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ABSTRACT
Avian eggshells are composed of several layers made of organic compounds and a mineral phase
(calcite), and the general structure is basically the same in all species. A comparison of the
structure, crystallography, and chemical composition shows that despite an overall similarity,
each species has its own structure, crystallinity, and composition. Eggshells are a perfect example
of the crystallographic versus biological concept of the formation and growth mechanisms of
calcareous biominerals: the spherulitic—columnar structure is described as “a typical case of
competitive crystal growth”, but it is also said that the eggshell matrix components regulate
eggshell mineralization. Electron back scattered diffraction (EBSD) analyses show that the crystal-
linity differs between different species. Nevertheless, the three layers are composed of rounded
granules, and neither facets nor angles are visible. In-situ analyses show the heterogeneous
distribution of chemical elements throughout the thickness of single eggshell. The presence of
organic matrices other than the outer and inner membranes in eggshells is confirmed by
thermograms and infrared spectrometry, and the differences in quality and quantity depend on
the species. Thus, as in other biocrystals, crystal growth competition is not enough to explain
these differences, and there is a strong biological control of the eggshell secretion.
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Introduction

Calcified eggshells are classified as “leathery”, semi-rigid
and rigid depending of the abundance of the mineral part
(1). Rigid eggshells are known from crocodiles since the
Triassic period (about 150 My). The largest calcified eggs
are assigned to a bird (Aepyornis), which are about 33-cm
long and equivalent to 160 chicken eggs. Now, most rigid
eggshells are known from birds, and the calcified eggshell is
a reservoir for the bone formation of the embryo. Eggshells
are used for systematic and phylogenetic purposes (2),
palaeoenvironmental reconstructions, and biomimetic
applications (3). Tyler (4) and Erben (5) have tried to
simplify the descriptive nomenclature of the eggshell layers
and a common pattern has been established. Eggs are the
main food resource, but despite the large diversity of bird
species, very few eggshells are studied, with chicken egg-
shell as the best-known example. Nevertheless, it is impos-
sible to review all the published articles. For this, “old”
articles and books should be consulted (6–8), most recent
articles being dedicated to very detailed analyses of the
structure or proteome. In this short contribution, we com-
pare the main structural and compositional characteristics

of variousmodern avian eggshells, followed by a discussion
on eggshell biomineralization: is the nonbiogenic compe-
titive crystalline growth or the organic matrix controlled
mechanism the best explanation?

Materials and methods

Eggshells of Gallus, Numida, Anser, Anas, Falco, Strix,
Turdus, Uria, Phasianus, Columba, Casuarius,
Dromaius, Rhea, and Struthio were studied. Thin sections
were observed using cross-polarized light; fragments were
used for scanning electron and atomic force microscopy.
Polishing and etching conditions were detailed in the
legends of figures. The mineralogy and elemental chemi-
cal composition were analyzed using infrared spectrome-
try (FTIR) and thermogravimetry (TGA) on powdered
samples and electron back scattered diffraction (EBSD)
on polished surfaces. X-ray energy dispersive spectrome-
try (EDS) and X-ray absorption near edge structure spec-
troscopy (XANES) were performed on polished surfaces.
More details on thematerials andmethods are available in
previous articles (9–13).
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Results

Structure

Bird eggshells have a common structure: inner organic
membranes, a mammillary layer, a columnar or palisade
layer, and an outer prismatic layer covered by a thin
organic cuticle (Figures 1A–E). The boundary between
the mammillary and columnar layers is not clearly defined.
This common structure, nevertheless, is not uniform and
there is a large variation among avian eggshells. The rela-
tive thickness of the three calcified layers and the width/
thickness ratio of the mammillae differ, depending on the
species. Besides the layers, single or branched pores extend
from the inner to the outer surface of the eggshell

(Figure 1F), and detailed studies of such pores are known
for ratite birds (2). The fibrous inner organic membranes
are attached to the inner core of the mammillae
(Figure 1G). Growth lines are more or less visible in the
columnar layer, as well as the oblique herring-bone pattern
(Figures 1H-I). The tabular arrangement of the columnar
units is evidenced in the fracture of an eggshell of Struthio
(Figure 1J). The thickness and structure of the outer pris-
matic layer differ depending on the taxa; for example, being
thick and porous in Dromaius (Figure 1E) while it is
thinner and compact in Anser (Figure 1K). Examination
of the inner structure of the layers shows that they aremade
of mineral rounded particles (Figure 1L), embedded in an
organic material (Figures 1M-N). The mineral particles are

Figure 1. Micro- and nanostructures of some eggshells (A–D); Vertical sections showing the various shapes of the mammillary units
and the differences in the thickness of the layers (A Gallus, B Phasianus, C Strix, D Columba, E Dromaius); (F) Etched vertical fracture of
Struthio showing the complex pores (H3PO4 10% for 12 seconds); (G) Inner shell membrane fibers anchored in the spherolites of the
mammillary layer (Strix); (H) Etched vertical fracture showing the herring-bone pattern (formic acid 10% for 30 seconds) (Rhea); (I)
Etched vertical fracture showing the poor herring- bone pattern and growth lines in the columnar layer (Gallus) (formic acid 10% for
15 seconds); (J) Vertical fracture showing the tabular structure of the mammillary and columnar layer in Struthio; (K) Polished and
etched vertical section showing the external part of the palisade/columnar layer (CL) and the thin prismatic outer layer (Anser); (L-M)
Polished and etched vertical section in the inner part of the mammillary layer of Struthio (formic acid 10% for 10 seconds); L height
image; (M) Phase image; (N) Detail of L, showing the organic matrix; (O) rounded nanogranules are surrounded by a thin cortex in
the main layer of Numida; polished and etched section (formic acid 0.1% for 30 seconds). ML: mammillary layer, CL: columnar layer,
PL: prismatic layer. A-K: Scanning Electron Microscope images, L-O: Atomic Force Microscopy images.
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surrounded by a cortex (Figure 1O), probably a mixture of
amorphous calcium carbonate (ACC) and organic matrix,
as shown by atomic force microscopy (AFM) phase ima-
ging. It is noteworthy that there is a strong contrast
between the tabular, geometric microstructural arrange-
ment of the mammillary and prismatic units, and their
rounded nanostructure.

Mineralogy and crystallography

Bird eggshells are calcitic, except in some pathological
samples in which aragonite and vaterite are described

(14). The organo-mineral composition, as well as the
calcite polymorph, is demonstrated by infrared spectro-
metry (Figure 2). The wave number of the ν4 band of
the calcite shows that the magnesium content is low, in
all species. The intensity of amide I and A bands differs,
showing that the organic mineral ratio varies. The full-
width at half-maximum (FWHM) of the main band
(ν3) is used as a crystallinity index (Figure 2).

The examination of thin sections using cross-polarized
light shows the granular structure of the inner part of the
mammillary layer (Figure 3A). Such sections also reveal
the boundaries of the prismatic units in the columnar

Figure 2. Fourier Transform Infra Red spectra of powdered eggshells, showing the low Mg calcite and the presence of organic
components. FWHM: full-width at half-maximum of ν3 band.

Figure 3. (A) Thin section (cross-polarized light) of the inner layers of Anser showing the prismatic units of the columnar layer; (B-D)
Electron Back Scatter Diffraction maps showing the differences in the crystallinity in the inner mineralized layers (B Anser, C Numida,
D Struthio).
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layer, not always distinct in SEM images. The comparison
of detailed EBSD maps of the mammillary layer of three
species demonstrates that despite a common structural
arrangement (divergent elongated units), the crystallo-
graphic pattern strongly differs (Figures 3B–D), and dif-
ferences also exist in the palisade layer (13,15).

Composition

Chemical elements
The low Mg, P, K, and Na contents were described in
some species (9,10,15,16). In-situ EDS analyses confirm
these data in ratite and neognathid eggshells (Figure 4),
but every species has its own composition; for example,
Uria is rich in Fe, whereas Phasianus is rich in Fe and
Si. It must be noticed that both Uria and Phasianus
have colored eggs. Localized analyses and maps show
that the elemental distribution is not homogeneous
within an eggshell. Moreover, the distribution pattern

of a given chemical element depends on the species,
and for a given species, the elements have different
patterns (Figure 5). EDS also allows performing quan-
titative analysis, but to precisely know the chemical
speciation of the elements, X-ray microfluorescence
and XANES are better techniques. For example, sulfur
is associated with amino acids in the inner organic
membranes; whereas it is mainly linked to sulfated
polysaccharides in the mineralized layers (8,11,12).

Organic components
Organic components within the calcified layers were
described as proteins (17). In decalcified, fixed and
stained sections, the organic matrix is visible in all
layers (18). Growth lines, herring-bone pattern, and
the blocky structure of the palisade layer are preserved
in these sections. As for other biominerals, the most
studied components are proteins, especially those of
chicken eggshells. A comparison of amino acid analyses

Figure 4. Elemental composition of some bird eggshells. T Tinamou, S Struthio, R Rhea, C Casuarius, E Dromaius, F Falco, m
megapode, P Phasianus, D Columba, O Strix, T Turdus, U Uria, M Anas, A Anser. Insert: the dark spots of Uria.

Figure 5. Elemental distribution maps in vertical section. (A-B) phosphorus maps. A Dromaius, WDS map; B Anser, XANES map; (C-E)
magnesium maps. C Dromaius; D Anser; E Gallus.
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is not easy because of the wide range of experimental
procedures. Nevertheless, some trends appear to be
common with high contents in aspartic and glutamic
acids, serine, and glycine; but, every species has its own
composition (Figure 6) (19–22). Both specific and com-
mon proteins have been evidenced in the soluble
matrices (23). The components of the palisade layer
are proteins (70%) and polysaccharides (GAG) (24).
Also, it has been shown that some proteins are present
in all mineralized layers (ovocleidin-17), whereas others
are known in only one layer (25,26). Little attention has
been paid to the insoluble matrix. Some proteins are
present (27) and phospholipids and free fatty acids
were identified in the ostrich eggshell (28). More than
500 proteins have been detected in chicken (29), 697 in
turkey (30), and 475 in zebra finch (31). Strong simila-
rities have been detected between chicken and turkey,
but “there were important and unexpected differences”
between these two species (32).

Discussion—conclusion

The comparison of eggshells from diverse taxa empha-
sizes the differences in structure and composition

depending on the taxa. The interplay of the structure,
crystallinity, and composition is a main factor respon-
sible for the biomechanical properties of the eggshells.
Nevertheless, how these parameters interact and their
relative importance are not deciphered yet. The facts
that the thickness of an eggshell varies and the average
thickness depends on the age of the bird are only
examples of the complexity of the question. Thus, to
estimate the mechanical properties of an eggshell
(mainly resistance to breakage) is difficult because of
this variability. Another problem is the diversity of the
used techniques, as well as their sensitivity (32–34). The
contrast between the abundance of the literature dedi-
cated to the proteins on one hand, and sugars and
lipids on the other hand, is partially due to the avail-
ability and automatism of the techniques routinely used
for proteins and proteomics, but not for lipids and
sugars. Nevertheless, lipids and sugars play a role in
the mechanical properties of the eggshells, the impor-
tance of which is still unknown.

Recognizing similarities and differences in structure
and composition of eggshells, as briefly summarized in
this contribution, is the first step to understand eggshell
biomineralization. Precise mechanisms are not well

Figure 6. Amino acid composition of the matrix extracted from eggshells.
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understood; however, two competing models are evoked
to explain the formation of eggshells. The first model
highlights the biological control, and the role of the
organic matrix [“The eggshell matrix components regu-
late eggshell mineralisation” (35–37)]. In contrast, the
alternative model advocates for more inorganic control
(38,39), including the idea that the spherulitic—columnar
structure of eggshells is “a typical case of competitive
crystal growth” (39).

Independent of these models, several facts are pre-
cisely known about eggshell biomineralization such as
the timing and sequence of the chicken eggshell forma-
tion (26,35–37). The role of the inner organic mem-
branes is of major importance in the beginning of the
process (25,40). The first mineral deposits are amor-
phous CaCO3 particles, which progressively changed
into calcite crystals (41). Previous authors have shown
that the proteins present in the calcifying uterine fluid
differ at the different stages of the eggshell formation
and thus, affect the mineralization process (26,35,36).
Also, not just the presence, but the concentration of
proteins influences such a process. The marked influ-
ence of organic matrix components and inner mem-
branes in eggshell biomineralization reinforces the
biological control in opposition to pure inorganic
mechanisms involved in calcification.

The “inorganic model” tends to neglect the role of
organics and the onset of biomineralization by focus-
ing mainly on the structure of the mammillary cones
and the palisade layer. However, the structural-com-
positional analysis of all layers in eggshells highlights
the biological control on mineralization. AFM images
indicate that the nanostructure of layers is made up
by rounded granules, surrounded by a nonminera-
lized cortex. This “nanosphere particle morphology”
is characteristic of mature biogenic crystals (42) and
can be found in biomineral structures produced by a
wide array of organisms (43). At microstructural
level, the diversity of crystallographic textures found
in eggshells (13,15), as well as the presence, the spa-
tial distribution and the shapes of pores cannot be
explained by invoking crystal competition, and even
the role of organic matrix components is observed for
the formation of calcite crystals in the mammillary
and palisade layers. Furthermore, differences in the
elemental and amino-acid composition of eggshells
do not support simple “abiogenic mineralization
models” for their formation. In summary, our current
knowledge of the timing and sequence of the forma-
tion of chicken eggshells and the structure-composi-
tion of eggshells from different species indicate that
they cannot be viewed as mere bioceramic composites
(44). In contrast, the strong link between inorganic

and organic phases suggests a type of biomineraliza-
tion mechanism similar to other calcified matrices,
such as bone or tooth enamel.
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