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H I G H L I G H T S

• Forest groundwater was in anoxic con-
ditions whereas crop groundwater was
in oxic conditions.

• Leaching of soil DOC occurred mostly in
forest groundwater during high flow
period.

• CO2 and CH4 were higher in forest
groundwater than in crop groundwater.

• CH4 was higher in crop streams com-
pared to forest streams.

• CO2 was not different between crop
streams and forest streams.
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During land-aquatic transfer, carbon (C) and inorganic nutrients (IN) are transformed in soils, groundwater,
and at the groundwater-surface water interface as well as in stream channels and stream sediments. How-
ever, processes and factors controlling these transfers and transformations are not well constrained, partic-
ularly with respect to land use effect. We compared C and IN concentrations in shallow groundwater and
first-order streams of a sandy lowland catchment dominated by two types of land use: pine forest and
maize cropland. Contrary to forest groundwater, crop groundwater exhibited oxic conditions all-year
round as a result of higher evapotranspiration and better lateral drainage that decreased the water table
below the organic-rich soil horizon, prevented the leaching of soil-generated dissolved organic carbon
(DOC) in groundwater, and thus limited consumption of dissolved oxygen (O2). In crop groundwater,
oxic conditions inhibited denitrification and methanogenesis resulting in high nitrate (NO3

−; on average

Keywords:
Carbon dioxide
Methane

Science of the Total Environment 661 (2019) 613–629

⁎ Corresponding author at: Chemical Oceanography Unit, University of Liège, Liège, Belgium.
E-mail address: Loris.deirmendjian@uliege.be (L. Deirmendjian).

https://doi.org/10.1016/j.scitotenv.2019.01.152
0048-9697/© 2019 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2019.01.152&domain=pdf
https://doi.org/10.1016/j.scitotenv.2019.01.152
Loris.deirmendjian@uliege.be
https://doi.org/10.1016/j.scitotenv.2019.01.152
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


1140 ± 485 μmol L−1) and low methane (CH4; 40 ± 25 nmol L−1) concentrations. Conversely, anoxic con-
ditions in forest groundwater led to lower NO3

− (25 ± 40 μmol L−1) and higher CH4 (1770 ±
1830 nmol L−1) concentrations. The partial pressure of carbon dioxide (pCO2; 30,650 ± 11,590 ppmv) in
crop groundwater was significantly lower than in forest groundwater (50,630± 26,070 ppmv), andwas ap-
parently caused by the deeper water table delaying downward diffusion of soil CO2 to the water table. In
contrast, pCO2 was not significantly different in crop (4480 ± 2680 ppmv) and forest (4900 ±
4500 ppmv) streams, suggesting faster degassing in forest streams resulting from greater water turbulence.
Although NO3

−concentrations indicated that denitrification occurred in riparian-forest groundwater, crop
streams nevertheless exhibited important signs of spring and summer eutrophication such as the develop-
ment of macrophytes. Stream eutrophication favored development of anaerobic conditions in crop stream
sediments, as evidenced by increased ammonia (NH4

+) and CH4 in stream waters and concomitant de-
creased in NO3

− concentrations as a result of sediment denitrification. In crop streams, dredging and erosion
of streambed sediments during winter sustained high concentration of particulate organic C, NH4

+ and CH4.
In forest streams, dissolved iron (Fe2+), NH4

+ and CH4 were negatively correlated with O2 reflecting the
gradual oxygenation of stream water and associated oxidations of Fe2+, NH4

+ and CH4. The results overall
showed that forest groundwater behaved as source of CO2 and CH4 to streams, the intensity depending
on the hydrological connectivity among soils, groundwater, and streams. CH4 production was prevented
in cropland in soils and groundwater, however crop groundwater acted as a source of CO2 to streams (but
less so than forest groundwater). Conversely, in streams, pCO2 was not significantly affected by land use
while CH4 production was enhanced by cropland. At the catchment scale, this study found substantial bio-
geochemical heterogeneity in C and IN concentrations between forest and crop waters, demonstrating the
importance of including the full vegetation-groundwater-stream continuum when estimating land-water
fluxes of C (and nitrogen) and attempting to understand their spatial and temporal dynamics.

© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Despite their small surface area worldwide (Downing et al., 2012),
inlandwaters have been recognized as key component of the global car-
bon (C) cycle, constituting a preferential pathway of dissolved and par-
ticulate C transport from terrestrial ecosystems to the coastal ocean
(Cole et al., 2007; Meybeck, 1982; Ludwig et al., 1996a, 1996b;
Meybeck, 1987). Inlandwaters act as significant sources of carbon diox-
ide (CO2) and methane (CH4) to the atmosphere because inland waters
are generally supersaturated by CO2 and CH4 compared to the overlying
atmosphere (Abril et al., 2014; Bastviken et al., 2011; Borges et al., 2015;
Lauerwald et al., 2015; Raymond et al., 2013; Stanley et al., 2016).

Inlandwaters and specifically small streams are tightly connected to
their catchment characteristics such as hydrology and land use, as they
receive large inputs of C from land (mainly from soils and groundwa-
ter), which in turn control the stream biogeochemical processes and
the water composition (Aitkenhead et al., 1999; Deirmendjian and
Abril, 2018; Hotchkiss et al., 2015; Johnson et al., 2006; Jones and
Mulholland, 1998; McClain et al., 2003; Polsenaere and Abril, 2012;
Bodmer et al., 2016; Findlay et al., 2001; Lehrter, 2006). Groundwater
discharge has been recognized as an important source of CO2 in riverine
systems, especially in small streams and headwaters (Deirmendjian and
Abril, 2018; Hotchkiss et al., 2015; Johnson et al., 2008; Kokic et al.,
2015; Marx et al., 2017; Raymond et al., 2013; Wallin et al., 2013). On
the contrary to riverine CO2, riverine CH4 is likely to originate fromwet-
lands that generally combine a strong hydrological connectivity with
riverine waters and a high productivity (Abril et al., 2014; Abril and
Borges, 2018). Although some studies found low CH4 concentrations
in the groundwater of Belgium (up to 1.1 μmol L−1; Borges et al.,
2018; Jurado et al., 2017), other studies found high CH4 concentrations
in the groundwater of Great Britain (up to 295 μmol L−1; Bell et al.,
2017) and in the Appalachian basin of the USA (up to 28,000
μmol L−1; Molofsky et al., 2016). Actually, soil moisture, which controls
oxic/anoxic conditions in soil, is the main determinant of terrestrial CO2

or CH4 production in soil. As a consequence, CH4 emissions from soils
are high under strictly anaerobic conditions in waterlogged soils
whereas CO2 emissions from soils are high under aerobic conditions in
drier soils (Christensen et al., 2003; Moore and Knowles, 1989). Crop-
lands affect water mass balance at the plot scale, especially through irri-
gation and extraction of groundwater, which results in declining water

table in many regions worldwide (Foley et al., 2005; Gleick, 2003;
Jackson et al., 2001; Postel, 1999; Rosegrant et al., 2002). Investigating
spatial dynamics of CO2 and CH4 in groundwater in relation with land
use is critical better understanding processes governing their terrestrial
production and leaching to groundwater.

Croplands cover about 40% of the terrestrial ice-free surface and are
often associated with degradation of both ground and surface water
quality (Asner et al., 2004; Clague et al., 2015; Foley et al., 2005;
Hiscock et al., 1991; Ramankutty and Foley, 1999). Intensive agriculture
led to an increase of nitrate (NO3

−) entering ground and surface water
environments that has fueled aquatic primary production in surfacewa-
ters and led to low CO2 and high CH4 concentrations, the latter being re-
lated to enhanced organic matter delivery in sediments (Borges et al.,
2018; Carpenter et al., 1998; Clague et al., 2015; Crawford et al., 2016;
Jordan and Weller, 1996; Smith, 2003; Zhou et al., 2017). Additionally,
aquatic primary production in crop streams is enhanced as a result of
low light limitation (clearing of riparian vegetation), and the excessive
transport of sediment-bound organic matter and nutrients to surface
waters (Bernot et al., 2010; Lamba et al., 2015; Ramos et al., 2015;
Young and Huryn, 1999). Soil erosion rates in agricultural landscapes
are one to two times larger than those in areas with native vegetation
(Montgomery, 2007; Quinton et al., 2010). Indeed, riparian forest is usu-
ally considered stream buffer zones that attenuate stream bank erosion
and NO3

− inputs from croplands (Balestrini et al., 2016; Cey et al., 1999;
Christensen et al., 2013; Stott, 2005;Wynn andMostaghimi, 2006). De-
nitrification represents a permanent removal pathway that limits the
extent and impact of NO3

− contamination by transforming NO3
− to

inert dinitrogen (N2). However, incomplete denitrification can pro-
duced nitrous oxide (N2O), a major anthropogenic ozone-depleting
substance (Ravishankara et al., 2009). On the contrary to croplands, for-
ests are known to export fewer nutrients by limiting runoff and leakage
of nutrients (Canton et al., 2012; Onderka et al., 2010).

Land use effects on both water composition and biogeochemical
processes have been studied in streams and groundwater (Barnes and
Raymond, 2010, 2009; Bernot et al., 2010; Bodmer et al., 2016; Jeong,
2001; Lehrter, 2006; Masese et al., 2017; Raymond and Cole, 2003;
Rodrigues et al., 2018; Salvia-Castellví et al., 2005; Vidon et al., 2008;
Wilson and Xenopoulos, 2009; Young and Huryn, 1999; Zhang et al.,
2018), but land use studies with simultaneous groundwater and stream
sampling aremore scarce (Bass et al., 2014; Borges et al., 2018; Hu et al.,
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2016). The objective of this study was to understand how two contrast-
ing types of land use (pine forest andmaize cropland) affected C and in-
organic nutrient (IN) concentrations in shallow groundwater and in
first-order streams of a sandy lowland catchment. We hypothesized
that the biogeochemical variability between crop groundwater and for-
est groundwater was due to agricultural practices that affect N inputs
(fertilizer) and water mass balance (irrigation and drainage). We hy-
pothesized that the biogeochemical variability between crop and forest
streams originate from differential lateral export of C and IN from two
distinct sources (i.e., crop groundwater and forest groundwater) be-
cause of a strong hydrological connection between groundwater and
streams in the studied catchment.

2. Materials and methods

2.1. Study site

The Leyre catchment (2100 km2) is located in the southwestern part
of France. This is aflat coastal plainwith amean slope lower than 0.125%
and a mean altitude lower than 50m (Jolivet et al., 2007). The lithology
is relatively homogeneous and composed of sandy permeable surface
layers dating from the Plio-Quaternary period (Legigan, 1979; Bertran
et al., 2009, 2011). The soils are podzols characterized by a low pH
(≈4), low nutrient availability, low cationic exchange capacity, and
high organic C content that can reach 50 g per kg of soil (Augusto
et al., 2010; Lundström et al., 2000). In Leyre sandy podzols, the low
clay and silt content causes a low soil water retention (Augusto et al.,
2010).

The study area was a vast wetland until the 19th century, when a
wide forest of maritime pine was sown following a landscape drainage
campaign resulting from an imperial decree of Napoleon III in 1857
(Jolivet et al., 2007). Currently, the catchment is mainly occupied by
C3 pine forest (approximately 85%), with a modest proportion of C4

maize cropland (approximately 15%) (Fig. 1; Jolivet et al., 2007). Follow-
ing catastrophic forest wildfires, the maize croplands were installed

during the second half of the 20th century. Consequently, their spatial
distribution was not based on soil properties, as confirmed by the simi-
lar mean values of soil texture in local croplands and forests (Augusto
et al., 2010; Jolivet et al., 2003). During themaize cropping season (usu-
ally May to November), farmers irrigate the plots by pumping shallow
groundwater (~1–5 m deep) almost daily to maintain adequate soil
moisture status, whereas maritime pine stands are never irrigated
(Govind et al., 2012). As N is not limiting for tree growth in our study re-
gion (Trichet et al., 2009), forests are never fertilizedwithN. Conversely,
croplands generally receive two N fertilizer applications annually, a first
at the beginning ofMay (30–50 kgNha−1), and second at the beginning
of June with 200–250 kg N ha−1 (Canton et al., 2012; Jambert et al.,
1997; Ulrich et al., 2002). Additionally, in order to maintain soil pH in
the 5.5–6.0 range, local maize croplands are limed with crushed lime-
stone (CaCO3) containing a small portion of dolomite (CaMg(CO3)2)
(10 t ha−1 right after forest conversion and then 0.5 t ha−1 an−1;
Jolivet et al., 2003).

The climate is oceanic with a mean annual air temperature of 13 °C
and a mean annual precipitation of 930 mm (Moreaux et al., 2011).
Owing to the low slope, the low soil water retention and the high per-
meability of the soil (i.e., hydraulic conductivity is approximately
40 cm h−1, Corbier et al., 2010), the percolation of rain water is fast
(55 cm h−1 on average, Vernier and Castro, 2010). Consequently, sur-
face runoff does not occur as the excess of rainfall percolates into the
soil and recharges the shallow groundwater, causing the water table
to rise. The sandy permeable surface layers contain a free and continu-
ous water table that is strongly interconnected with the superficial
river network. This is facilitated by a dense network of drainage ditches,
initiated in the 19th century and currently maintained by forest man-
agers in order to enhance tree regeneration and growth (Thivolle-
Cazat and Najar, 2001). During the sampling period, channels of some
crop streams were dredged before they began to flow again. This was
done to optimize local cropland drainage and to feed croplands with
IN and organic residuals found in the stream sediments. To increase
soil permeability and to optimize lateral drainage in local maize

Fig. 1. Land use map of the Leyre catchment showing river network and the sampling locations of groundwaters and streams.
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croplands, farmers practice subsoiling and agricultural ditches are gen-
erally deeper (2.0–2.5 m) than forest ditches (1.0 m).

2.2. Sampling strategy

We defined order 0 as groundwater and order 1 as streams and
ditches either having no tributaries or being seasonally dry (from June
to December during our sampling period).We selected 17 sampling sta-
tions (5 shallow groundwater and 12 first-order streams) within the
Leyre catchment (Table 1; Fig. 1). The groundwater sampling stations
were located in maize cropland (n = 2), pine forest (n = 2; one is the
Bilos station (FR-Bil) of the ICOS Research infrastructure) and in a ripar-
ian forest adjacent to a maize cropland (n = 1; Table 1; Fig. 1). The
stream sampling stations were chosen based on the different propor-
tions of croplands in their respective catchments (Table 1; Fig. 1).

Groundwater was sampled for temperature, electrical conductivity
(EC), pH, dissolved oxygen (O2), methane (CH4), partial pressure of
CO2 (pCO2), total alkalinity (TA), dissolved inorganic carbon (DIC), sta-
ble isotope composition of the dissolved inorganic carbon (δ13C-DIC),
dissolved organic carbon (DOC), ammonia (NH4

+), nitrate (NO3
−) and

dissolved iron (Fe2+). For groundwater, we took the precaution to
renew the water in the piezometers by pumping with a submersible
pump before sampling. Groundwater was then sampled once the stabi-
lization (approximately 10 min) of groundwater temperature, pH, EC
and O2 monitored with portable probes was observed. Streams were
sampled for the same parameters, plus total suspended matter (TSM),
particulate organic carbon (POC) and the POC content of the TSM
(POC%).

2.3. Field measurements and laboratory analyses

Groundwater and streams were sampled at approximately monthly
time intervals between Jan. 2014 and Jul. 2015 (Table S1). In total,
throughout the sampling period, we sampled 55 groundwaters and
137 stream waters.

The pCO2 in groundwater and streams was measured directly using
an equilibrator (Frankignoulle and Borges, 2001; Polsenaere et al.,
2013) following the procedure of Deirmendjian and Abril (2018).

We stored the total alkalinity (TA) samples in polypropylene bot-
tles after filtration using a syringe equipped with glass fiber filters
(GF/F; 0.7 μm). TA was then analyzed on filtered samples by auto-
mated electro-titration on 50 mL samples with 0.1 N HCl as the ti-
trant. The equivalence point was determined from pH between 4
and 3 with the Gran method (Gran, 1952). Precision based on repli-
cate analyses was better than ±5 μmol L−1. For samples with a
very low pH (b4.5), we bubbled the water with atmospheric air in
order to degas the CO2. Consequently, the initial pH increased
above 5, and the TA titration was then performed (Abril et al., 2015).

We calculated DIC from pCO2, TA, and temperature measurements
using the carbonic acid dissociation constants of Millero (1979) and
the CO2 solubility from Weiss (1974), using the CO2SYS software
(Lewis et al., 1998). The δ13C-DIC samples were collected using
120 mL glass serum bottles sealed with a rubber stopper and treated
with 0.3 mL of HgCl2 at 20 g L−1 to avoid any microbial respiration dur-
ing storage. Vials were carefully sealed such that no air remained in con-
tact with samples and were stored in the dark to prevent photo-
oxidation. The δ13C-DIC measurements were performed with the head-
space technique using an isotope ratiomass spectrometer coupled to an
elemental analyzer (EA-IRMS, Micromass IsoPrime) equipped with a
manual gas injection port as described in Gillikin and Bouillon (2007).

CH4 was also measured using a headspace technique in 60 mL glass
serum bottles. The headspace was created with 10 mL of N2 gas. We
then injected 0.5mL of the headspace in a gas chromatograph equipped
with a flame ionization detector (GC-FID).

DOC samples were obtained after filtration in the field through
pre-combusted GF/F (0.7 μm). DOC filtrates were stored in pre-
combusted Pyrex vials (25 mL), acidified with 50 μL of 37% HCl to
reach pH 2, and kept at 4 °C in the laboratory before analysis. The
DOC concentrations were measured with a SHIMADZU TOC 500 ana-
lyzer (in TOC-IC mode), using a technique based on thermal oxida-
tion after a DIC removal step (Sharp, 1993). The repeatability was
better than 10 µmol L−1.

Table 1
Characteristics of groundwater and stream sampling stations, ranked in decreasing order of cropland percentage in their respective sub-catchments. a delimited with a geographic infor-
mation system software (ArcGIS 10.5®) using an hydrological database in a polyline form (BD CARTHAGE®) and a digital elevationmodel (BDALTI®, resolution of 25m),which both have
beenmade available by the national geographic institute of France (http://www.ign.fr/). b retrievedwith the CORINE land cover 2006database (EEA, 2014) using a geographic information
system software (ArcGIS 10.5®). c C, F, R corresponding to crop, forest and riparian waters, respectively, either during high or base flow. Piezometer 1 (P1) is located in a riparian mixed
pine and oak forest near a first-order stream and near a maize cropland, which where P2 is located. P2 and P3 are located in the middle of two different maize croplands of 0.6 km2 and
6 km2, respectively. P5 is located in an 11-years old pine plot of 0.6 km2 and is part of the ICOS (name is FR-Bil) research infrastructure (http://icos-ri.eu), whereas P4 is located in another
pine forest (approximately sameage as P5pine forest). The depth of piezometers (from the soil surface to the bottomof thepiezometer) is 5.3m for P1, 4.9m for P2, 9.1m for P3, 5m for P4
and P5.

Stream
order

Description Catchment
area
(km2)a

Crop
(%)b

Forest
(%)b

Urban
(%)b

During
high
flowc

During
base
flowc

1 Ditch 1.0 86.5 13.5 0.0 C C
1 Ditch 1.3 53.8 46.2 0.0 C C
1 Ditch 11.3 44.2 55.8 0.0 C C
1 Ditch 13.4 42.5 57.5 0.0 C C
1 Stream 57.0 30.7 69.3 0.0 C C
1 Stream 16.8 7.8 92.2 0.0 F F
1 Ditch 7.9 5.8 94.2 0.0 F F
1 Ditch 2.3 5.2 94.8 0.0 F C
1 Stream 16.0 4.6 93.8 1.6 C F
1 Stream 34.0 3.8 96.2 0.0 F F
1 Stream 31.0 2.3 97.7 0.0 F F
1 Headwater 0.3 0.0 100.0 0.0 F F
0 Groundwater in a riparian forest but very near (5 m) a maize cropland

(P1)
R R

0 Groundwater in maize cropland (P2) C C
0 Groundwater in maize cropland (P3) C C
0 Groundwater in pine forest (P4) F F
0 Groundwater in pine forest (P5) F F
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Thewater for TSM and POCmeasurementswas filtered through pre-
weighed and pre-combusted GF/F glass fiber filters (0.7 μm). The filters
were dried at 60 °C and stored in the dark, and subsequently, TSM was
determined by gravimetry. POCwasmeasured using the same filter. The
filterswere acidified in crucibleswith 2NHCl to remove carbonates and
were then dried at 60 °C to remove inorganic carbon andmost of the re-
maining acid and water (Etcheber et al., 2007). POC content was mea-
sured by combustion (1500 °C) using a LECO CS 200 analyzer and the
CO2 formed was determined quantitatively by infrared absorption.
POC in μmol L−1 and POC% were then calculated. The uncertainty was
±0.05% of TSM.

For IN determination, water was filtered through a 0.20 μmcellulose
acetate syringe membrane. Subsamples for Fe2+ were acidified with
37% HCl to prevent precipitation of iron oxide, whereas subsamples
for NH4

+andNO3
−were not acidified but kept frozen until later analyses.

Then, NH4
+, NO3

−, and Fe2+ were analyzed by colorimetry according to
standard techniques. NH4

+ was analyzed following the procedure of
Harwood and Kühn (1970). NO3

− was analyzed by flow injection analy-
sis following the procedure of Anderson (1979). Fe2+ was analyzed
using the ferrozine method (Stookey, 1970). Precision was ±10% for
NH4

+ and NO3
−, and was ±5% for Fe2+.

EC, temperature, O2, and pH were measured using portable probes
(WTW®). Before each field trip, the pH probe was calibrated using
two NBS buffer solutions (4 and 7), the oxygen polarographic probe
was calibrated to 100% in a humid atmosphere and the conductivity
probe was calibrated using a salinity standard.

2.4. Statistical analyses

K-means clustering analysis (MacQueen, 1967) was used to classify
waters either as forest-dominated or as cropland-affected (Table 1). In-
deed, K-means clustering analysis allows partitioning a dataset into k
groups (i.e., clusters) pre-specified by the analyst (MacQueen, 1967).
Contrary to forest waters at our study site, crop waters exhibit dispro-
portionately higher NO3

− concentration as a result of N fertilizer use
on maize cropland (Canton et al., 2012; De Wit et al., 2005; Jambert
et al., 1997, 1994). Consequently, in the K-means clustering analysis
we used NO3

− concentration data as a proxy to establish a statistical dis-
tinction between forest and crop waters (Table 1). K-means clustering
analysiswas performedone timewith the groundwater dataset (but ex-
cluding the riparian groundwater) and a second time with the first-
order streams dataset.We excluded data from riparian groundwater be-
cause we have considered riparian groundwater as a cluster itself
(Table 1).

Principal component analysis (PCA)was used to condensemultivar-
iate information on correlated biogeochemical parameters to a set of
uncorrelated variables called principal components (further referred
to as dimensions). PCA was performed one time with a dataset
consisting of each measured parameter in groundwater (but excluding
the riparian groundwater) and a second time with the corresponding
first-order streams dataset. PCA was performed separately for ground-
water and streams because particulate parameters were not present in
groundwater. If PCA were not performed separately for groundwater
and streams, all data from groundwater would have been removed
from the analysis (indeed, if one parameter is missing for a given sam-
pling station, the sampling station is entirely deleted from the PCA). In
addition, performing the PCA separately for groundwater and streams
led to information that was more robust with respect to the biogeo-
chemical variability induced by land use, in either groundwater or
streams. However, to observe whether the two groundwater (crop
and forest) and two streams (crop and forest) sources could be distin-
guished mathematically in one PCA, we performed an additional PCA
with data fromboth groundwater and streams that excludedparticulate
parameters from the analysis. All concentrations data were log-
transformed prior to PCA. The PCAs showed the biogeochemical

variability across forest, cropland, and hydrological seasons in either
groundwater or first-order streams.

Later, non-parametric bivariate analyses (Mann-Whitney statistical
tests)were used to estimate if hydrological seasons or increasing stream
order significantly influenced the concentration of a biogeochemical pa-
rameter. Linear regressions were performed to model the relationships
between two variables by fitting a linear equation to observed data.

K-means clustering analysis (package Stats) and PCA analysis (pack-
age FactoMineR for analysis and package factoextra for visualization;
Kassambra and Mundt, 2017; Lê et al., 2008) were performed with R
software version 3.1.4 (R Core Team, 2018). Mann-Whitney tests and
linear regressions were performed with Graph Pad Prism version 7
software.

3. Results

3.1. Hydrology

In previous work based on the same dataset, but excluding cropland
sampling stations, we identified two major hydrological seasons
(Deirmendjian and Abril, 2018). One defined a high flow period as
two relatively short flood events that occurred in Jan. 2014–Mar. 2014
and in Feb. 2015–Mar. 2015, whereas we defined the base flow period
as two longer periods of low flow occurring in Apr. 2014–Jan. 2015
and Apr. 2015–Jul. 2015. During high flow, the average and the maxi-
mum river flows were 50 m3 s−1 and 119 m3 s−1, respectively. During
base flow, the average and the minimum river flow were 10 m3 s−1

and 5m3 s−1, respectively. Thewater tables in the forest, riparian forest,
and cropland exhibited similar temporal fluctuations but with a differ-
ent intensity, and the forest had an overall higher water table
depth than the cropland (Fig. 2). The water table in the riparian area
exhibited intermediate depth between the forest and cropland sites
(Fig. 2). As surface runoff was negligible in the studied sandy and flat
catchment, most of the streamwater likely originated from groundwa-
ter discharge.

To investigate the temporal variability of the studied biogeochemical
parameters, we chose to rely on hydrological regimes (high flow and
base flow periods) rather than on temperature periods (seasons). At
our study site climate was oceanic (by definition very temperate) and
the amplitude of the water temperature was not as high as the ampli-
tude of the river flow. As an example, Leyre River (main stem) flow
could be up to 119 m3 s−1 and could be down to 5 m3 s−1, whereas
the highest water temperature amplitude occurred in forest streams
and was 6.4–25.8 °C (Table 2). Additionally, most of the lateral export

Fig. 2.Water table depth during the sampling period (Jan. 2014–Jul. 2015) across land use
in the Leyre catchment. The water table in riparian area is the water table at P1 (Table 1).
Thewater table in crop plot is the average± standard deviations of water tables at P2 and
P3 (Table 1). The water table in forest plot is the average ± standard deviations of water
tables at P4 and P5 (Table 1).
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occurred during the short periods of high flow (up to 90% for DOC,
Deirmendjian et al., 2018). Thus, characterizing biogeochemical vari-
ability and biogeochemical processes in relation with land use during

this hydrological period was important. Furthermore, the seasonality
induced by water temperature was to a certain extent included in the
defined hydrological regimes since the high flow period was associated

Table 2
Values of carbon and ancillary parameters throughout sampling period (Jan. 2014-Jul. 2015) in crop and forest continuums and in riparian groundwater. Numbers between brackets are
corresponding to the sampling size. For each parameter, the table showed average ± standard deviations and the range.

Crop continuum Forest continuum Riparian groundwater

Groundwaters (22) Streams (59) Groundwaters (22) Streams (78) Groundwaters (11)

pH 4.5 ± 0.2 6.0 ± 0.3 4.5 ± 0.3 5.8 ± 0.5 4.7 ± 0.1
4.3–5.0 5.4–7.0 3.7–4.8 4.2–6.9 4.4–4.8

Temperature (°C) 14.5 ± 1.8 13.6 ± 4.2 12.8 ± 1.8 12.9 ± 3.9 14.9 ± 2.4
10.7–17.5 6.4–25.8 8.5–15.1 4.8–22.1 11.8–17.9

EC (μS cm−1) 360 ± 70 220 ± 55 90 ± 10 115 ± 30 160 ± 50
220–465 75–370 65–115 70–200 95–270

NO3
− (μmol L−1) 1140 ± 485 340 ± 200 25 ± 40 75 ± 70 310 ± 260

260–1785 10–950 0–120 0–275 40–860
NH4

+ (μmol L−1) 0.4 ± 0.8 6.1 ± 7.0 4.5 ± 7.0 1.8 ± 1.7 0.4 ± 0.4
0–3.5 0–40 0.3–30 0–7.8 0–1.5

Fe2+ (μmol L−1) 0.9 ± 0.4 5.9 ± 4.4 15 ± 15 7.9 ± 12.0 0.6 ± 0.5
0.1–1.9 0.1–22 0.9 ± 56 0.6 ± 58 0.2–1.5

O2 (μmol L−1) 220 ± 65 290 + 45 20 ± 30 280 ± 50 100 ± 70
100–315 160–400 0–110 110–370 0–170

CH4 (nmol L−1) 40 ± 25 460 ± 950 1770 ± 1830 240 ± 300 1470 ± 1490
15–130 20–4900 50–6700 20–2370 30–4150

pCO2 (ppmv) 30,650 ± 11,590 4480 ± 2680 50,630 ± 26,070 4900 ± 4500 42,950 ± 28,560
19,000-60,550 1040-14,080 7680-116,380 1000-27,200 17,300-103,300

TA (μmol L−1) 90 ± 25 100 ± 50 70 ± 30 90 ± 50 70 ± 15
35–130 30–300 30–135 30–280 45–85

δ13C-DIC (‰) −19.8 ± 1.3 −18.2 ± 3.5 −26.7 ± 1.0 −19.8 ± 2.8 −25.2 ± 1.1
−22 to −17.6 −27.6 to −11.3 −28.8 to −24 −27.6 to −14 −27.9 to −23.4

DIC (μmol L−1) 1450 ± 480 315 ± 135 2460 ± 1130 320 ± 210 1960 ± 1150
820–2590 90–650 570–5370 120–1280 940–4480

DOC (μmol L−1) 510 ± 150 605 ± 320 930 ± 930 470 ± 250 400 ± 100
275–880 220–2290 310–3670 190–1725 280–620

TSM (mg L−1) 5.6 ± 8.6 2.3 ± 1.7
0.1–50.5 0.4–8.2

POC (%) 28 ± 10 28 ± 10
0–50 10–80

POC (μmol L−1) 120 ± 180 50 ± 35
0–1100 0–170

Table 3
Values of carbon and ancillary parameters throughout sampling period (Jan. 2014–Jul. 2015) in different types of groundwater across hydrological seasons. Numbers between brackets are
corresponding to the sampling size. For each parameter, the table showed the average ± standard deviations and the range. We defined six groups that are Cropland_HF/Cropland_BF,
Forest_HF/Forest_BF and Riparian_HF/Riparian_BF corresponding to groundwaters during high flow (HF) or base flow (BF); in either cropland, forest or riparian forest.

Groundwater

Cropland_HF (4) Cropland_BF (18) Forest_HF (6) Forest_BF (16) Riparian_HF (2) Riparian_BF (9)

pH 4.6 ± 0.3 4.5 ± 0.2 4.4 ± 0.3 4.5 ± 0.3 4.7 ± 0.1 4.6 ± 0.1
4.3–4.9 4.3–5.0 4.0–4.8 3.7–4.8 4.6–4.8 4.4–4.8

Temperature (°C) 12.8 ± 1.7 14.9 ± 1.6 10.8 ± 1.4 13.5 ± 1.4 12.2 ± 0.6 15.6 ± 2.2
10.7–14.5 11.6–17.5 8.5–12.2 10.7–15.1 11.8–12.6 12.1–17.9

EC (μS cm−1) 370 ± 60 360 ± 70 90 ± 15 90 ± 10 200 ± 20 150 ± 50
320–460 220–470 70–115 70–115 185–215 95–270

NO3
− (μmol L−1) 1040 ± 300 1160 ± 420 30 ± 50 20 ± 40 510 ± 20 260 ± 270

760–1320 260–1785 0–120 0–120 500–520 40–860
NH4

+ (μmol L−1) 0.5 ± 0.4 0.4 ± 0.9 3.3 ± 2.2 5.0 ± 8.0 0.3 ± 0.1 0.4 ± 0.5
0.1–1 0–3.5 1.1–7 0–3-30 0.2–0.3 0–1.5

Fe2+ (μmol L−1) 0.8 ± 0.2 0.9 ± 0.4 10.0 ± 8.2 15 ± 15 0.4 ± 0.2 0.7 ± 0.5
0.7–1.1 0.1–1.9 2.7–25.5 0.9–56.6 0.2–0.5 0.2–1.5

O2 (μmol L−1) 250 ± 90 220 ± 70 20 ± 20 20 ± 30 170 ± 0 100 ± 80
180–310 100–320 0–40 0–110 170–170 0–200

CH4 (nmol L−1) 30 ± 3 50 ± 25 480 ± 630 2260 ± 1900 1460 ± 2010 1470 ± 1500
25–30 16–130 50–1700 50–6700 40–2880 30–4150

pCO2 (ppmv) 22,050 ± 2000 32,560 ± 12,000 28,100 ± 11,580 59,080 ± 25,060 21,530 ± 5950 47,700 ± 29,590
19,800-24,270 19,000-60,550 7680-39,000 29,685-116,400 17,320-25,740 20,600-103,300

TA (μmol L−1) 85 ± 2 92 ± 30 95 ± 40 65 ± 30 83 ± 2 60–10
82–86 35–130 60–135 30–100 82–85 45–75

δ13C-DIC (‰) −20.7 ± 1.1 −19.6 ± 1.3 −26.6 ± 1.3 −26.8 ± 1.0 −26.9 ± 1.4 −24.9 ± 0.7
−22 to −19.7 −21.9 to −17.6 −27.6 to −24.0 −28.8 to −25.3 −27.9 to −25.9 −25.7 to −23.4

DIC (μmol L−1) 1100 ± 180 1520 ± 490 1500 ± 550 2830 ± 1080 1160 ± 315 2140 ± 1200
930–1300 820–2590 570–2040 1650-5370 940–1380 1020-4480

DOC (μmol L−1) 420 ± 120 550 ± 140 2230 ± 1440 740 ± 380 310 ± 50 420 ± 100
320–590 340–880 575–3670 310–1720 275–350 310–620
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with lower water temperatures while the base flow period was associ-
ated with higher water temperatures (Tables 2–4).

3.2. K-means clustering analysis

For both hydrological seasons (i.e., high and base flow), we
partitioned each sampling stations (excepting riparian groundwater),
into either cropland-affected or forest-dominated waters (Table 1). K-
means clustering analysis produced satisfactory results. Logically,
groundwater located in cropland was classified as crop water whereas
groundwater located in forest was classified as forest water (Table 1).
Stream sampling stations having N30% of croplands in their respective
catchmentwere always classified as cropwaters (Table 1). Stream sam-
pling stations having b8% of croplands in their respective catchment
were always classified as forest waters excepting two times (Table 1).
These two stream sampling stations were located a few kilometers
downstream from important maize croplands. Specifically, one station
was a ditch strongly vegetated during the base flow period that showed
signs of N fertilizer uptake from upstream cropland and, therefore, this
ditchwas logically classified as a crop station during base flow (Table 1).
One station was a stream that exhibited a high water flow during the
high flow period, which probably increased the upstream cropland in-
fluences during this hydrological period and, therefore, this stream
was logically classified as a crop station during high flow (Table 1).

Excepting one strictly forested headwater, the other sampled
streams were not strictly forested or cropped (Table 1). Consequently,

as explained further, some biogeochemical variability between forest
and crop streamswas introduced by simple water mixing from two dis-
tinct sources: forest groundwater and crop groundwater. We used the
term crop stream to indicate a stream classified as a crop-affected one,
although such stream was a forest stream affected by cropland rather
that a strictly crop stream.

3.3. Land use influence on water composition of shallow groundwater

PCA on the groundwater dataset revealed that groundwater biogeo-
chemical variability was strongly dependent on land use (maize crop-
land vs. pine forest) and hydrological seasons (base flow vs. high
flow) (Fig. 3a, b). The first three PCA dimensions covered 44%, 17.5%
and 10.5% of the total variance within the dataset, respectively
(Fig. 3a, b).

PCA dimension 1 clearly separated forest groundwater from crop
groundwater based on two groups of variables negatively correlated
with one another (Fig. 3a). One group of variables was characterized
crop groundwater and was composed of EC, NO3

−, δ13C-DIC, and O2,
whereas the second group of variableswas characterized forest ground-
water andwas composed of DIC, pCO2, CH4, Fe2+, and NH4

+ (Fig. 3a). In-
deed, we observed that the yearly average of EC (+270 μS cm−1), NO3

−

(+1115 μmol L−1), δ13C-DIC (+6.9‰), and O2 (+200 μmol L−1) were
higher in crop groundwater than in forest groundwater andwere signif-
icantly and positively affected by cropland cover (Table 2; Fig. 4b, c, f, j).
Conversely, we observed higher DIC (+1010 μmol L−1), pCO2 (+19,985
ppmv), CH4 (+1730 μmol L−1), Fe2+ (+14.1 μmol L−1), and NH4

+

(+4.1 μmol L−1) in forest groundwater than in crop groundwater;
these were significantly and positively affected by forest cover
(Table 2; Fig. 4d, e, g, h, k). In riparian groundwater, EC, NO3

−, δ13C-
DIC, O2, DIC, pCO2, and CH4 exhibited intermediate values between
the groundwater of forest and crop sites, whereas Fe2+ and NH4

+ were
low and close to those found in crop groundwater (Table 2; Fig. 4b, c,
d, e, f, g, h, j, k).

In crop groundwater, EC, NO3
−, δ13C-DIC, and O2 were not signifi-

cantly affected by hydrological seasons (Fig. 3a, S2c, h, j, k, l). However,
δ13C-DIC (+1.1‰), NO3

− (+120 μmol L−1), and DOC (+130 μmol L−1)
were slightly higher (but not significantly) during base flow compared
to high flow (Table 3; Fig. S2c, h, j, k, l). In forest groundwater, pCO2,
DIC, CH4, and DOC were significantly affected by hydrological seasons
(Table 3; Fig. S2g, h, k, l). DOC (+1490 μmol L−1) was significantly
higher during high flow, whereas pCO2 (+30,980 ppmv), DIC (+1330
μmol L−1) and CH4 (+1780 nmol L−1) were significantly higher during
base flow (Table 3; Fig. S2 and S4g, h, k, l). In crop and riparian ground-
water, we also observed higher pCO2 and DIC values during base flow,
but with lower intensities than in forest groundwater (Table 3;
Fig. S2h, k).

3.4. Land use influence on water composition of first-order streams

Fig. 3c–d present PCA based on first-order streams data set. The first
three PCA dimensions covered 28.6%, 18.5% and 13.8% of the total vari-
ance within the dataset, respectively (Fig. 3c, d).

Interestingly, the PCA based on the first-order streams dataset did
not clearly separate crop streams from forest streams as it did for
groundwater dataset (Fig. 3a–d). This implied lower spatial variabil-
ity in streams in relation to land use in than in groundwater
(Tables 2–4; Fig. 4). Nevertheless, a land use gradient was observed
on PCA dimension 2 (Fig. 3c, d). PCA dimension 2 was best defined
by a group of variables composed of EC, CH4, NO3

−, NH4
+, DOC, TSM,

and POC, which collectively characterized crop streams (Fig. 3c, d).
On a yearly average basis, significantly higher EC (+105 μS cm−1),
CH4 (+220 μmol L−1), NO3

− (+265 μmol L−1), NH4
+ (+4.3

μmol L−1), DOC (+135 μmol L−1), TSM (+3.3 mg L−1), and POC
(+70 μmol L−1) were observed in crop streams compared to forest
streams (Table 2; Fig. 4b, c, d, g, l, m, o). High CH4, NH4

+, and DOC

Table 4
Values of carbon and ancillary parameters throughout sampling period (Jan. 2014–Jul.
2015) in different types of streams across hydrological seasons. Numbers between
brackets are corresponding to the sampling size. For each parameter, the table showed
the average ± standard deviations and the range. We defined four groups that are
Cropland_HF/Cropland_BF, Forest_HF/Forest_BF corresponding to streams during high
flow (HF) or base flow (BF); in either cropland-affected or forest-dominated land use.

First-order streams

Cropland_HF
(22)

Cropland_BF
(37)

Forest_HF
(23)

Forest_BF
(55)

pH 5.9 ± 0.3 6.1 ± 0.4 5.7 ± 0.6 6.1 ± 0.4
5.4–6.6 5.5–7.0 4.2–6.8 5.0–6.9

Temperature
(°C)

10.2 ± 1.6 15.7 ± 3.9 9.0 ± 1.9 14.6 ± 3.3
6.4–12.1 9.1–25.8 4.8–12 8.1–22.1

EC (μS cm−1) 230 ± 50 220 ± 60 110 ± 20 120 ± 30
145–340 75–370 80–150 70–200

NO3
− (μmol
L−1)

420 ± 220 290 ± 170 95 ± 70 65 ± 70
180–950 8.5–705 0–275 0–275

NH4
+ (μmol

L−1)
7.0 ± 8.4 5.5 ± 6.0 1.7 ± 1.7 1.7 ± 1.7
0.5–38.7 0–25.3 0.3–7.8 0–6.9

Fe2+ (μmol
L−1)

6.7 ± 3.8 5.4 ± 4.7 5.7 ± 3.0 8.8 ± 14.0
1.6–15.7 0.1–22 2.6–13.6 0.6–57.1

O2 (μmol L−1) 290 ± 50 290 ± 40 300 ± 40 270 ± 60
190–400 160–370 210–370 110–360

CH4 (nmol L−1) 580 ± 1080 390 ± 880 185 ± 190 270 ± 340
30–4380 20–4900 40–980 20–2370

pCO2 (ppmv) 5200 ± 2370 4040 ± 2790 4200 ± 2430 5200 ± 5100
1040-10,740 1220-14,080 1240 ±

11,690
1010-27,200

TA (μmol L−1) 105 ± 50 100 ± 50 70 ± 40 95 ± 55
40–300 30–255 35–195 30–280

δ13C-DIC (‰) −20.6 ± 3.9 −16.8 ± 2.4 −22.1 ± 2.5 −18.9 ± 2.3
−27.6 to
−11.3

−22.3 to
−12.4

−27.6 to
−16.8

−23.1 to
−14.0

DIC (μmol L−1) 380 ± 130 280 ± 120 300 ± 150 330 ± 230
1000–650 90–600 150–750 120–1280

DOC (μmol L−1) 750 ± 400 520 ± 230 540 ± 305 450 ± 220
300–2290 220–1520 260–1725 190–1540

TSM (mg L−1) 9.3 ± 11.5 3.1 ± 4.9 2.8 ± 1.7 2.1 ± 1.7
0.9–51 0.1–27 0.5–6.6 0.4–8.2

POC (%) 26 ± 10 30 ± 10 29 ± 8 29 ± 10
15–48 16–48 20–50 12–80

POC (μmol L−1) 190 ± 250 65 ± 100 65 ± 40 40 ± 30
0–1100 0.3–540 0–170 0.5–140
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concentrations were characteristics of forest groundwater, but in
streams, these parameters were characteristic of crop streams
(Fig. 3a–d). In addition, pCO2, DIC, δ13C-DIC and O2 were not able
to separate crop streams from forest streams as they did for ground-
waters (Fig. 3a–d). On a yearly average basis, no significant differ-
ences were observed between crop and forest streams for these
four parameters (Fig. 3f, h, j, k).

The relatively low temporal variability between high and base flow
periods observed in both crop and forest streams for the studied param-
eters did not allow the PCA based on stream data set to clearly separate
base flow samples from high flow samples (Table 4; Figs. 3c–d, S3, S4).
Nevertheless, in crop streams, pH (+0.2) and δ13C-DIC (+3.8‰) were
significantly higher during base flow while pCO2 (−1160 ppmv), NO3

−

(−130 μmol L−1) and DOC (−230 μmol L−1) were significantly lower

Fig. 3. Principal component analysis (PCA) of shallow groundwater dataset (a–b) and first-order streams dataset (c–d).We represented only thefirst three dimensions. Numbers between
brackets are corresponding to the sampling size. The sampling size in the PCAs did not correspond exactly to the sampling size in Tables 3 and 4 because R software deletes stations from
the analysiswith amissing value for oneparameter. In these PCAs,we used all the quantitative variablesmeasured in this study. In eachPCA,we plotted aswell the individuals separated in
four groups. The first group corresponds to cropland-affected samples during high flow (Crop_HF), the second group corresponds to cropland-affected samples during base flow
(Crop_BF), the third group corresponds to forest-dominated samples during high flow (Forest_HF) and the fourth group corresponds to forest-dominated samples during base flow
(Forest_BF). The mean value of each qualitative group has 95% chance to be within the corresponding confidence ellipse.
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Fig. 4. Values of carbon and ancillary parameters throughout the sampling period (Jan. 2014–Jul. 2015) in groundwater and streams across land use. Histograms represent the mean with standard deviations of a given parameter. We defined four
groups that are GW_Forest/GW_Crop and I_Forest/I_crop corresponding to groundwaters and streams order 1 either dominated by forests or croplands. A fifth group is GW_Riparian and corresponding to riparian groundwater. Then, based onMann-
Whitney statistical analysis, we compared GW_CropVS I_Crop, GW_Forest VS I_Forest, GW_Crop VSGW_Forest, I_CropVS I_Forest. Three red stars (***) indicate that datawere significantly differentwith p b 0.001. One blue star (*) indicates that data
were significantly different with p b 0.05. No stars indicate that data were not significantly different (p N 0.05). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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during the same period (Table 4; Fig. S3a, j, c, h, l, m, o). In streams, TSM
and POCwere significantly higher during highflowbutwith a higher in-
tensity in crop streams than in forest streams (Table 4; Fig. S3m, o). In-
terestingly, in both forest and crop streams, POC% was not significantly
affected by hydrological regime (Table 4; Fig. S3n).

3.5. Upstream-downstream distribution of biogeochemical parameters

To explore the influence of land use on water composition at the
groundwater-stream continuum, we observed the upstream-
downstream (groundwater-stream) distribution of biogeochemical pa-
rameters along forest and crop continuums (Table 2; Fig. 4). Along both
types of continuum, some parameters (i.e., pCO2, TA, DIC, δ13C-DIC, pH,
O2) exhibited the same upstream-downstream distribution, whereas
other parameters (i.e., EC, NO3

−, NH4
+, Fe2+, CH4, DOC) exhibited a dif-

ferent upstream-downstream distribution (Table 2; Fig. 4).
In crop and forest continuums, we observed strong spatial patterns

for pCO2, TA, DIC, δ13C-DIC, and pH: pCO2 and DIC decreased while TA
remained more or less constant, and δ13C-DIC and pH increased
(Table 2; Fig. 4a, h, i, j, k). However, a larger decrease in pCO2 levels in
the forest continuum suggested a more intense degassing in forest
streams (Table 2; Fig. 4h). We also observed an increase in O2 in both
types of continuum, which could result from stream ventilation, al-
though with a higher intensity in forest continuum (Table 2; Fig. 4f, h).

EC decreased downstream in the crop continuum, but did not in the
forest continuumwhere EC remained very stable and much lower than
in the crop continuum (Table 2; Fig. 4b). NO3

− decreased downstream
between groundwater and streams in croplands, and in contrast, in for-
ests NO3

− increased downstream between groundwaters and streams
(Table 2; Fig. 4c). NH4

+, Fe2+, andCH4 decreased in the forest continuum

but they increased in the crop continuum (Table 2; Fig. 4d, e, g). DOC
significantly decreased in the forest continuum but remained stable in
the crop continuum (Table 2; Fig. 4l). TSM and POC were significantly
higher in crop relative to forest streams; however, similarly high POC%
(28%) was observed in both types of streams (Table 2; Fig. 4m, n, o).

3.6. Biogeochemistry dynamics in the groundwater-stream continuum

PCA with groundwater and streams datasets indicated mathemati-
cally that streamswere fedwith two distinct sources: forest groundwa-
ter mostly characterized by high pCO2, DIC, and CH4 concentrations and
crop groundwater mostly characterized by high NO3

− concentrations
(Fig. 5). Forest and crop streams were characterized by higher O2,
δ13C-DIC and pH values than in groundwater (Fig. 5). In this PCA, the
distinction between forest and crop streams was primarily a function
of NO3

−, crop streams points were moved upward along dimension 2
(Fig. 5). Throughout the sampling period, we observed a negative linear
relationship (R2 = 0.6, p b 0.001, n = 192) between CO2 and O2 for all
sampled groundwater and streams (Fig. 6a). On the one side, stream
samples were mostly characterized by high O2 (mean was 290
μmol L−1) and low CO2 (mean was 4480 ppmv), excepting some forest
streams during summer that were characterized by low O2 (down to
110 μmol L−1) and high CO2 (up to 27,200 ppmv) (Table 2; Fig. 6a,
S4f, h). On the other side, anoxic conditions associated with high CO2

(mean was 50,630 ppmv) were characteristic of forest groundwater,
whereas crop groundwater exhibited O2 (mean was 220 μmol L−1)
and CO2 (mean was 30,650 ppmv) intermediate between streams and
forest groundwater (Table 2; Fig. 6a). In forest groundwater, DOC was
negatively and linearly correlated with CO2 (R2 = 0.4, p b 0.001, n =
22) suggesting that part of groundwater CO2 came from degradation

Fig. 5. Principal component analysis (PCA) of shallow groundwater and stream datasets. We represented only the first three dimensions. Numbers between brackets are corresponding to
the sampling size. The sampling size in the PCA did not correspond exactly to the sampling size in Table 2 because R software deletes stations from the analysiswith amissing value for one
parameter. In thesemultivariate statistical analyses, we used all the quantitative variablesmeasured in this study.We defined four groups that are Crop_GW/Forest_GWand Crop_stream/
Forest_stream, which are corresponding to groundwater and streams order 1, either dominated by forests or croplands. The mean value of each qualitative group has 95% chance to be
within the corresponding confidence ellipse.
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of groundwater DOC (Fig. 6b). A comparison of CO2 and CH4 for all sam-
pled groundwaters and streams showed that a large portion of the CO2

and CH4 in forest streams could come from forest groundwater dis-
charge (Table 2; Fig. 6e). In crop streams, CH4, NH4

+, and Fe2+ could
not originate from crop groundwater discharge since they had much
lower CH4, NH4

+, and Fe2+ concentrations than crop streams (Table 2;
Fig. 6c, 7d, f). We observed a positive linear relationship between CH4

and NH4
+ (R2 = 0.4, p b 0.001, n = 53) in crop streams, demonstrating

that these two compounds may come from the same source (Fig. 7d).
Conversely, a comparison of O2 and NH4

+ or Fe2+ in forest streams indi-
cated that NH4

+ and Fe2+ were mostly discharged through forest
groundwater (Fig. 7b, f). In forest streams, the negative linear relation-
ship between O2 and NH4

+ (R2 = 0.1, p-value b 0.05, n = 70), Fe2+

(R2 = 0.5, p-valueb0.001, n = 77), or CH4 (R2 = 0.1, p-value b 0.001,
n=77) suggested oxidation of these reduced compounds in the stream
water column (Fig. 6c, 7b, f).We observed a gradient of NO3

− concentra-
tion, from high values to low values, between crop groundwater (mean
was 1140 μmol L−1), to riparian groundwater and crop streams (310
and 340 μmol L−1, respectively), to forest streams (75 μmol L−1) and
to forest groundwater (25 μmol L−1) (Table 2; Fig. 7a, c, e). In crop
streams, a large share of riverine NO3

− could be discharged through
crop groundwater. Conversely, NO3

− concentration in forest streams
could not be explained by NO3

− concentration in forest groundwater
(Table 2; Fig. 7a, c, e). In crop groundwater, high NO3

− concentrations
were associated with low CH4 concentrations. In crop streams, high
NO3

− concentrations could be related to high CH4 concentrations
(Fig. 7c).

4. Discussion

4.1. Water table depth in relation to land use

At the studied catchment scale, lithology, topography, soils, and pre-
cipitation are more or less uniform (Augusto et al., 2010; Jolivet et al.,
2003). At the plot scale, spatial variability of water table depth in rela-
tion to land use was thus necessarily dependent on how water outputs
(drainage, evapotranspiration or groundwater storage) of the water
mass balance were human-affected (Govind et al., 2012; Stella et al.,
2009). Local forests are never irrigated, conversely, irrigation with ex-
traction of groundwater (that decreases groundwater storage) in local
croplands could strongly bias the water mass balance at the plot scale
since about half of the water diverted for irrigation is rapidly consumed
through evapotranspiration (e.g., Jackson et al., 2001). Additionally,
evapotranspiration inmaize croplands is typically higher than in forests
owing to the larger stomatal conductance that makes the exchange of C
and water between the biosphere and the atmosphere much easier
(Govind et al., 2012; Stella et al., 2009). Other studies have shown that
the combination of subsoiling practices (increasing soil permeability)
with deep agricultural ditches in croplands also affectedwatermass bal-
ance at the plot scale by enhancing lateral drainage of groundwater
(Evans et al., 1996; Robinson et al., 1985). From an 8 year survey of
local cropland, Juste et al. (1982) showed that lateral drainage strongly
affected thewatermass balance at the plot scale as it represented an an-
nual mean of 637 mm (70% of the amount of precipitation), whereas
precipitation was estimated at 922 mm. At the forest plot scale, lateral

Fig. 6. Scatter plots of (a) CO2 (ppmv) vs. O2 (μmol L−1), (b) CO2 (ppmv) vs. DOC (μmol L−1), (c) CH4 (nmol L−1) vs. O2 (μmol L−1), (d) CH4 vs. DOC (μmol L−1), (e) CH4(nmol L−1) vs. CO2

(ppmv), and (f) O2 (μmol L−1) vs. DOC (μmol L−1), in all sampled groundwater and streams.
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drainage represented an annualmean of 182mm(20% of the amount of
precipitation), whereas precipitation was estimated at 895 mm
(Deirmendjian et al., 2018). At the study site, deeper water table in
croplands was thus a consequence of a higher evapotranspiration and
more lateral drainage than in forest. As explained further, water table
depth is an important determinant for understanding the biogeochem-
ical variability in groundwater in relation to land use.

4.2. Dynamic of O2, DOC, DIC and δ13C-DIC in groundwater: A combination
of hydrological, physical and metabolic processes

In other aquifer systemsworldwide, several studies have observed a
significant positive correlation between groundwater O2 concentration
and depth to water (Datry et al., 2004; Foulquier et al., 2010;
Goldscheider et al., 2006; McMahon and Chapelle, 2008; Pabich et al.,
2001). Where the water table is close to the soil surface, groundwater
O2 consumption is likely rapid because of incomplete degradation of
soil-generated labile DOC in the unsaturated zone. On the contrary,
where the water table is far from the soil surface, strong oxygen deple-
tion in the vicinity of thewater table does not occur since the higher res-
idence time of infiltratingwater results in almost complete degradation
of soil-generated DOC in the unsaturated zone (Malard and Hervant,
1999; Starr and Gillham, 1993). A regional study in forest soils of
Switzerland (Hagerdon et al., 2000) and a study compiling a global da-
tabase of soil carbon (Camino-Serrano et al., 2014) both found that soil-
generated DOCwas preferentially mobilized under reducing conditions

in soils because of dissolution of Fe oxides. Deeper water tables in
croplands do not reach topsoil that exhibits high labile organic C con-
tent. Thus, reducing conditions in topsoil and the leaching of soil-
generated DOC are prevented as is the consumption of the ground-
water O2 stock, as occurs in forests during high flow stages
(Table 3; Fig. S2l; Deirmendjian et al., 2018). Therefore, groundwater
pCO2 was higher in the forest during high flow than it was in crop-
land and riparian sites (Table 3; Fig. 4h, S2l, h). This also explains
the negative correlation between DOC and CO2 observed only in for-
est groundwater (Fig. 6b). During base flow, we observed a clear land
use spatial pattern among cropland, riparian forest, and forest sites
(Table 3; Fig. S2h). We hypothesize that this difference was a conse-
quence of a less intense soil respiration in croplands during summer.
From simultaneous eddy covariance measurements over pine forests
and maize croplands of the study area, Stella et al. (2009) confirmed
that ecosystem respiration was lower in croplands than in forests
over the whole year. However, Stella et al. (2009) also showed
that ecosystem respiration was larger during the growing season of
the maize, because of increased of soil respiration in response to
the higher soil water content caused by irrigation. In forest sites,
groundwater pCO2 increases during the summer because soil CO2

diffuses downward and then is dissolved into the water table
(Deirmendjian et al., 2018; Tsypin and Macpherson, 2012). A deeper
water table in cropland suggests a less efficient CO2 transfer from soil
air to water table. Higher soil moisture in croplands due to irrigation
probably delays soil CO2 diffusion to groundwater.

Fig. 7. Scatter plots of (a) O2 (μmol L−1) vs. NO3
− (μmol L−1), (b) O2 (μmol L−1) vs. NH4

+ (μmol L−1), (c) CH4 (μmol L−1) vs. NO3
− (μmol L−1), (d) CH4 (μmol L−1) vs. NH4

+ (μmol L−1), (e)DOC
(μmol L−1) vs. NO3

−(μmol L−1), and (f) O2 (μmol L−1) vs. Fe2+(μmol L−1), in all sampled groundwater and streams.
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The δ13C-DIC signature of forest groundwater was typical of a signa-
ture that originated from respiration of soil organicmatter derived from
C3 plants (O'Leary, 1988; Vogel et al., 1993). The studied forest soils
have no natural carbonate minerals (Augusto et al., 2010) and DIC orig-
inating from silicate weathering has the same isotopic signature as DIC
originating from soil respiration (Das et al., 2005; Polsenaere and Abril,
2012; Wachniew, 2006). Crop groundwater had a heavier δ13C-DIC sig-
nature than forest groundwater and this discrepancy resulted from dis-
tinct processes. Liming in cropland brings artificial carbonates into crop
soil andDIC originating fromcarbonateweatheringproducedDICwith a
δ13C value of approximately half of that of soil CO2 as carbonate rocks
have a δ13C of approximately 0‰, making δ13C-DIC less negative
(Clark and Fritz, 1997; Salomons and Mook, 1986). Irrigation with ex-
traction of groundwater could also increase the δ13C-DIC signature by
enhancing the degassing rate of 12CO2 relative to 13CO2 (Deirmendjian
and Abril, 2018; Polsenaere and Abril, 2012). Changes in the δ13C-DIC
signature could also originate from respiration of soil organicmatter de-
rived frommaize, a C4 plant with a heavier δ13C signature than C3 forest
plants (O'Leary, 1988; Vogel et al., 1993), as observed in the study re-
gion (Quénéa et al., 2006). Indeed, after three decades of cultivation,
the remaining carbon from the forest pool was mostly recalcitrant and
its degradation probably did not affect the δ13C-DIC pool (Jolivet et al.,
1997).

4.3. Dynamics of IN and CH4 in groundwater: The influence of groundwater
O2

Subsurface and groundwater redox zonation is driven by the spatial
and temporal distribution of O2 that serves as the primary terminal elec-
tron acceptor during the degradation of organic C. In crop groundwater,
high O2 concentrations inhibited methanogenesis, as this process is
strictly anaerobic and thus resulted in very low CH4 concentrations
(Table 2; Fig. 4f, g; Borges et al., 2018; Ciais et al., 2010; Jurado et al.,
2017; Klüber and Conrad, 1998). Conversely, forest and riparian
groundwater exhibited anoxic conditions that allowedmethanogenesis
to occur and created higher CH4 concentration in forest sites compared
to cropland sites (Table 2; Fig. 4f, g). High water table stages in forested
areas cause anoxia in soils, forcing plants andmicroorganisms to switch
to anaerobic metabolism (Naumburg et al., 2005; Bakker et al., 2006,
2009). Thus, in riparian and forest areas, we expected a positive
relationship betweenwater table and groundwater CH4 but, to the con-
trary, we observed a negative relationship between these two parame-
ters (R2 = 0.25, p b 0.05; data not shown). This implies that
methanogenesis primarily occurs in deeper layers of forest soils, espe-
cially in summer. Fe2+ and NH4

+ accumulates in forest groundwater be-
cause anoxic conditions inhibit nitrification and iron oxidation (Table 2;
Fig. 4d, e; Jambert et al., 1994; Widdel et al., 1993).

In groundwater, anoxic conditions enable heterotrophic denitrifica-
tion, whereas an O2 threshold of 30–60 μmol L−1 completely inhibits
heterotrophic denitrification (Balestrini et al., 2016; Cey et al., 1999;
Christensen et al., 2013; Jambert et al., 1994; Kolbjørn Jensen et al.,
2017; Korom, 1992). In strictly forest sites, denitrification in groundwa-
ter is usually limited by the scarcity of NO3

−, whereas in strictly crop
sites denitrification is often limited by organic C availability (Table 2;
Jambert et al., 1994; Starr and Gillham, 1993). Thus, N fertilizer applica-
tion associated with different groundwater denitrification rates in the
different plots creates the observed spatial pattern of groundwater
NO3

− concentration in crop, riparian and forest sites (Table 2; Fig. 4c).
In local maize croplands, Jambert et al. (1997) found that 13% of the N
fertilizers inputs were converted to N2 gas, demonstrating that denitri-
fication could occur in these oxic crop soils and groundwater. Although
oxic conditions are not favorable for groundwater denitrification, some
studies in agricultural catchments do describe this process at relatively
high O2 (150 μmol L−1) levels (McAleer et al., 2017; Otero et al.,
2009). In crop soils, Rubol et al. (2016) investigated the spatio-
temporal dynamics in oxidativemicrobial activity and the development

of anoxic micro zones (i.e., anoxic hot-spots) at the microscopic level
(μm to cm). They found that labile C addition resulted in maximum
rates of local metabolic activity within a fewminutes and led to the sub-
sequent formation of anoxic hotspots and thus, both oxic and anoxic
conditions coexisted closely within a small volume of crop soils. Conse-
quently, denitrification probably occurs in anoxic microsites in water-
logged soil during irrigation as higher soil moisture results in lower
soil oxygen concentration, lower redox potential and higher leaching
of soil DOC (Hagedorn et al., 2000; Jambert et al., 1997; Rubol et al.,
2012; Silver et al., 1999).

N fertilizer load in local croplands is 25 g Nm−2 yr−1 (Jambert et al.,
1997),whereas export (using drainage of 637mmyr−1 and the average
NO3

− concentration in crop groundwater) of NO3
− through crop ground-

water was estimated at 10 g N m−2 yr−1 (40% of the annual N fertilizer
load), and export (using same drainage and the average NO3

− concen-
tration in riparian groundwater) of NO3

− through riparian groundwater
was estimated at 2.8 g N m−2 yr−1 (8% of the annual N fertilizer load).
This shows the importance of riparian groundwater to attenuate N in-
puts from adjacent croplands to streams, otherwise a large portion of
the annual N fertilizer load would have been leached into adjacent
streams rather than being denitrified or used by plants. In riparian
groundwater adjacent to a farm in the New York state (USA),
Anderson et al. (2014) found that total groundwater denitrification
was equivalent to 32% of manure N spread on the adjacent upland
field. Mekala et al. (2017) simulated the transport and dynamics of N
in an agricultural soil under flooded conditions and concluded that rel-
atively shallow aquifers with sandy soil are vulnerable to NO3

− contam-
ination at around 10 days if continuous irrigation is practiced. They also
stated that NO3

− had higher leaching potential than NH4
+ or DOC. At our

study site, irrigation and associated desorption of DOC and NO3
− could

explain their slight increase in crop groundwater during base flow
(Table 3, Fig. 1, S2c). In a storm infiltration basin in Florida (USA),
O'Reilly et al. (2012) found that concomitant peaks in groundwater O2

and NO3
−concentrations after storm rainfall were a consequence of or-

ganic N leaching, indicating that there were short periods of ammonifi-
cation and nitrification. In crop groundwater of Wallonia (Belgium),
when groundwater O2 levels are higher than 125 μmol L−1 (as at the
study site), nitrification rather than denitrification promotes the accu-
mulation of N2O in groundwater (Jurado et al., 2017).

4.4. Stream biogeochemical functioning: Mostly a function of groundwater
composition

NO3
− inputs to streams cause stream eutrophication (Carpenter

et al., 1998; Jordan and Weller, 1996; Smith, 2003; Zhou et al., 2017).
This is consistent with our field observations where we observed that
crop streams were highly vegetated with macrophytes during base
flow stages. Compared to high flow conditions, crop stream eutrophica-
tion was accompanied by higher pH and δ13C-DIC, and lower pCO2

caused by preferential 12CO2 uptake during the macrophyte plant pho-
tosynthesis (Table 4; Fig. S3a, h, j; De Carvalho et al., 2009; Raven
et al., 2002). The development of macrophytes in crop streamsmodifies
flow and can cause a significant drop in water velocity, which in turn,
gives rise to extensive deposition and retention of sediment beneath
the macrophytes (Cotton et al., 2006; Sand-Jensen and Pedersen,
1999). This leads to seasonal accumulation of organicmatter, a predom-
inance of anoxic conditions in stream sediments, and thus the occur-
rence of methanogenesis as evidenced by peaks in dissolved CH4

during base flow (Table 4; Fig. S3g; Borges et al., 2018; Crawford et al.,
2016; Sanders et al., 2007). Crop stream CH4 concentration was
390 nmol L−1 during base flow (Table 2), a concentration significantly
lower (1430 nmol L−1) than chalk streams impacted by macrophyte
vegetation in England (Sanders et al., 2007). This discrepancy probably
resulted from the increased in silt and clay fraction during summer of
the underlying sediment in chalk streams (Sanders et al., 2007). This
would suggest that the permeability of chalk stream sediment became
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lower than that of sandy stream sediment and created stronger reduc-
ing conditions in chalk stream sediments, which likely increased the po-
tential for methanogenesis (Baker et al., 1999; Findlay, 1995; Kankaala
et al., 2005; Morrice et al., 1997). Sanders et al. (2007) also showed
that the chalk streams' emissions of CH4 to the atmosphere were ap-
proximately 50 times lower than the CH4 production in stream sedi-
ments, illustrating the high potential for CH4 oxidation in the water
column of crop stream. During base flow, a second explanation for
higher CH4 (and NH4

+) concentrations in crop streams relative to forest
streams could be differential hydrology. Drainage plot is a function of
the water table height (hydraulic gradient, Darcy's law). During base
flow, the water table in cropland was deeper than in forest (e.g., 4 m
deeper in Sep. 2014; Fig. 2), and so during this period, potentially
more forest groundwater was drained into crop streams. However, in
forest streamswe usually did not observe CH4 (or NH4

+) concentrations
as high as in crop streams (Table 2; Fig. 7d) indicating that CH4 (or
NH4

+) in crop streams primarily originated from crop stream sediments
rather than from higher discharge of forest groundwater. In crop
streams, CH4 was correlated with NH4

+ but not correlated with NO3
−

or DOC (Figs. 6d, 7c, d). Such relationships were also observed in the
Meuse river basin (Belgium) (Borges et al., 2018) and in a global
meta-analysis of riverine CH4 (Stanley et al., 2016). In contrast, this
does not fit the conceptual model of Schade et al. (2016) developed
from data in New Hampshire streams, whereby the CH4 was positively
correlated with DOC, while negatively related to NO3

−.
Sandy sediments of low order stream beds impacted by eutrophica-

tion are significant areas of NO3
− reduction over the spring and summer,

lowering DOC and NO3
− concentrations in stream water (Table 4;

Fig. S3c, l; Böhlke et al., 2009; Mulholland et al., 2008; Sanders et al.,
2007). Additionally, the decreased of stream velocity during base flow
increased residence times of NO3

− in the hyporheic zone and the time
for denitrification (Bardini et al., 2012). In a small stream dominated
by maize cropland in the USA, Böhlke et al. (2009) demonstrated that
denitrification mainly occurred in sediments and not in the water col-
umn since integrated rates of pore-water denitrification derived from
15N tracer profiles within the hyporheic zone were similar to the
reach-scale rates derived from measurements in the stream. In crop
streams, a portion of the NO3

− variability between the two hydrological
periods could also result from higher drainage of forest groundwater
during base flow, which would dilute the NO3

− signal from crop
groundwater.

Considering the flat catchment topography, a minor portion of TSM
and POC in streams originates from soil erosion and surface runoff.
The most frequent effects of dredging on aquatic ecosystems are
changes in the concentration of suspended solids, turbidity and light
penetration (Lewis et al., 2001; Newell et al., 1998). Higher concentra-
tions of POC (and TSM) observed in crop streams were also caused by
macrophyte biomass developed in summer became a sediment trap.
When stream discharge was sufficiently energetic, it re-suspended all
the accumulated sediment and removed this litter. Moreover, we ob-
served peaks of CH4 and NH4

+ in crop streams during high flow
(Table 4; Fig. S3d, g), suggesting that dredging or streambed erosion
of crop streams also release CH4 and NH4

+ from the sediment.
In forest streams, we observed significantly lower concentrations of

Fe2+, NH4
+, and CH4 than in forest groundwater and significant negative

linear relationships between O2 on the one side and Fe2+, NH4
+, or CH4

(Table 2; Figs. 4d, e, g, 7d, f). This suggests therewere lowO2 concentra-
tion groundwater inputs with high concentrations of reduced com-
pounds and that the stream water was gradually oxygenated, which
induced Fe2+ and CH4 oxidations and nitrification. Mulholland et al.
(2000) studied N cycling by adding 15N-labeled NH4

+ into a forest
stream in eastern Tennessee (USA). They concluded that the residence
time of NH4

+ in thewater columnwas low (5min) and that nitrification
was an important sink for NH4

+, accounting for 19% of total ammonium
uptake. In forest streams, the NH4

+ concentration was approximately 3
μmol L−1 lower than in forest groundwater and thus did not explained

the NO3
− increase of 50 μmol L−1 (Table 2; Fig. 3c, d). Up to 76% of N ex-

ports from local forest are in organic forms but these N exports are very
low (b0.2 g N m−2 yr−1; De Wit et al., 2005; Rimmelin, 1998; Vernier
et al., 2003), so in-streammineralization of organic N coupled to nitrifi-
cation could not explainNO3

− concentrations in forest streams. Since the
sampled forest streams are not strictly forested, NO3

− concentration are
explained by simple hydrological mixing between crop and forest
groundwater (Table 2).

In streams, pCO2 was lower and O2 was higher than in groundwater
(Table 2; Figs. 3f, h, 6a). This shows that gas exchange between stream
water and the atmosphere occurs quickly, favored by low stream depth
and strong concentration gradients between the two compartments.
Some authors (e.g., Bodmer et al., 2016; Borges et al., 2018) found ele-
vated pCO2 in crop streams rather than in forest streams, due to higher
levels of dissolved and particulate organic matter in crop dominated
systems compared to the forested ones that facilitated the in-stream
degradation of organic matter. Moreover, land uses are expected to
change the composition of terrestrial soil organic matter leached to
streams, shifting from vegetation- to microbe-derived organic matter
with greater agricultural land use and potentially higher emissions in
crop streams (Fuss et al., 2017; Graeber et al., 2015; Wilson and
Xenopoulos, 2009). Those results contrasted with ours because we
found no difference in pCO2 between crop and forest streams. Forest
groundwater did have higher pCO2 than crop groundwater, indicating
a more intense degassing in forest streams. The similar δ13C-DIC signa-
tures in forest and crop streams despite the strong difference between
crop and forest groundwater suggests faster isotopic equilibration of
DIC resulting from degassing. The greater gas transfer velocity in forest
streams is a consequence of the abundance of coarse woody debris
which generates higher levels of water turbulence (e.g., Bodmer et al.,
2016), and is consistentwith ourfield observations. A lower gas transfer
velocity lower in crop streams results from stream calibration reducing
turbulent flow, and macrophyte vegetation that protects the water sur-
face from wind shear.

5. Conclusion

The present study demonstrates that C and IN concentrations in
shallow groundwater and in first-order streams are strongly sensitive
to land use. In sandy lowland catchments, simultaneous measurements
of biogeochemical parameters in groundwater and streams are crucial
for identifying and quantifying biogeochemical processes involved at
the groundwater-stream interface. We also show that a statistical clus-
tering analysis based onNO3

− dataset enables partitioning of groundwa-
ter and streams into crop-affected or forest-dominated waters. Such a
classification could be useful to river managers and policy makers. The
water table had greater depth in croplands and was a crucial parameter
necessary for understanding groundwater biogeochemical variability in
relation to land use. Higher water table stages in forests created anoxic
conditions and increased soil leaching. Conversely, in croplands, the
deeper water table prevented anoxic conditions, creating different
groundwater compositions from forest groundwater and inhibiting
the denitrification of the N fertilizers, which led to groundwater NO3

−

accumulation. Despite the occurrence of groundwater denitrification
in riparian and forest sites, N fertilizers inputs in crop streams were
still high enough to generate eutrophic conditions in these streams. Eu-
trophication resulted in a biogeochemical cascading effect, which
sustained high CH4 concentration and lowered NO3

−. High CO2 and
CH4 production occurs in forest soils and groundwater, but these two
gases exhibit lower concentrations in forest streams, indicating intense
degassing or oxidation.

The groundwater-stream interface is a biogeochemical hotspot and
hot moment for C emissions and N removal processes (McClain et al.,
2003). Future studies focusing on the groundwater-stream interface in
relation to land use are needed to better understand C and N dynamics
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in aquatic systems in order to correctly close C andNbudgets at regional
and global scales.
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