is globally stable,
see [27].

Thus, the detritus is what will determine the stability. Its in and out flows
depend on the goal function.

Let us now consider the system with detritus. The Lotka-Volterra model
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with n species including detritus is

dBi

dt
= Bi

(

βi +

n
∑

j=1

αjiBj

)

, i 6= 2,

dB2

dt
=

n
∑

i=1,i6=2

Bi(αi2 − α2iB2),

where B2 is the biomass of the detritus, αij = −αji for all i, j 6= 2, αi2 ≥ 0 and
α2i ≥ 0 for all i 6= 2.

The Jacobian matrix of this system is

J = J0 +R, (36)

where J0
ij = αjiBi for all i, j, R2i = αi2, and R22 = −

∑

i α2iBi, and Rij = 0
for i 6= 2. One can see that

J0 = DA, (37)

where D is the diagonal matrix of biomasses, with djj = Bj , and A is a skew-
symmetric matrix.

For example, for the six species system, we have

J0 =















0 0 −α1,3B1 −α1,4B1 0 −α1,6B1

0 0 −α2,3B2 −α2,4B2 0 −α2,6B2

α1,3B3 α2,3B3 0 −α3,4B3 −α3,5B3 0

α1,4B4 α2,4B4 α3,4B4 0 −α4,5B4 0

0 0 α3,5B5 α4,5B5 0 0

α1,6B6 α2,6B6 0 0 0 0















= DA,

where

D =















B1 0 0 0 0 0

0 B2 0 0 0 0

0 0 B3 0 0 0

0 0 0 B4 0 0

0 0 0 0 B5 0

0 0 0 0 0 B6















and A =















0 0 −α1,3 −α1,4 0 −α1,6

0 0 −α2,3 −α2,4 0 −α2,6

α1,3 α2,3 0 −α3,4 −α3,5 0

α1,4 α2,4 α3,4 0 −α4,5 0

0 0 α3,5 α4,5 0 0

α1,6 α2,6 0 0 0 0















.

Finally, the matrix R is

R =















0 0 0 0 0 0

α12 −α24B4 − α23B3 − α26B6 α32 α42 α52 α62

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0















.
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6.2 Sufficient condition for stability

Evaluating how the detritus will change the stability of the system is a difficult
problem. Nevertheless, perturbation theory can help to understand how eigen-
values of J0 get displaced to the ones of J = J0+R when the norm of R is much
smaller than the norm of J0, say ||R|| ≪ ||J0||; see [39]. The standard complex
inner product on Cn will be denoted by (., .) and z is the conjugate of z.

Proposition 6.1 With the notation of the previous section, a sufficient condi-

tion for the stability of the system with detritus is

Re(vi, Rvi) ≤ 0, i ∈ S, (38)

where the vi are eigenvectors associated to the eigenvalues λi
0 of J0.

proof We will prove that (38) implies that the real parts of the eigenvalues of
J are all negative.

An approximation λi
J of an eigenvalue of J is given by

λi
J = λi

0 +
(wi,Rvi)
(w,vi) , (39)

see [39], where the vector w satisfies

JT
0 w = λi

0w. (40)

In our special context, the eigenvalues of J0 = DA are zero or pure imaginary
(see Lemma 8.1 in Appendix 3), so that without detritus, the fixed point of
the biomasses is marginally stable. The presence of the detritus will shift this
stability. Let us prove that w = D−1vi satisfies (40).

Indeed, since D is invertible, we deduce from J0v
i = DAvi = λi

0v
i that

Avi = λi
0D

−1vi.

Since JT
0 = (DA)T = −AD, we compute

JT
0 w = −ADD−1vi = −Avi = −λi

0D
−1vi = −λi

0w. (41)

Thanks to (37), Lemma 8.1 applies to show that −λi
0 = λ

i

0. Therefore, J
T
0 w =

λi
0w, and w = D−1vi is an eigenvector of JT

0 , satisfying (40).

Thus, according to (39),

λi
J = λi

0 +
(D−1vi, Rvi)

(D−1vi, vi)
.

The real parts of λi
0 are all null, so Re(λi

J ) ≤ 0 as soon as

∆i ≡ Re
(

(D−1vi,Rvi)
(D−1vi,vi)

)

≤ 0.
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Goal function F1 F2 F3 F4 F5

max(Re(λ)) 0.075 0.127 0.242 0.126 0.233

Table 4: Maximum values of the real parts of the eigenvalues of the Jacobian
associated to the five goal functions for the 19-species ecosystem.

Since

(D−1vi, vi) =
n
∑

j=1

|vij |
2

Bj

> 0 for all i,

we only need to consider the sign of the real part of

(D−1vi, Rvi) =
1

B2
(vi, Rvi).

Then ∆i ≤ 0 if and only if Re(vi, Rvi) ≤ 0, and (38) is indeed a sufficient
condition for the stability of the ecosystem.

7 Discussion and conclusion

Our methodology can easily be applied to general realistic ecosystems with a
larger number of species and flow components. To show this, let us present the
analysis of the 19-species system defined and studied in [33].

Fig. 5 shows the largest flow components similarly to Fig. 3. As for the 6-
species system, ZOO3 and BIV4 are the principal phytoplankton-eating animals
in the 19 species system.

We built for each solution of the optmisation problem and different goal
function a dynamical system and estimate the stability of the fixed point. The
maximum of the real parts of the eigenvalues of the Jacobians are reported in
Table 4, similar to Table 3. All the flows correspond to an unstable fixed point
showing that the constraints may need to be refined.

We also examined the ecosystems studied in [43]. For all the cases, the
biomass fixed point was found to be stable. For many ecosystems, as for example
the Crystal River Creek in [43], the detritus component has a large biomass.
This induces stability, as was shown above.

Above methods may also be applied to human environmental networks, or
in economics, for example to economic resource trade flow networks; see [20],
[16], and the references therein.

To conclude, we introduced a methodology to study the possible flows of an
ecosystem defined by observational biomass data and realistic biological con-
straints. We formalized the constraints and described precisely the polytope
containing the solutions. We presented a convex optimization problem based
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Figure 5: The largest flows for the goal functions: top F1 (left) and F2 (right),
middle F3, bottom F4 (left) and F5 (right).
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on ecological network indices used as goal functions. The method is fast, can
be used for large systems and provides a solution within the polytope according
to the indices.

The minimal flow for each goal function can be analyzed using two different
complementary tools. First, the flow is decomposed into principal paths and
circuits. These enable ecologists to discriminate between the different solutions.
Second, the consistency of the flow is examined by introducing a dynamical
system and studying the stability of the biomasses fixed point.
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évolution, Masson, Paris, Coll. d’écologie, 21, (1991).

[13] G.T. Gilbert, Positive Definite Matrices and Sylvester’s Criterion, The
American Mathematical Monthly, 98, 44-46 (1991).

[14] B. S. Goh, Global stability in many species systems, The American Natu-
ralist, 111, 135-143, (1977).

[15] H. Hirata and R. E. Ulanowicz, Large-scale systems perspective on ecolog-
ical modelling and analysis , Ecol. Modell. 31, 79-104 (1986).

[16] J. Huang1, R. E. Ulanowicz2,3, Ecological Network Analysis for Economic
Systems: Growth and Development and Implications for Sustainable De-
velopment, PLoS ONE 9, e100923 (2014).

[17] G. E. Hutchinson, The kindly fruits of the earth: recollections of an embryo-
ecologist. Yale University Press, New Haven (1979).

[18] S. Johnson, V. Dominguez-Garcia, L. Donetti, M. A. Munoz, Trophic co-
herence determines food-web stability, Proc Natl Acad Sci U S A. 111,
17923-17928 (2014).

[19] S.E. Jørgensen, B.D. Fath, Fundamentals of ecological modelling: Appli-
cations in environmental management and research, Elsevier Amsterdam
(2011).

[20] A. Kharrazi, E. Rovenskaya, B. D. Fath, M. Yarime, S. Kraines, Quan-
tifying the sustainability of economic resource networks: An ecological
information-based approach, Ecological Economics 90, 177–186 (2013).

[21] J.K. Kones, K. Soetaert, D. van Oevelen, J.O. Owino, K. Mavuti, Gaining
insight into food webs reconstructed by the inverse method , J. Mar. Syst.
60, 153–166 (2006).

[22] J.K. Kones, K. Soetaert, D. van Oevelen, J.O. Owino, Are network indices
robust indicators of food web functioning? A Monte Carlo approach , Ecol.
Modell. 220, 370–382 (2009).

[23] S. Kullback, R.A. Leibler On Information and Sufficiency, Annals Math.
Stat. 22, 79–86 (1951).

[24] D. Langlet, R. Rayfuse, The Ecosystem Approach in Ocean Planning and
Governance, Brill Nijhoff, Leiden (2018).

[25] L.G. Latham, Network flow analysis algorithms. Ecol. Modell. 192, 586–600
(2006).

[26] R. L. Lindeman The Trophic-Dynamic Aspect of Ecology, Ecology, 23, 399-
417, (1942).

24



[27] D. Luenberger, Introduction to dynamic systems, J. Wiley, New York
(1979).

[28] R.H., MacArthur, Fluctuations of animal populations and a measure of
community stability. Ecology, 36, 533-536 (1955).

[29] J. D. Murray, Mathematical Biology V2, Springer Berlin (2003).
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[38] B. Saint-Béat, A.F. Vézina, R. Asmus, H. Asmus, N. Niquil, The mean
function provides robustness to linear inverse modelling flow estimation in
food webs: A comparison of functions derived from statistics and ecological
theories, Ecol. Modell. 258, 53–64 (2013).

[39] A. C. Scott, Nonlinear Science: Emergence and Dynamics of Coherent
Structures, Oxford Texts in Applied and Engineering Mathematics (1999).

[40] A. G. Tansley, The Use and Abuse of Vegetational Concepts and Terms,
Ecology, 16, 284-307, (1935).

[41] R. E. Ulanowicz, Growth and Development: Ecosystems Phenomenology,
Springer New York, (1986).

25



[42] R. E. Ulanowicz, Ecology, the ascendent perspective, Columbia University
Press (1997).

[43] R. E. Ulanowicz, Biodiversity, functional redundancy and system stability:
subtle connections, J. R. Soc. Interface, 15, 2018.0367 (2018).

[44] K. Van den Meersche, K. Soetaert, D. Van Oevelen, xsample(): An R
Function for Sampling Linear Inverse Problems, J. Stat. Softw. 30 (2009).

[45] D. Van Oevelen, K. Van den Meersche, F. J. R. Meysman, K. Soetaert, J.
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8 Appendix

Appendix 1: SQL local algorithm of Section 4.2

The SQL local algorithm solves a nonlinear minimization problem under con-
straints, say:

minf F (f),

hi(f) = 0, i = 1, . . . ,m,

gj(f) ≤ 0, j = 1, . . . , n.

Let L(f, α, β) = F (f) − αTh(f) + βT g(f) denote the Lagrangian function
of this problem where α and β are Lagrange multipliers of dimensions m and n

respectively. Let W denote the Hessian matrix of L, defined by

Wk ≡ W(fk, αk, βk) = ▽
2
ffL(fk, αk, βk),

and A(f) the Jacobian matrix of the constraints,

A(f)T = [▽h1(f), . . . ,▽hm(f),▽g1(f), . . . ,▽gn(f)].

Since the cost function F is convex, Wk is a positive definite matrix and
A(f) is a full rank matrix. Then, at an iterate fk, a basic sequential quadratic
programming algorithm defines an appropriate search direction pk as a solution
to the quadratic programming subproblem

minp
1
2p

TWkp+▽fT
k p,

▽hi(fk)
T p+ hi(fk) = 0, i = 1, . . . ,m,

▽gj(fk)
T p+ gj(fk) = 0, j = 1, . . . , n.

This is solved by the following algorithm:
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Goal function Computing time function evaluations
F1 0.2s 127
F2 0.3s 2002
F3 0.4s 2118
F4 0.3s 2901
F5 0.2s 307

Goal function Computing time function evaluations
F1 0.9s 583
F2 7s 55684
F3 12s 60905
F4 9s 78447
F5 1s 1742

Table 5: Computing times and function evaluations: top 6-species system;
bottom 19-species system

1. Take the initial points (f0, α0, β0);

2. For k = 0, 1, 2, 3, . . .

Evaluate Ffk , ▽Ffk , Wk =W(fk, αk, βk), hk, gk, ▽hk and ▽gk;

Solve the quadratic subproblem for obtaining pk, αk, βk;

fk+1 ←− fk + pk; αk+1 −→ uk; βk+1 −→ vk;

If the condition of convergence is satisfied;

STOP with the approximate solution;

3. End(For).

The computing time on an Intel I7 processor and number of function calls are
given in Table 5. The code will be made available on github.

Appendix 2: Convexity of goal functions

In this appendix, we show that all the goal functions considered in Section 4.1
are convex.

Both F1 and F5 are sums of squares so they are obviously convex. Further,
if a function is twice continuously differentiable, then it is convex if and only if
its Hessian is positive semidefinite. We therefore calculate the Hessians Hi of
Fi for i =2, 3, 4. First

H2 = H4 =











1
pi,j

0 ... 0

0 1
pk,l

... 0

... ... ... ...

0 0 ... 1
pr,s











,
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that is obviously positive definite. This shows that indeed the entropyF2 and
the Kullback Leibler divergence F4 are convex.

Let us rewrite the redundancy F3 as

F3 =
∑

(i,j)∈E

pi,j ln

(

pi,j

pi.

)

+
∑

(i,j)∈E

pi,j ln

(

pi,j

p.j

)

.

The goal is to show that each term T 1
ij ≡ pi,j ln(

pi,j

pi.
) is convex. The Hessian of

Tij is

Hij =













(pi.−pi,j)
2

pi,jp
2
i.

−
pi.−pi,j

p2
i.

... −
pi.−pi,j

p2
i.

−
pi.−pi,j

p2
i.

pi,j

p2
i.

...
pi,j

p2
i.

... ... ... ...

−
pi.−pi,j

p2
i.

pi,j

p2
i.

...
pi,j

p2
i.













Let us use the Sylvester’s criterion to show that Tij is convex; see [13]. This
criterion says that a Hermitian matrix is positive semidefinite if and only if all
of its leading principal minors are positive.

The Hessian Hij is a Hermitian matrix. Let Mk
ij denote the principal minors

of this Hessian. We have :

M1
ij =

(pi. − pi,j)
2

pi,jp
2
i.

≥ 0 and M2
ij = det

[

(pi.−pi,j)
2

pi,jp
2
i.

−
pi.−pi,j

p2
i.

−
pi.−pi,j

p2
i.

pi,j

p2
i.

]

= 0.

Moreover, Mk
ij = 0 for all k ≥ 3, because then Mk

ij has at least two equal lines

(or columns). Therefore, the Sylvester’s criterion is satisfied and each term T 1
ij

is convex.

Similarly, each term T 2
ij ≡ pi,j ln(

pi,j

p.j
) is also convex, and hence F3 is convex

as a sum of convex terms.

Let us now show, using a counter-example that the ascendency, defined by
[15] as

A(f) =
∑

ij∈E

fi,j

f..
ln

(

fi,jf..

fi.f.j

)

is not convex. In this aim, consider the graph with three flows f12, f23 and f13
shown on Fig. 6.

We compute

A = f13 ln

(

f13

(f13 + f12) (f23 + f13)

)

− f23 ln (f23 + f13)− f12 ln (f13 + f12) .

The gradient of A is given by

Af12 = − ln (f13 + f12)− 1, Af23 = − ln (f13 + f23)− 1,

Af13 = ln

(

f13

f2
13 + (f23 + f12) f13 + f12 f23

)

− 1.
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2

3

1

Figure 6: Example of 3-species model ecosystem

There is only one extremum, f12 = f23 = 0 and f13 = e−1 ≈ 0.3678.

The Hessian of A is

HA =







− 1
f13+f12

0 − 1
f13+f12

0 − 1
f13+f23

− 1
f13+f23

− 1
f13+f12

− 1
f13+f23

−
f2
13−f12 f23

f3
13

+(f23+f12) f2
13

+f12 f23 f13






.

For f12 = 1, f23 = 1, f13 = 0.4, we get

H =





−0.714 0 −0.714
0 −0.714 −0.714

−0.714 −0.714 1.0714



 ,

which is clearly not positive semidefinite.

Appendix 3: Lemma 8.1

A classical result is that the eigenvalues of a skew-symmetric real matrix are
pure imaginary or zero. Indeed, let A be a skew-symmetric matrix and B = iA,
then B∗ = −iAT = iA = B and therefore B is Hermitian. Since B has all real
eigenvalues λ1, ..., λn, all the eigenvalues of A are of the form −iλ1, . . . ,−iλn

and thus all pure imaginary.

The following modified version deserves to be proven.

Lemma 8.1 Let J0 be a matrix such that J0 = DA, where D is diagonal with

non zero elements and A is skew-symmetric. Then the eigenvalues of J0 are

either imaginary numbers or zero.

proof
Let λ be an eigenvalue of J0. Let v be an associated eigenvector, such that
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DAv = λv. Since D is invertible, we have

Av = λD−1v. (42)

First, the product of both sides of (42) with vT gives

vTAv = λvTD−1v. (43)

Since λvTD−1v is a scalar, taking transpose of both sides of (43) yields (Av)T v =
−vTAv, and hence

λvTD−1v = (Av)T v = −vTAv. (44)

Second, the complex conjugate of (42) is Av = λD−1v. The product of both
sides with v gives

vTAv = λvTD−1v. (45)

Finally, since vTD−1v = (D−1v, v) = (D−1v, v) > 0, identifying the two
expressions of vTAv in (44) and (45) yields λ = −λ, so that λ is a pure imaginary
number or zero, and the lemma is proven.
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