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ABSTRACT
During the spawning migration of the anadromous allis Alosa alosa and twaite Alosa fallax shads, timing of river entry is deci-
sive to ensure that arrival in the spawning grounds matches with favourable conditions for reproductive success. Identifying the 
environmental cues that drive the timing of river entry is therefore crucial to understanding the implications of climate change 
for shad populations and to implementing management measures for these threatened species. In this study, data from fisheries 
and fish counting stations located in the estuaries or low reaches of 10 rivers were combined to investigate the effects of coastal, 
river conditions and abundance on the timing of migration. Phenological trends were quantified at five sites with more than 
20 years' monitoring, and we analysed whether these trends aligned with the period when river temperatures were in the most 
favourable range for offspring survival. The results indicated that the temporality of spring warming in coastal habitats and 
photoperiod were key drivers influencing river entry timing. Their relative influence varied between models predicting migra-
tion initiation, median and end dates. Significant shifts toward earlier and longer migration periods were quantified. At the site 
with the longest monitoring time series, the shift in migration timing increased the time lag between early shad arrival and the 
period of most favourable breeding temperatures. Therefore, further studies should assess the repercussions of earlier spawning 
migration on the phenology and success of reproduction and juvenile stages.

1   |   Introduction

Anadromous fish, born in freshwater, migrate to the ocean 
where they grow before returning to freshwater to repro-
duce (McDowall 1997). They make an energetically costly 
and difficult seasonal migration to the freshwater spawning 
grounds, during which fish mobilize previously accumulated 

energy reserves to fuel migration and reproduction (McBride 
et al. 2015). Anadromous life history is present in multiple fam-
ilies, particularly among Salmonidae and Clupeidae (Delgado 
and Ruzzante  2020). Two anadromous clupeid species inhabit 
the Eastern Atlantic coasts: the allis shad Alosa alosa (Linnaeus, 
1758) and the twaite shad Alosa fallax (Lacépède, 1803), which 
are closely related and hybridize (Baglinière  2000). The allis 
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shad is generally semelparous, and the twaite shad is iteroparous, 
but the proportion of repeat breeders varies across populations 
and years for both species (Mennesson-Boisneau et al. 2000a). 
Adults migrate to rivers at the end of the winter and during the 
spring. The allis shad can migrate upstream over distances ex-
ceeding 800 km in some rivers, whereas the twaite shad spawns 
in lower river reaches (Mennesson-Boisneau et al. 2000b).

The timing of upstream migration is decisive to ensure arrival 
at breeding grounds when conditions are favourable for spawn-
ing and offspring survival, particularly for species such as shads 
that migrate and reproduce in rapid succession (Quinn and 
Adams 1996; Poulet et al. 2021; Tillotson et al. 2021). Migration 
timing also determines the hydrological and thermal conditions 
that fish will encounter in freshwater and the resulting energy 
expenditure (Leonard et al. 1999; Lennox et al. 2018). As shads 
rely primarily on stored energy reserves to fuel migration and 
breeding phases, reproductive success depends on their ability 
to manage the rate of energy expenditure and the timing of mi-
gration and breeding acts (Tentelier et al. 2021). Optimally, fish 
will deplete their gamete stock in the most favourable location 
and conditions for offspring prospects, before their energy re-
serves are depleted to a critical threshold that is either lethal for 
semelparous individuals or might trigger a return to the sea for 
iteroparous shads (Castro-Santos and Letcher  2010; Tentelier 
et al. 2021). Anthropogenic pressures can hamper these trade-
offs, particularly physical obstacles through migration delays 
and the additional energy costs they entail (Castro-Santos and 
Letcher 2010).

Migration timing is guided by environmental cues perceptible 
within the local environment, along with internal cues (e.g., 
level of energy reserves or stage of gonad maturity) and social in-
teractions for schooling species (Winkler et al. 2014; Shaw 2016; 
Berdahl et al. 2017). Evolution must have selected the environ-
mental cues that allow migratory fish to anticipate, with some 
reliability, conditions in spatially distant breeding sites at later 
times (Winkler et  al.  2014). Environmental cues triggering 
anadromous fish migration vary between species and even pop-
ulations and often include photoperiod, coastal conditions, river 
temperature and hydrology (Quinn and Adams  1996; Keefer 
et al. 2008; Ellis and Vokoun 2009; Legrand et al. 2021; Yeldham 
et al. 2023). For the allis shad, river temperature has been iden-
tified as a strong driver of fluvial migration dynamics, which 
is inhibited below 10°C to 11°C, whereas discharge has less 
influence (Rochard 2001; Acolas et al.  2006). Identification of 
migration cues enables predictive tools to be developed to fore-
cast migration and implement management measures (Teichert 
et al. 2020).

Climate change is modifying marine and freshwater conditions, 
but trends in temperature and hydrology are temporally and 
spatially contrasted (Costoya et al. 2015; L'Hélvéder et al. 2017; 
Arevalo et al. 2020). One of the major responses of organisms 
to climate change is to change the timing of life events, along 
with physiological modifications, distributional changes and 
microevolutionary genome adaptations (Hughes 2000; Walther 
et al. 2002). However, when migration is initiated in an environ-
ment distinct from the fitness-decisive breeding areas, different 
trends between both environments may cause a mismatch be-
tween ancestrally selected migration cues and optimal timing 

under current conditions (Winkler et al. 2014; Shaw 2016; Walker 
et al. 2019). Shifts in the timing of migration and reproduction 
have been documented for several fish species (Crozier and 
Hutchings 2014; Chust et al. 2023). In France, shad migration 
period has been advancing over the period 1984–2016, at a faster 
rate than for other anadromous species (Legrand et  al.  2021). 
Once in the spawning grounds, shads behaviorally adjust the 
timing of breeding acts to maximize offspring survival, but 
in some years, reproduction occurred at suboptimal—mainly 
colder—temperatures, with no clearly identified reasons for 
these failures (Lambert et al. 2018).

The present study investigated factors that drive the timing of 
shad river entry and the implications of climate change on this 
process, using fish counts and fishery monitoring data collected 
in the fluvial estuaries and lower fluvial reaches of 10 rivers. 
These data provided a broad sample in terms of geographical lo-
cation, catchment size, shad abundance and recent demographic 
trends. The first objective was to assess the relative influence of 
coastal and fluvial conditions on the timing of river entry and 
the effects of abundance and basin characteristics. Based on five 
rivers with more than 20 years' data, we then quantified site-
specific trends in migration phenology and assessed whether the 
synchrony between spawner river entry and the period with the 
most favourable breeding temperatures had shifted over time.

2   |   Material and Methods

2.1   |   Study Area: Status of Shad Populations 
and Monitoring Sites

The allis and twaite shads were originally distributed along 
the west European and Moroccan coasts of the Atlantic Ocean 
(Baglinière  2000). Populations, particularly of allis shad, suf-
fered severe declines and distribution contraction during the 
late 19th and the 20th centuries, mainly due to river fragmenta-
tion, habitat degradation, pollution and overfishing (Baglinière 
et  al.  2003; Merg et  al.  2020; Nachón et  al.  2020; Antognazza 
et  al.  2022). Along the French Atlantic coast, populations are 
still present in numerous catchments (Martin et al. 2015; André 
et al. 2018; Taillebois et al. 2020), but abundance has declined 
in most rivers, particularly in the Garonne and Dordogne riv-
ers where the allis shad was still relatively abundant until the 
late 1990s (Rougier et al. 2012; Legrand et al. 2020). The allis 
shad has been classified as critically endangered in France 
since 2019, whereas the twaite shad is classified as least con-
cern. Shad populations in Brittany and Normandy, although less 
abundant, may result from the long-ignored persistence of small 
populations or from recolonization in recent decades (Baglinière 
et al. 2003; Belliard et al. 2009; Taillebois et al. 2020). Genetic 
and otolith microchemical studies suggest that fidelity to the 
natal basin prevails in both species but that there is a signifi-
cant flow of strayers for allis shad, mainly between nearby riv-
ers, resulting in a weak genetic structure in populations (Martin 
et al. 2015; Randon et al. 2018; Nachón et al. 2020; Rougemont 
et al. 2022).

Rivers in France that host shad populations and have migra-
tion monitoring data collected in upper estuaries or lower flu-
vial reaches were included in this study. We gathered data from 
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fishery monitoring programs in four rivers and fish counting sta-
tions in six rivers (Figure 1; Table 1). Studied counting stations 
are the first monitoring stations from the sea, located in dams 
constituting the limit of tidal estuary in the Seine and Vilaine 
rivers or located close to the tidal limit (3–21 km), in the second 
(Nivelle, Aulne and Orne) or third (Vire) obstacle from the sea, 
although in the latter case, the first obstacle is fully open during 
ebb tides. Monitoring sites located further upstream were not in-
cluded, as the factors triggering coastal to riverine entry timing 
differ from those affecting migration dynamics as shad migrate 
further upstream (Mennesson-Boisneau et al. 2000b).

Because of their phenotypic similarity, the two shad species are 
not distinguished in video monitoring stations nor systemati-
cally separated in catch declarations. Fish counts and fisheries 
data may include allis, twaite and hybrid shads in varying pro-
portions across rivers and years, but some information on com-
position can be available. In the Nivelle River, where fish are 
handled and identified after trapping (Lange et al. 2015), and in 
fishery data from the Garonne and Dordogne rivers (Castelnaud 
et  al.  2001), it is assumed that the data relate almost entirely 
to allis shad, but there is more uncertainty in the other sites. 
Therefore, the generic term European shad Alosa spp. was used 
in this work.

2.2   |   Migration Monitoring Data

Fish counting stations consist of video counting devices or cage 
traps located on dam fishways, which count all or a substantial 
part of upstream migrating shads (Legrand et  al.  2020). The 
six stations from which data was gathered are located on pool 
fishways with vertical slots, equipping dams ranging in height 
between 1.3 (Aulne) and 5.4 m (Seine). Some shads may escape 
counting stations under particular tide and high discharge con-
ditions, by migrating through navigation locks in the Vilaine, 
Aulne and Seine dams or during punctual non-monitoring days 
in the Nivelle River. It is nevertheless assumed that these data 
provide a representative image of migration phenology. Years 
with significant monitoring interruptions during the migration 
period, due to technical issues with the counting devices or fish-
way closure, were excluded.

Shad populations support commercial net fisheries in the Loire 
and Adour estuaries and formerly in the Garonne–Dordogne es-
tuaries where a moratorium was implemented in 2008 due to 
the collapse of the allis shad population (Rougier et  al.  2012). 
Fishery data, albeit subject to substantial biases, can provide 
valuable indications of migration phenology. In the Loire and 
Adour estuaries, data from 2009 onwards were obtained from 

FIGURE 1    |    Locations of the 10 migration monitoring sites, discharge and river temperature monitoring stations. The oceanic distribution of the 
allis shad during the December–April period and the upstream extent of its fluvial distribution are represented. The 50-km radius around each river 
mouth includes oceanic habitats where sea surface temperature metrics were calculated.
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the ‘Suivi National de la Pêche aux Engins et aux filets’ (SNPE) 
program (https://​profe​ssion​nels.​ofb.​fr/​fr/​node/​356). SNPE com-
piles mandatory catch declarations from professional and rec-
reational inland fishermen who use nets and traps. We used 
reports from professional fishermen. In the upper Garonne and 
Dordogne estuaries, the Girpech database was used for the pe-
riod 1986–2007. Girpech compiles shad capture declarations 
from cooperative fishers until the 2008 moratorium (Castelnaud 
et al. 2001; Beaulaton 2008).

Daily catch records were extracted from both the SNPE and 
Girpech databases. Data were selected from the most assiduous 
fishermen, who recorded at least 9 days with shad catches using 
trammel or gillnets within the year considered (between 2 and 
18 fishermen, depending on the year and the river; mean = 8.9). 
In the SNPE, daily reports include the total number of shads 
caught, the total captured weight or both values. In each estu-
ary, the most complete variable was selected: total shad weight 
in Loire and total shad number in Adour. There were records 
(< 2%) in which the selected variable was not reported but where 
information was reported for the other variable (total number 
of captured shads in Loire and total shad weight in Adour). For 
these records, shad number and weight values were converted 
using the mean individual body weight calculated from records 
where both the number of captured shad and the total weight 
were reported (2.0 kg in the Loire and 1.9 kg in the Adour es-
tuary). In the Girpech database, the total number of shads 
caught is recorded. The average catch per unit effort (CPUE) 
was calculated for each day and estuary, corresponding to the 
mean weight (Loire) or number (Adour, Garonne and Dordogne) 
caught by active fishermen. In the Loire estuary, we removed 
5 years with major gaps in the CPUE series, either due to the 
absence of fishing activity or the nondeclaration of catches, in 
order to limit the bias of the phenological indicators (Figure S1).

2.3   |   Migration Phenology and Abundance 
Indicators

Four annual indicators of migration timing were calculated from 
the cumulative daily fish counts and CPUE series: (1) run initi-
ation; (2) median; (3) end dates, corresponding to the days of the 
year when 5%, 50% and 95% of the cumulative annual run were 
reached; and (4) migration period duration, which is the number 
of days between run initiation and end dates. Percentile-based 
indicators are commonly used (Boisneau et  al.  2008; Legrand 
et al. 2021; Dalton et al. 2022), being more accurate and less biased 
than estimators based on the occurrence of a specific number of 
individuals (Moussus et al. 2010). Mean values and standard de-
viations were calculated to characterize the migration period in 
each river. A paired-sample Student t-test was used to determine 
whether initiation-to-median and median-to-end times differed.

To account for the potential effect of abundance on migration 
timing, a within-site z-score standardized abundance indicator 
(Ab) was estimated from the cumulated annual shad counts or 
mean annual CPUEs, according to the type of data. Mean an-
nual CPUE was calculated using the formula:

where C is the total number or weight of shad catches and f  is 
the total fishing effort in year y and river r. This formula does not 
take account of the fact that daily abundance and catchability 
of migrating shad vary throughout the season, but did correlate 
with fishery-independent abundance indicators in the Garonne 
and Dordogne rivers (Beaulaton 2008).

2.4   |   Environmental Variables

Two mechanisms by which environmental conditions may trig-
ger migration timing were considered: reaching threshold pho-
toperiod and temperature values, which could indicate the most 
favourable time to enter freshwater, and seasonal conditions 
prior to migration, which could affect the internal state of fish 
(Winkler et al. 2014; Shaw 2016).

2.4.1   |   Photoperiod

Daily photoperiod was calculated at the latitude of each estu-
ary using the method of Forsythe et  al.  (1995) implemented 
in the meteor package (Hijmans  2023) on R software (R Core 
Team 2024). The first days of the year with daytime lengths ex-
ceeding 13, 14 and 15 h were selected as predictors (P13, P14 and 
P15). In the absence of prior assumptions, these thresholds were 
in the range of the mean values at the initiation, median and end 
dates of the migration period.

2.4.2   |   Sea Temperature

At sea, shads are mainly distributed in shallow coastal areas 
close to the plume of the main rivers (Taverny and Elie 2001; 
Trancart et al. 2014; Elliott et al. 2023), either their natal river 
plume or distant ones, as some individuals disperse over large 
distances (Nachón et al. 2020). Seasonal displacements suggest 
that shad schools move closer to the coasts and estuaries in win-
ter, which may be related to the onset of the spawning migra-
tion (Trancart et al. 2014; Nachón et al. 2015; Dambrine 2017). 
Consequently, sea surface temperatures (SST) were extracted for 
coastal habitats modelled as favourable for shad within a 50-km 
radius around each estuary (Dambrine 2017). SST data from the 
Copernicus program were used (Copernicus Climate Change 
Service C3S 2019; Good et al. 2019; Merchant et al. 2019), follow-
ing the process detailed in Appendix A. The mean SST during 
winter (SST_winter), from 21 December to 20 March, was calcu-
lated to assess the effect of seasonal temperatures on migration 
timing. We also considered whether the rate and phenology of 
SST warming during the late winter and spring could act as a mi-
gration cue. The first days of the year when SST values reached 
∆3°C, ∆4°C and ∆6°C above the minimum SST experienced 
during winter were calculated (SST_∆3, SST_∆4 and SST_∆6). 
These thresholds were defined after preliminary analysis of the 
average SST changes during the migration period.

2.4.3   |   River Temperature

River temperature was recorded at migration monitoring sites, 
or measurements were available at close reaches in the ‘Naïades’ 

my,r =
Cy,r

fy,r
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repository (www.​naiad​es.​eaufr​ance.​fr). As datasets did not 
cover the entire study period for most sites, site-specific general 
additive models (GAMs) were fitted to predict temperatures in 
years without measurements (Appendix B). Temperature series 
were smoothed with a 5-day moving average, and the first days 
of the year when temperatures were above 11°C, 15°C and 18°C 
were extracted (RT11, RT15 and RT18). 11°C was identified as a 
threshold below which migration is inhibited (Rochard  2001; 
Acolas et al. 2006), and preliminary analysis showed that 15°C 
and 18°C were close to the mean temperatures found during the 
median and end dates of migration.

2.4.4   |   River Discharge

Daily discharge rates were extracted from the ‘Hydroportail’ re-
pository (https://​www.​hydro.​eaufr​ance.​fr). In each catchment, 
hydrometric stations that were located close to the estuary and 
had data covering the entire migration monitoring period were 
selected. Stations in the Nivelle, Adour, Garonne, Vilaine, Vire 
and Orne basins had periods of missing values; series were inter-
polated linearly if missing periods were less than seven consec-
utive days. Two metrics were calculated: mean discharge from 
the onset of winter to the phenological indicator date (Q_win-
ter), to test whether higher outflow at the river mouth prior to 
migration influenced migration timing, and mean discharge 
over the 30 days preceding indicator (Q_30d). The 30-day period 
roughly corresponds to the average number of days between mi-
gration initiation and median date indicators and between the 
median and end dates. Because of variations in catchment size, 
discharge metrics were standardized within each site.

2.4.5   |   Monitoring Site and Catchment Characteristics

The distance from the monitoring site to the upstream limit of 
the allis shad migration range (D_mig), which is greater than 
the twaite shad migration range in the studied rivers, was mea-
sured from distribution maps based on observations made over 
the 2006–2015 period (André et  al.  2018). The upstream mi-
gration limit was used as a proxy for spawning distribution, as 
breeding grounds are not identified in some of the study rivers. 
In catchments where shad migrate up more than one river, the 
axis with the greatest distance was selected. The distance from 
the river mouth to the monitoring site (D_sea) and the number 
of dams to pass (n_dams) were also measured, as migration de-
lays to reach the monitoring site could contribute to explaining 
intersite variability. Catchment area (c_area) was measured to 
test whether it contributed to the intersite differences. Spatial 
analyses used QGIS software (QGIS Development Team 2023).

2.5   |   Data Analysis

2.5.1   |   Influence of Coastal, River Conditions 
and Abundance on Migration Phenology

The effect of environmental variables and abundance on phe-
nological indicators was assessed using a multimodel inference 
approach (Harrison et  al.  2018). Separate linear mixed-effects 
models (LMMs) were fitted for migration initiation, median and 

end indicators using the lme4 (Bates et al. 2015) and lmerTest 
packages (Kuznetsova et al. 2017). LMMs were structured with 
a random intercept by site and 11 fixed effect predictors:

•	 Initiation date model: P13, SST_winter, SST_∆3, RT11, Q_
winter, Q_30d, Ab, D_mig, D_sea, n_dams and c_area

•	 Median date model: P14, SST_winter, SST_∆4, RT15, Q_win-
ter, Q_30d, Ab, D_mig, D_sea, n_dams and c_area

•	 End date model: P15, SST_winter, SST_∆6, RT18, Q_winter, 
Q_30d, Ab, D_mig, D_sea, n_dams and c_area

Predictors were z-score standardized, except for discharge and 
abundance metrics, which were initially standardized within each 
site. To check for collinearity, variance inflation factors (VIF) were 
calculated and predictors with VIF > 3 were excluded. From the full 
LMMs, models with all possible combinations of fixed-effect pre-
dictors were fitted and ranked using the small-sample-corrected 
Akaike's information criterion (AICc). Models with ΔAICc < 6 
relative to the best fitting model were selected, and weighted coef-
ficients were calculated. Ranking and model averaging were per-
formed using the MuMIn v1.48.4 package (Bartoń 2024). Marginal 
and conditional explained variance (R2) were calculated to mea-
sure goodness of fit (Nakagawa and Schielzeth 2013).

2.5.2   |   Trends in Migration Phenology

To quantify the temporal trends in phenology in the five sites 
with more than 20 years' monitoring data (Table 1), site-specific 
linear models were fitted with year as predictor. The evolution 
of SST metrics along the study area (latitude 43° N to 51° N, lon-
gitude 6° W to 1° E) was quantified over the period 1985–2022 
using the Theil–Sen slope, and trend significance was assessed 
using a Mann–Kendall test modified for autocorrelated data, im-
plemented in the spatialEco v2.0-2 package (Zhang et al. 2000; 
Evans et al. 2023).

2.5.3   |   Match Between River Entry Timing 
and the Period With Optimal Breeding Temperatures

Assessment of whether the time lag between spawner river entry 
and the period with the most favourable breeding temperatures 
had changed was based on an experimental study by Jatteau 
et al.  (2017), which defined the optimal temperature range for 
allis shad embryo survival: > 80% survival between 15.7°C and 
25.6°C. Egg incubation lasted 7.6 days at 15°C, and the duration 
decreased at warmer temperatures (Jatteau et al. 2017). Hence, 
the first day of the year after which the river temperature was 
above 15.7°C for seven consecutive days was defined as the first 
day with optimal breeding temperature. The trend of this met-
ric was assessed in each river using a linear model with year as 
predictor. The time gap between the migration timing indicators 
and the metric was calculated:

where M is the migration timing indicator and R is the first 
day with optimal breeding temperatures in year y and river 
r . Temperature data from the counting stations were used in 

Gy,r =My,r − Ry,r
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the Nivelle, Aulne and Vire due to the proximity of spawning 
grounds. As shad migrate further upstream in the Garonne and 
Dordogne, temperatures measured at the Golfech and Tuilières 
dams, close to the main spawning grounds, were used.

3   |   Results

The core migration period extended from March to early July 
across the study area (Figure  2). Phenology broadly followed a 
latitudinal gradient, with migration occurring earlier in south-
ern rivers, although there were notable variations as the earliest 
and latest occurrences were found in the Loire and Nivelle riv-
ers, respectively. The difference between sites could reach up to 
50–60 days for each indicator in a given year. In terms of inter-
annual variability, the mean interval between the earliest and 

latest indicators was 34 ± 12 days for the five sites with more than 
20 years of data, with similar variability for the migration initi-
ation, median and end dates. The mean duration of the migra-
tion period was 51 ± 11 days; it ranged from 37 ± 9 days in Vire to 
78 ± 11 days in Adour. Shad abundance tended to be higher in the 
first part of the migration period; the number of days between run 
initiation and median dates (22 ± 8 days) was significantly shorter 
than between median and end dates (29 ± 5 days; Student t-test, 
p = 0.006).

3.1   |   Influence of Coastal, River Conditions 
and Abundance on Migration Phenology

Two predictors were excluded from the full models due to collin-
earity: catchment area and number of dams downstream of the 

FIGURE 2    |    Indicators of migration initiation (left edge of blue lines), median (circle) and end (right edge) dates by site and monitoring year, ex-
pressed as days of the year (since the first day of the civil year, 1 January). The size of the median date indicator is proportional to the annual run 
abundance (within-site standardized metric). Sites are ordered according to their position along the coastline, from the Nivelle River (south) to the 
Seine River (north). Light-grey 10-day bands and dashed lines (100th and 150th days of the year) are depicted in the background to facilitate visual 
comparisons.
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monitoring site. Eighty-four of the 512 models including all poten-
tial predictor combinations were selected for the initiation date, 19 
for the median date and 57 for the end date (Tables S1, S2 and S3). 
Selected models had marginal R2 values of 0.26 ± 0.09, 0.50 ± 0.01 
and 0.42 ± 0.05 for each phenological indicator, respectively, and 
conditional R2 values of 0.66 ± 0.01, 0.56 ± 0.01 and 0.55 ± 0.02.

The averaged parameters indicated a significant effect of spring 
warming SST on initiation and median date indicators: migra-
tion occurred earlier when ∆3°C and ∆4°C warming thresh-
olds were reached earlier in the year, whereas mean winter SST 
had less effect (Figure 3). Over 1985–2022, the ∆3°C and ∆4°C 
warming thresholds tended to be reached earlier along the Bay 
of Biscay estuaries (Figure 4) because of seasonally contrasting 
trends in SST. In contrast, there was no significant trend around 

the northern estuaries, where winter and spring SST warmed at 
similar rates (Figures S2 and S3).

There was a significant effect of river temperature on the median 
date, which occurred earlier when the 15°C threshold was reached 
earlier. The effect of photoperiod was greater on models predicting 
median and end dates than on the initiation date model, although 
confidence intervals were wide. Migration ended slightly earlier 
when abundance was high. Metrics describing the position of the 
monitoring site along the migration axis made a strong contribu-
tion to intersite differences. Firstly, shad tended to migrate earlier 
in rivers where the upstream distribution limit was further from 
the sea. Secondly, migration occurred later as the distance from 
the sea to the monitoring site increased, despite the selection of 
sites located in upper estuaries and low fluvial reaches.

FIGURE 3    |    Model coefficients from the averaged models of the effects of environmental conditions, abundance and monitoring site position on 
migration (a) initiation, (b) median and (c) end dates. Coefficients are averaged form the models that include the considered predictor. SW represents 
the sum of the Akaike weights of the models including the predictor. To facilitate visual interpretation, significant effects and SW ≥ 0.5 are in bold, 
and bars are coloured by predictor group: photoperiod, SST, river temperature, discharge, abundance and monitoring site position.
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3.2   |   Trends in Migration Phenology

Significant shifts toward earlier initiation were detected in the 
Nivelle, Dordogne and Aulne rivers and earlier median dates in 
the Nivelle, Garonne and Dordogne (Figure 5). Although non-
significant, trends were also directed toward earlier phenol-
ogy in the Vire River. The mean trend across the five sites was 
−5.5 days per decade for migration initiation and −4.6 days per 

decade for median date; confidence intervals were, however, rel-
atively wide in all sites. Dordogne was the only river where the 
end indicator advanced significantly; the average trend across 
the five sites was −0.8 day per decade. These contrasting trends 
between initiation and end indicators resulted in an average in-
crease in migration duration of +4.7 days per decade, significant 
increases being recorded in the Nivelle, Garonne and Aulne 
rivers.

FIGURE 4    |    The 1985–2022 trend of the day of the year when (a) ∆3°C, (b) ∆4°C and (c) ∆6°C above the minimum winter SST were reached.

FIGURE 5    |    Trends in migration initiation, median and end date indicators in the five rivers with more than 20 years' data. Prediction lines for 
significant trends (p ≤ 0.05) are solid, and 95% confidence intervals are dashed. Estimates are indicated for significant trends; complete results are 
provided in Table S4.
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3.3   |   Match Between River Entry Timing 
and the Period With Optimal Breeding Temperatures

On the other hand, the first day of the year as of which river tem-
peratures were in the optimal range for embryo survival, char-
acterized by strong interannual variability, did not significantly 
shift in these five rivers (Figure S4 and Table S5). As migration 
initiation dates advanced, the time lag between river entry and 
the first day of the year with optimal breeding temperatures sig-
nificantly increased in the Nivelle River (Figure 6). In the other 
sites, confidence intervals were wide and no significant trend 
was detected (Table S6).

4   |   Discussion

The present study combined data collected over the period 
1984–2022 from fish counting stations and commercial fisher-
ies located in the estuaries or lower reaches of 10 rivers along 
the French Atlantic coast. This large spatiotemporal dataset, 
associated with fine-scale environmental data, provided new in-
sights into the drivers of coastal to riverine entry timing and the 
variations in their relative effects throughout the migration pe-
riod. Important site-specific shifts in migration phenology were 
quantified, with estimates in the range of the average trends ob-
served at the national scale by Legrand et al. (2021). However, 
this trend did not align with changes in the periods of optimal 
river temperatures for embryo survival, which could have impli-
cations for reproductive success.

There are potential biases in the migration monitoring data 
used. Fishery records suffer from variations in fishing effort 
and shad catchability (Beaulaton  2008), whereas fish count 
data depend not only on the time at which shad arrive below the 
dams but also on the degree of passability, which varies with 
fishway quality and environmental conditions (Belo et al. 2021). 
Indeed, the time lag between when individuals enter estuaries 
and when they are monitored varies between the rivers studied, 

depending on the location of the monitoring site along the estu-
ary–river continuum (fluvial estuary or low fluvial reaches), the 
distance from the river mouth and the presence and passability 
of dams. The random effect ‘site’ and the inclusion of distance 
from the sea as a site-level descriptor partially accounted for 
this variability in the LMMs, but interannual variations within 
each site might introduce noise into the data. To reduce bias 
in phenological indicators, the stations were carefully selected, 
and despite limitations, our results revealed consistent trends 
between rivers with both types of data. In addition, abundance 
was very low in some years, particularly in the Nivelle River 
(4 years with fewer than 10 shads), making the phenological in-
dicators dependent on the migratory behaviour of a few partic-
ular individuals.

The temporality of SST warming and photoperiod were the 
main environmental predictors of migration timing. Their rela-
tive effects varied over the migration period, tending to decrease 
for STT and to increase for photoperiod, albeit confidence in-
tervals were wide. This suggests that early and late migrants 
may rely on both cues at different levels. Early migration and 
long freshwater residence allow higher reproductive success 
in alewife (Alosa pseudoharangus); individuals can cope with 
a wider range of conditions and meet more potential mates, 
and early hatched juveniles may face less trophic competition 
(Marjadi et al. 2019, 2023). However, the probability of encoun-
tering unfavourable breeding conditions is high in early spring 
and varies greatly between years (Paumier et al. 2020). To avoid 
entering rivers long before optimal breeding conditions arise, it 
may be adaptative for early migrating shad to rely primarily on 
temperature cues. Consistently, early migrating shad generally 
have greater mass (Beaulaton 2008), which may allow them to 
spend more time in freshwater. As spring progresses, the proba-
bility of encountering favourable breeding conditions increases 
(Paumier et  al.  2020). Hence, later migrants may rely primar-
ily on photoperiod, providing reliable information on seasonal 
advancement independently of short-term weather fluctuations 
(Winkler et al. 2014). Accordingly, a telemetric study found that 

FIGURE 6    |    Trend in the time lag between migration initiation, median and end indicators and the first day of the year as of which river tempera-
tures were in the optimal range for embryo survival in the Nivelle River. The blue line represents the first day with optimal spawning temperatures; 
points are below when the phenological indicator occurred earlier than this day.
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the timing of twaite shad river entry was cued by photoperiod 
(Yeldham et al. 2023).

River temperature has long been identified as a driver of shad 
migration (Menesson-Boisneau et al. 2000b). Focusing on estu-
aries and low river reaches, our results suggest that SST may 
be the main factor triggering river entry of early-migrating in-
dividuals, as SST is directly perceptible in shad coastal habitats. 
The rate and phenology of SST warming during late winter and 
spring appeared to influence the timing of migration in our 
models. The underlying mechanisms require further research. 
Gametogenesis is already at an advanced stage when shads 
enter freshwater (Bengen  1992; Mouchlianitis et  al.  2019). In 
American shad (Alosa sapidissima), gonadal development grad-
ually increases as the temperature rises within the 2 months 
preceding the onset of spawning (Liu et al. 2021). Shads possi-
bly migrate after reaching a critical level of gonad development 
(Yeldham et al. 2023), the timing of which may depend on the 
temporality and rate of SST warming.

Favourable migration timing might be anticipated to a certain 
extent by shads, but river conditions are inherently stochastic. 
The period on which optimal breeding temperatures arise varies 
greatly from year to year. Thus, timing variation among indi-
viduals, resulting in a relatively long migration period, may en-
sure a basal rate of reproductive success at the population level, 
despite certain timings resulting in poor success in some years 
(Reed et al. 2010; Freshwater et al. 2018). Likewise, the degree 
of predictability of river conditions explains latitudinal variation 
in the proportion of iteroparity in American shad populations, 
with repeated reproduction acting as a bet-hedging strategy in 
northern populations, which face less predictable environments 
(Glebe and Leggett 1981).

Our results indicated an earlier river entry in large catchments, 
where shads migrate further from the sea. Because of collinear-
ity, the effect of catchment size and distance to the upstream mi-
gration limit could not be disentangled. Two hypotheses could 
explain these differences. Larger catchments, with outflow that 
is more perceptible at sea, may attract shad earlier than smaller 
ones. Alternatively, populations at greater distances from the 
spawning grounds may enter rivers earlier, ensuring a longer 
migration time before favourable breeding conditions arise. For 
example, the distance from the sea to the spawning grounds and 
the thermal regime of the natal rivers influence the timing of 
migration in sockeye salmon populations (Hodgson and Quinn 
2002; Crossin et al. 2004). Compared to salmonids, shad popu-
lations show substantial straying rates and less genetic differen-
tiation, particularly for the allis shad (Rougemont et al. 2022), 
which may limit local adaptation. However, shads are gregarious 
at sea (Taverny and Elie 2001; Nachón et al. 2020) and fidelity to 
the natal basin prevails (Martin et al. 2015; Randon et al. 2018). 
Therefore, mechanisms such as juvenile imprinting during the 
seaward migration (Keefer and Caudill  2014) and collective 
decision-making (Sumpter et  al.  2008) in schools composed 
mainly of homing shads and possibly a proportion of iteroparous 
individuals that have already migrated in previous years could 
promote local timing adaptation. However, Nachón et al. (2020) 
suggested that the straying rates may have been higher in the 
1980s, when populations were more abundant, as dispersal at 
sea would potentially be density-dependent. In addition, the 

distance metric used in this study is limited, as the migration 
time required to access breeding grounds also depends on other 
factors, in particular the obstacles encountered along the rivers. 
It could be replaced by a functional distance metric (Roy and Le 
Pichon 2017).

Along with climate-driven environmental changes, demo-
graphic processes may also contribute to temporal variations 
in migration phenology (Tillotson et  al.  2021). Our results in-
dicate that migration ended slightly later when abundance was 
low, suggesting an influence of social cues. The influence of so-
cial facilitation on the synchronization of breeding activity has 
also been suggested at the endpoint of the spawning migration 
(Lambert et al. 2018; Tentelier et al. 2021). When abundance is 
low, there may be longer periods of group build-up prior to river 
entry (Berdahl et  al.  2017), particularly toward the end of the 
migration period, when most adults are already in freshwater. 
However an opposite effect has been observed for alewife, that 
is, longer migration at higher abundance (Dalton et  al.  2022). 
Our results may be affected by biases in our abundance met-
ric, particularly for fishery data, as the mean annual CPUE 
also depends on shad catchability, which is subject to variations 
(Beaulaton  2008). In addition, the timing of migration varies 
with sex, size and age: males, larger and older shads tend to 
enter rivers earlier (Mennesson-Boisneau et  al. 2000a). Thus, 
changes in population structure might affect phenology, but 
to our knowledge, no study corroborates this hypothesis with 
sufficient spatio-temporal coverage in the studied rivers. For ex-
ample, no trends in age, size or mass structure were detected 
in a 1980–2005 fishery survey in the median Loire (Boisneau 
et al. 2011), but these results should not be generalized. Further 
research on this topic would be of interest, as the age and size of 
allis shad at maturity have been related to thermal conditions at 
sea and may be affected by climate change (Lassalle et al. 2008). 
Changes in the rate of hybridization between the allis and twaite 
shads may also have an effect on phenology, but information 
on the interannual variations in hybridization rates is lacking. 
These hypotheses would need to be tested and remain to be cor-
roborated. However, in light of the results of this study, demo-
graphic processes do not seem to be a key driver of river entry 
phenology.

The site-specific trends in migration phenology quantified in 
this study are in the range of the average values calculated from 
16 French monitoring stations (Legrand et al. 2021). Overall, mi-
gration initiation and median dates are advancing faster than 
end dates, lengthening the migration period. These trends are 
consistent with a stronger relative effect of temperature cues on 
early migrants and photoperiod on later ones and are in accor-
dance with the trends in coastal temperature along the study 
area. Because of contrasting seasonal trends, the rate of spring 
SST warming increased in the coastal areas of the Bay of Biscay, 
whereas it remained stable in the English Channel, where SST 
showed similar trends during winter and spring. This contrast 
is consistent with previous studies conducted in the two areas 
(Costoya et al. 2015; L'Hélvéder et al. 2017).

Phenological trends were consistent in sites monitored during 
the periods 1984–2022 (Nivelle), 1986–2007 (Garonne and 
Dordogne) and 2001–2022 (Aulne), indicating a continuous ad-
vancement pattern over the last four decades throughout the 
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Bay of Biscay rivers, at a rather homogeneous rate across basins 
as suggested by Legrand et  al.  (2021). This phenological shift 
might influence reproductive success and ultimately population 
dynamics through different mechanisms. First, the Allee effect 
or depensation, consisting of a reduction of individual fitness 
when population size or density decreases, is a possible cause 
of the collapse of shad populations (Rougier et al. 2012; Poulet 
et  al.  2023). As most of the studied populations are declining 
(Legrand et  al.  2020), the dispersal of fewer individuals over 
a longer migration period might exacerbate this process. Low 
abundance, through less social facilitation, might limit the abil-
ity of shad to anticipate the most favourable breeding conditions 
(Lambert et al. 2018). In addition, different trends between SST, 
which triggers migration, and river temperature, which is deci-
sive for reproductive success, could increase the risk of tempo-
ral mismatch between the timing of river entry and the period 
with optimal breeding conditions. Our results indicated such 
pattern in the Nivelle. It may also be the case in the Garonne 
and Dordogne if the trend toward earlier migration observed 
from 1986 to 2007 has continued since then, as the period with 
the most favourable breeding conditions did not shift between 
2003 and 2016 (Paumier et al. 2020). Too early migration could 
increase the risk of spawning at suboptimal temperatures and 
limit offspring production, although the effects would be miti-
gated by the relatively wide thermal tolerance range of embryos 
and larvae (Jatteau et al. 2017). Shads that arrive too early could 
delay reproduction and wait for better conditions, optimizing 
offspring prospects (Lambert et  al.  2018; Poulet et  al.  2023). 
However, this delay might increase the risk of exhausting energy 
reserves and of predation before fully completing reproduction.

Assuming that the timing of river entry and spawning correlate, 
as partially observed for river herring (Rosset et al. 2017), the 
phenology of juvenile life stages might also change. Thirty-
day-old juveniles are more sensitive to high temperatures and 
low oxygen conditions than 60- to 85-day-old ones (Baumann 
et al. 2021). Under climate change, advances in reproduction tim-
ing could be adaptative, as older juveniles would be exposed to 
peak summer conditions. However, the expected benefits would 
be greater for late-breeding shads, and the trends observed here 
suggest that the initiation of the breeding period is more likely to 
have advanced than its end. Accordingly, in a study carried out 
in the Loire from 1995 to 2004, the day on which 5% of juveniles 
were caught advanced from late to mid-July, whereas the days 
with 50% and 95% of cumulative catches did not change signifi-
cantly (Boisneau et al. 2008). In addition, 1-month-old juveniles' 
diet appears to be restricted to cladocerans, and recruitment 
could be impacted if earlier hatching does not match a period 
of good prey availability (Tommasi et al. 2015; Baumann et al. 
2023). Subsequently, an advancement in the period when juve-
niles reside in the estuary, as documented in the Gironde estu-
ary between 1985 and 2010, could lead to a mismatch with prey 
availability (Chevillot et al. 2017) and affect the risk of exposure 
to summer hypoxia events (Boussinet et al. 2023).

To conclude, the timing of shad river entry was mainly driven by 
the phenology of spring sea surface temperature warming and 
photoperiod in this study, whereas the relative influence of these 
cues varied over the migration period. Distance to spawning 
sites or catchment size also contributed to variation in timing 
between sites, potentially reflecting local adaptations, although 

this question requires further investigation. Significant pheno-
logical shifts were found, increasing the time that early migrat-
ing shads must spend in freshwater before reaching optimal 
breeding temperatures in certain rivers. Further studies would 
be required to assess whether earlier spawning migration, which 
is the first step in the freshwater life cycle, has led to changes in 
the phenology and success of reproduction and juvenile stages. 
As regional climate continues to change, this would shed light 
on the implications for shad population dynamics.
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