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E C O L O G Y

Atlantic Multidecadal Oscillations drive the basin-scale 
distribution of Atlantic bluefin tuna
Robin Faillettaz1*, Grégory Beaugrand1, Eric Goberville2, Richard R. Kirby3*

The Atlantic bluefin tuna (hereafter referred to as “bluefin tuna”), one of the world’s most valuable and exploited 
fish species, has been declining in abundance throughout the Atlantic from the 1960s until the mid-2000s. Follow-
ing the establishment of drastic management measures, the stock has started to recover recently and, as a result, 
stakeholders have raised catch quotas by 50% for the period 2017–2020. However, stock assessments still omit the 
natural, long-term variability in the species distribution. Here, we explore the century-scale fluctuations in bluefin 
tuna abundance and distribution to demonstrate a prevailing influence of the Atlantic Multidecadal Oscillation 
(AMO) to provide new insights into both the collapse of the Nordic bluefin tuna fishery circa 1963 and the recent 
increase in bluefin tuna abundance in the Northeast Atlantic. Our results demonstrate how climatic variability can 
modulate the distribution of a large migrating species to generate rapid changes in its regional abundance, and 
we argue that climatic variability must not be overlooked in stock management plans for effective conservation.

INTRODUCTION
The Atlantic bluefin tuna (Thunnus thynnus, Linnaeus 1758) is a 
long-lived, widespread migrating species with the largest thermal 
tolerance among tunas (1); it is also one of the world’s most com-
mercially exploited marine fishes (2). The bluefin tuna, currently 
managed as two separated stocks in the Atlantic (3), has been 
declining in abundance until the mid-2000s (4) and is listed as 
endangered on the International Union for Conservation of Nature  
(IUCN) Red List. Although electronic tagging programs begun in 
the late 1990s have provided new insights on the species’ migratory 
behavior to show that eastern (western) bluefin tuna may migrate to 
the western (eastern) Atlantic and remain there for a few months to 
a few years (3), little is known about the long-term variability in the 
migratory behavior, regional abundance, and the spatial distribution 
of bluefin tuna (5).

Bluefin tuna has shown centennial periodic fluctuations (up to 
threefold) in abundance in the Mediterranean Sea (6), and the ex-
tremely rapid 1960s decline of the Nordic fishery remains one of the 
world’s most spectacular fisheries’ collapses (7). While the Nordic 
fishery collapse is attributed to overfishing without clear evidence of 
hydroclimatic influences so far (8), environmental change could have 
played a role. Recurrent observations of bluefin tuna after the late 
1990s suggest that bluefin tuna is returning to Nordic feeding grounds 
after three decades of depleted abundances (9). Since stock assess-
ments have not suggested any recovery before the mid-2000s (4), it 
is currently unclear why bluefin tuna has reappeared in the Nordic 
region. At a time when the recent increase in bluefin tuna catch 
quotas will exacerbate the pressure on an IUCN Red List species (5), 
we have investigated the basin-scale variability in the distribution of 
bluefin tuna. Our goal is to determine whether the current return of 
bluefin tuna in the Nordic region can be explained by large-scale, 

hydroclimatic variability and, if so, whether the environment may 
explain some of the historical changes in the bluefin tuna’s abundance 
and distribution.

RESULTS AND DISCUSSION
The boosted regression tree (BRT) models used to examine the rela-
tionships between long-term variability in eastern bluefin tuna abun-
dance and hydroclimatic variability (Materials and Methods and fig. S1) 
accurately reconstructed the century-scale fluctuations seen in the 
eastern bluefin tuna abundance index (Fig. 1). While several studies 
have previously explored the impact of the North Atlantic Oscillation 
(NAO), Northern Hemisphere temperature (NHT) anomalies, and 
total solar irradiance (TSI) on bluefin tuna abundance (10, 11), we 
found that most of the fluctuations are related to the Atlantic Multi-
decadal Oscillation (AMO) with a relative influence of 47.1% (Fig. 1B). 
Higher values of the eastern bluefin tuna abundance index occurred 
during positive (warm) AMO phases, whereas lower values were 
related to negative (cold) phases (fig. S2). The AMO still remained 
the most important hydroclimatic factor for predicting recruitment 
when we introduced a one-generation lag (i.e., 16 years; Materials 
and Methods), although its relative importance was slightly reduced 
(36%; fig. S2). We observed that the abundance of bluefin tuna in traps 
sometimes preceded shifts in AMO phase, e.g., during the Maunder 
minimum and at the end of the Dalton minimum, which suggests 
that the link between abundance and the environment may be more 
complex than simply through recruitment. For example, bluefin tuna 
can swim large distances quickly, and so, they are able to track envi-
ronmental changes rapidly to follow the most favorable areas in 
the northeast (NE) Atlantic (3), where productivity is mainly driven 
by the AMO (12). So, while the relationship between the AMO and 
bluefin tuna may involve both recruitment and older stages, our 
results reveal that long-term changes in the AMO state can explain 
the periodic bluefin tuna fluctuations in the eastern Atlantic (Fig. 1 
and fig. S3).

We found that the NAO was the second or third most important 
hydroclimatic variable influencing bluefin tuna (relative influences 
of 19.5% without a lag and 21.5% with a one-generation lag; Fig. 1B 
and fig. S2). Higher values of the adult abundance index occur during 
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negative and positive NAO phases and lower abundances at inter-
mediate values, while recruitment tends to increase with the NAO 
index (fig. S2); this observation may explain the contrasting results 
found previously for the influence of the NAO on bluefin tuna re-
cruitment and abundance (10, 13, 14). Such a pattern could arise from 
the NAO’s multivariate effects on biological communities (15), which 
may influence both the bluefin tuna survival rates and feeding 
grounds’ productivity. We detected a more negative impact of high 
NHT on recruitment than on adult abundance, although trends were 
comparable (fig. S2), and this agrees with studies showing that eastern 
bluefin tuna abundance is negatively correlated with both Mediter-
ranean Sea and global sea temperatures, which could be explained 
by long-term changes in migratory behavior (10, 11).

We found that the TSI, which has been negatively correlated with 
abundance (11), had the smallest influence on both adult bluefin tuna 
abundance and recruitment (Fig. 1, B and D). The effect of TSI was 
limited to very low irradiance periods, i.e., bluefin tuna abundance 
was systematically low when the TSI was below 1360.3 for adult abun-
dance and 1360.1 for recruitment; no changes were seen when the 
TSI exceeded these thresholds (fig. S2), which may also explain why 

the relationship vanished in the 20th century (11) after irradiance 
increased at the end of the Little Ice Age (fig. S3).

While the effect of TSI and NHT were similar with and without 
a one-generation lag, the AMO and NAO showed a different effect 
at their extreme values (fig. S2). The most negative NAO phases had a 
negative impact on bluefin tuna recruitment (i.e., lower abundance 
16 years later), and the most positive AMO phases were associated 
with low bluefin tuna recruitment. Nevertheless, the period of highest 
AMO and low bluefin tuna abundance only occurred in the 1700s to the 
1720s, at the very end of the Maunder Minimum (fig. S3), and corre-
sponded to the combination of the coldest NHT and the lowest 
irradiance levels. As highlighted by the BRT models, the irradiance 
effect on bluefin tuna abundance displayed a marked threshold and 
so that the NHT and TSI may have caused this sudden drop in bluefin 
tuna abundance regardless of the AMO phase.

We next investigated the long-term (1891–2011) spatiotemporal 
changes in habitat suitability of bluefin tuna in the Atlantic using eco-
logical niche modeling (ENM) (fig. S1). While studies have shown 
changes in the habitat distribution and seasonal size-dependent feeding 
grounds (16), none has assessed the link with hydroclimatic variability. This 
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Fig. 1. Ensemble reconstructions of long-term fluctuations in Atlantic bluefin tuna abundance. (A and C) Historical records (black line) and predicted long-term 
fluctuations in abundance (averaged prediction as an orange line with 5 and 95% confidence intervals as gray shading) calculated from (A) 1634–1929 (preindustrial tuna 
fishery period) with no lag and (C) with a one-generation lag (16 years). (B and D) Mean relative influence [and associated SD (standard deviation)] of the four hydroclimatic 
variables used to reconstruct bluefin tuna abundance.
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procedure was repeated 30 times per model to provide the mean values 
and standard deviations (SDs) of the continuous Boyce index (CBI). 
The best model (CBI = 0.84; table S2) was obtained when each occur-
rence of bluefin tuna was associated to a unique triplet of environ-
mental parameters; this configuration reproduced the overall bluefin 
tuna distribution well and was therefore used for subsequent analyses.

We applied a principal components analysis (PCA) on the annual 
anomalies of probabilities of occurrence of bluefin tuna (hereafter 
referred to as habitat suitability) modeled from 1891 to 2011. The 
spatial pattern of the first normalized eigenvector, which showed the 
highest significance (37.5% of the total variance), revealed an oppo-
sition between the northeastern and southwestern North Atlantic (fig. 
S4). Associated long-term changes (1891–2011) in the first principal 
component (PC) of habitat suitability correlated strongly with the 
abundance index of eastern bluefin tuna (r = 0.72, P < 0.001; fig. S4), 
and the link with historical fluctuations was even higher when re-
constructed with PC1, PC2, and PC4 (r = 0.82, P < 0.001; Fig. 2). Our 
analysis therefore suggests that bluefin tuna occurrence in the North 
Atlantic is controlled by a northeastern/southwestern “seesaw” of hab-
itat suitability so that long-term local fluctuations in bluefin tuna abun-
dance may reflect changes in spatial distribution rather than changes 
in the size of eastern and western populations.
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Fig. 2. Habitat-based reconstruction of Atlantic bluefin tuna abundance. Coeffi-
cient of linear correlation (r) and its associated probability (P) between historical records 
of Atlantic bluefin tuna abundance (from Fig. 1; black line) and long-term changes 
(1891–2011) in the species’  habitat suitability (orange line) reconstructed from the 
PCA computed on annual anomalies of probability of occurrence of bluefin tuna.

Fig. 3. AMO phases and spatiotemporal variability in habitat suitability and distribution of Atlantic bluefin tuna. (A and B) Anomalies of habitat suitability, report-
ed occurrences (per 1° by 1° geographical cell; red dots), and mass centroids of occurrences (black dots) during (A) positive (1929–1962 and 1995 to present; nbins = 964) 
and (B) negative (1896–1928 and 1963–1994; nbins = 979) AMO phases. (C) Time series of mean anomalies (blue line) in the Nordic region [inset in (B)] from 1891 to 2011. 
Vertical dashed lines indicate abrupt changes in habitat suitability, and horizontal lines indicate the mean habitat suitability for each phase. The size of the tuna is propor-
tional to its frequency of occurrence.
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Spatial patterns of habitat suitability of bluefin tuna in the North 
Atlantic were assessed for positive (1929–1962 and 1995 to present) 
and negative (1896–1928 and 1963–1994) AMO phases (Fig. 3). This 
analysis showed that high records of bluefin tuna in the NE Atlantic 
coincided with high positive habitat suitability observed during posi-
tive AMO phases (Fig. 3A), while lower records occurred during 
negative AMO phases when habitat suitability became negative (Fig. 3B). 
Our analysis therefore highlights the AMO’s controlling role on bluefin 
tuna’s basin-scale distribution. When calculating the average habitat 
suitability of bluefin tuna around United Kingdom (Fig. 3B), we found 
that anomalies follow the main historical periods of bluefin tuna pres-
ence and absence: negative in the entire region until the mid-1920s, 
positive until the mid-1960s, negative until the mid-1990s, and re-
turning to positive until today (Fig. 3C and fig. S5). Our analysis sug-
gests that bluefin tuna persisted around the United Kingdom only 
during the two positive AMO phases from 1891 onward (fig. S3), which 
corresponded to periods of highest anomalies in habitat suitability 
(Fig. 3C). The spatial distribution of bluefin tuna modeled from the 
species’ ecological niche therefore captured the rise and fall of the 
Nordic fishery between the late 1920s and 1960s and its return after 
the late 1990s. The collapse of the Nordic bluefin tuna fishery circa 
1963 coincided with an extremely rapid 2-year transition (1962–1963) 
from a highly positive AMO phase to its lowest recorded value (Figs. 3C 
and 4). The AMO reversed to a positive phase in 1996, and a fishery 
targeting mature fish was established around Iceland in 1997 when 
bluefin tuna returned to the region (17). Schools of bluefin tuna have 
also been seen around the United Kingdom since 1996 (9). Together, 
our observations suggest that the hydroclimatic variability influ-
ences bluefin tuna distribution strongly, with higher (warm AMO) and 
lower (cold AMO) utilization rates in the northern and southern 
regions of the North Atlantic, respectively. Although no time series 

is sufficiently long to validate the southwest/NE changes in distribu-
tion of the western stock (Materials and Methods), both stocks may 
follow the same pattern of variability as they have the same ecolog-
ical niche.

Long-term climate variability is known to influence fisheries pro-
duction at various spatiotemporal scales (18). Here, we have shown 
that the AMO is an important determinant of the bluefin tuna’s spatial 
distribution and regional abundance in the North Atlantic and that 
the recent recovery of the eastern stock (4) may reflect the current 
positive AMO phase. Our analyses of environmental effects on blue-
fin tuna can therefore provide an insight to help interpret (i) the 
collapse of bluefin tuna in 1963 and (ii) the current increase of blue-
fin tuna in Nordic seas.

It is assumed that eastern bluefin tuna spawn exclusively in the 
Mediterranean Sea (2), where the influence of the AMO is lower than 
elsewhere (19). We tested the influence of hydroclimatic variability on 
recruitment and highlighted, in line with previous studies (10, 11), 
that high NHT negatively affects both the adult abundance in traps 
and the recruitment (fig. S2). However, the Mediterranean sea sur-
face temperature (SST) [averaged from the Centennial Observation- 
Based Estimates (COBE) dataset; see Materials and Methods] and the 
recruitment year classes (4) were significantly and positively correlated 
over the period 1968–2014 (r = 0.59, P < 0.001), with the strongest 
correlations in summer (June, July, and August, i.e., immediately after 
the main spawning period), while SSB followed an opposite pattern 
(r = −0.63, P < 0.001). In response to rising temperatures, the aver-
age habitat suitability of bluefin tuna has also been decreasing in the 
Atlantic and Mediterranean Sea (correlated negatively with NHT; r = 
−0.49, P < 0.001). This suggests that, while higher local SST may en-
hance recruitment, it would still have a deleterious effect on adult 
bluefin tuna. If warming continues, then bluefin tuna may indeed 

Fig. 4. Habitat suitability of Atlantic bluefin tuna when the Nordic fishery collapsed. Mean anomalies of probability of occurrence of Atlantic bluefin tuna before the 
collapse (1959–1961; left) and when the fishery collapsed (1962–1963; right).
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become constrained by the upper thermal limit of its spawning 
preference in the Mediterranean Sea (fig. S6) (20) and could begin to 
use different regions in the Atlantic. This consequence of warming has 
been predicted in the Gulf of Mexico (21), and bluefin tuna have 
been discovered to spawn along the NE coast of the United States, which 
may constitute a recent expansion of spawning habitat (22–24). Con-
sequently, future warming may also alter ecological barriers (25) and 
counterbalance the influence of future cold AMO phases on the 
species’ distribution, causing bluefin tuna to persist in Nordic seas.

To manage Atlantic bluefin tuna and other highly migrating species 
sustainably, long-term recovery plans should therefore be addressed 
at a basin scale by combining the effects of hydroclimatic variability, 
such as the AMO, global climate change and fishing, and local in-
creases in abundance should not be used as a reason to relax quotas 
for commercial or recreational fisheries without having done so. Since 
large-scale changes in the abundance of top predators integrate changes 
at lower trophic levels (26), regional fluctuations in bluefin tuna abun-
dance may also serve to indicate even wider ecological changes, pro-
viding useful insights for further research.

MATERIALS AND METHODS
Biological data
Occurrence data of the Atlantic bluefin tuna (T. thynnus, 
Linnaeus 1758)
The information on Atlantic bluefin tuna distribution was compiled 
from georeferenced (i.e., longitude and latitude) and time-referenced 
data (year, month, and day) available in public databases provided 
by the Ocean Biogeographic Information System (n = 9288; http://
iobis.org/explore/#/taxon/519492), the Global Biodiversity Informa-
tion Facility (n = 597; http://doi.org/10.15468/dl.ndf0hz), the Inter-
national Commission for the Conservation of Atlantic Tunas (ICCAT) 
Task I (n = 165,050), and the ICCAT conventional tagging (n = 
87,466; https://iccat.int/en/accesingdb.html). Duplicates were discarded 
on the basis of year, month, day, longitude, and latitude. A checking 
procedure was applied on ICCAT data to remove occurrences with 
a spatial resolution lower than 1° longitude by 1° latitude and a tem-
poral resolution lower than 1 month (i.e., the resolution of the gridded 
climatic data described in the “Environmental data” section). Occur-
rences located outside the Atlantic Ocean or south of 12°S (i.e., out-
side the natural distribution range of Atlantic bluefin tuna) (4) were 
also excluded. A total of 27,617 occurrences were retained to estimate 
the bluefin tuna’s habitat suitability. Distribution maps of occur-
rence records are presented in Fig. 3 (red dots).
Elaboration of the Atlantic bluefin tuna abundance index
The Atlantic bluefin tuna is currently managed by the ICCAT as west-
ern and eastern stocks (4), although these two stocks undertake an-
nual migrations between the main spawning (i.e., the Gulf of Mexico 
and the Mediterranean Sea) and feeding (northwest, central, and NE 
Atlantic) regions (27). While current changes in abundance occurring 
in the eastern region may relate to ~90% of Atlantic bluefin tuna 
populations (4), the two stocks were assumed to be approximately the 
same order of magnitude in the 1970s until the western stock collapsed 
(4). However, the actual long-term fluctuations in the Atlantic-wide 
distribution of Atlantic bluefin tuna remain unknown. We focused 
our analyses on eastern bluefin tuna because historical data are avail-
able since the 16th century for this stock only (4, 6), assuming that it 
represented the baseline variability of about half of bluefin tuna 
populations over the past four centuries.

To assess the relative fluctuations in eastern Atlantic bluefin 
tuna from the mid-17th century onward, we used an index of abun-
dance based on two databases: (i) the historical catches in traps 
located in and around the Mediterranean Sea during the period 
1634–1959 that targeted large, mature individuals during their 
spawning migrations (6) and (ii) the last ICCAT spawning stock 
biomass (SSB) estimation for the period 1950–2011 (17). While 
the consideration of young stages in the SSB might have slightly 
diminished the explanatory power of analyses after the 1960s, both 
datasets remained the most relevant to assess the major long-term 
changes in eastern bluefin tuna abundance (6, 28). We scaled the 
SSB index to the historical index over the common period 1950–1959 
and evaluated their adequacy by applying a Wilcoxon test, which 
revealed no significant difference (W = 23, P = 0.14). Both indices 
were then combined in a single abundance index spanning from 
1634 to 2011, with relative abundance being averaged for the com-
mon period.

Environmental data
Environmental data used to perform the ENM
Monthly mean SSTs from 1891 onward were obtained from the COBE 
of SST version 2 (COBE-SST2; (www.esrl.noaa.gov/psd/data/gridded/
data.cobe2.html) (29). Sea surface salinity (SSS) was obtained from 
the World Ocean Database 2013 (www.nodc.noaa.gov/OC5/WOD/
pr_wod.html). We considered that salinity was constant over time 
in the model because the spatial variance of SSS greatly exceeds its 
temporal variance (30). The bottom topography was extracted from 
the General Bathymetric Chart of the Ocean (www.gebco.net/data_
and_products/gridded_bathymetry_data/). All databases are avail-
able with a resolution of 1° by 1°.
Large-scale hydroclimatic indices
We investigated the relative influence of four large-scale hydrocli-
matic indices used in the reconstruction of the Atlantic bluefin tuna 
abundance index for the period 1634–2011.

1) NHT anomalies were used as a proxy of the potential effect of 
climate change in the Northern Hemisphere. We used the dataset 
developed by the Tree-ring Network for the period 918–2011 (31) 
(www.st-andrews.ac.uk/~rjsw/N-TREND/N-TREND2015.xlsx). 

2) The TSI index (the total spectrally integrated energy input to 
the top of the Earth’s atmosphere at a standard distance of one astro-
nomical unit from the Sun) is assumed to be a good proxy of partic-
ularly cold periods (32) around the end of the Little Ice Age (14th to 
mid-19th century; fig. S3). Data for the period 1610–2011 were pro-
vided by the National Oceanic and Atmospheric Administration 
(https://data.noaa.gov/dataset/dataset/noaa-climate-data-record-
cdr-of-total-solar-irradiance-tsi-nrltsi-version-2).

3) The winter NAO index describes the basin-scale gradient 
of atmospheric pressures over the North Atlantic between the 
high pressures centered on the subtropical Atlantic and the low 
pressures over Iceland in winter (33). We used (i) a millennium- 
long (1049–1969) tree-ring–based reconstruction of the NAO 
(www1.ncdc.noaa.gov/pub/data/paleo/contributions_by_author/
ortega2015/ortega2015nao.txt) and (ii) the NAO index based on 
a rotated PCA performed on monthly standardized 500-mbar 
height anomalies over the North Atlantic sector for the period 
1950–2011 (www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/ 
nao.shtml).

4) The AMO index characterizes the multidecadal ocean/ 
atmosphere natural variability in temperatures, in a range of 0.4°C, in 
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many oceanic regions of the North Atlantic, with a periodicity ranging 
from 60 to 100 years (34). Here, we combined (i) a tree-ring–based 
reconstruction of the AMO for the period 1567–1990 (ftp://ftp.ncdc.
noaa.gov/pub/data/paleo/treering/reconstructions/amo-gray2004.
txt) and (ii) the index constructed from extended reconstructed SST 
data for the period 1856 onward and averaged in the area of 25° to 
60°N and 7° to 75°W, minus regression on global mean temperature 
(www.esrl.noaa.gov/psd/data/timeseries/AMO/).

We combined two hydroclimatic versions of the AMO and 
NAO indices to cover the whole time period 1634–2011. For each 
version, the oldest was rescaled (range and offset) to be comparable 
with the recent one. Variances were then homogenized by applying 
a moving mean of the larger window applied in the index recon-
struction [i.e., 10 years for the AMO (34) and 3 years for both NAO 
indices. For each index, we calculated and tested the correlation 
between the reconstructions based on tree-ring data and contempo-
rary indices, which proved to be highly significant in each case 
(for AMO indices: F1,104 = 268.6, R2

adj = 0.72, P < 0.001; for NAO 
indices: F1,15 = 70.0, R2

adj = 0.81, P < 0.001); old and recent indices 
were therefore averaged per year over common periods and com-
bined into a single index.

Time series analyses
BRT and selection of critical parameters
Long-term fluctuations in eastern bluefin tuna abundance and in 
hydroclimatic variability were analyzed with BRT (fig. S1, analysis 1) 
(35). BRT models are an ensemble method for fitting statistical models 
that combine the strengths of regression trees and boosting, which 
enables the identification of nonlinear complex relationships and 
interactions between variables without the need for previous data 
transformation or any underlying assumptions (35). The analy ses 
were computed using R software and the gbm and dismo packages. 
Critical parameter values were first tested in an exploratory phase. 
Large numbers of trees (>1000) are required to build reliable 
models (35); therefore, the learning rate (lr; the contribution of each 
tree to the growing model) was set at a low value (lr = 0.001) to 
generate systematically more than 3000 trees. Using the gbm.step 
function, the exact number of trees was determined with a 10-fold 
cross-validation while increasing the model complexity. A total of 
24 sets of models were built to test the two other critical parameters, 
tree complexity (tr; the number of nodes in a tree) and bagging frac-
tion (bag; the proportion of data to be selected at each step). Tested 
values ranged from 1 to 12 for tr and from 0.4 to 0.95 for bag (ran-
domness is removed when bag is set to 1). Model performance was 
assessed with the training data correlation (equivalent to R2

adj in 
linear regression models) and the 10-fold cross-validation correla-
tion mean deviance and coefficient (35). The sets of models with 
tr = 9 and bag = 0.8 systematically led to both the highest R2

adj and 
cross- validation correlation coefficient and the lowest cross-validation 
deviance (table S1), and so, this configuration was used to build the 
two final models.
BRT models construction and performance
One hundred bootstraps, each with 10-fold cross-validation, were ap-
plied to compute the mean, SD, and confidence intervals (36) of (i) 
the mean reconstructed abundance of eastern bluefin tuna and (ii) 
the relative influence of each of the four hydroclimatic indices. Two 
BRT models were used to reconstruct bluefin tuna abundance for years 
1634–1929, i.e., before the first industrial fishery and rapid north 
Atlantic warming (37), to assess the patterns of abundance while omit-

ting the main components of human disturbances (i.e., the overfish-
ing mortality and the rapid elevation of temperature with the increas-
ing emissions of greenhouse gases). First, we considered the index 
of bluefin tuna abundance without a lag, and then, we incorporated 
a one-generation lag (i.e., 16-year lag selected by cross-correlation and 
taking into account the temporal autocorrelation of the time series). 
This enabled us to assess both the direct effects of hydroclimatic vari-
ability on adult distribution and the indirect effects on recruitment 
occurring one generation later. The performance of the two models 
in reconstructing eastern bluefin tuna abundances over 1634–2011 
was assessed with the training data correlation (R2

adj) (fig. S2).
Our BRT models reproduced well the temporal autocorrelation 

that was detected in the observed bluefin tuna abundance index. It 
slowly decreases until a 27-year lag in the historical time series and 
to a 29-year lag in the predicted time series, which is in line with the 
maximum life-span of bluefin tuna.

Species distribution analyses
Ecological niche model: NPPEN
The nonparametric probabilistic ecological niche (NPPEN) model 
is an ENM specifically designed to be applied on presence-only data 
(38). This technique allows the modeling of the ecological niche of 
a species and the mapping of its spatial distribution by calculating 
its probabilities of occurrence. The first step consisted in construct-
ing a reference matrix with environmental data corresponding to 
the presence records. The reference matrix was homogenized to re-
move as much as possible the inaccurate reporting of occurrence 
records, and this resulted in a multidimensional matrix, with each 
dimension reflecting an environmental factor (38). In the second 
step, the Mahalanobis generalized distance was calculated between 
the observations and the homogenized reference matrix. In the third 
step, the model calculated the probability of each grid point to belong 
to the reference matrix (38). Last, the probabilities of species occur-
rence were mapped in the geographical space. Here, the NPPEN model 
was applied (i) to calculate the ecological niche (sensu Hutchinson) of 
Atlantic bluefin tuna and (ii) to project its spatial distribution in the 
North Atlantic (north of 12°S, i.e., its distribution range) over the 
period 1891–2011 (fig. S1, analysis 2).
Model validation
The adequacy between observed and modeled spatial distributions 
was assessed with the CBI (39). The CBI, developed for presence- 
only data and insensitive to pseudo-absences, was recommended for 
accurate evaluation of presence-only models such as ours (39). A 
model was considered “wrong” when CBI values were below −0.5, 
“average to random” for values ranging from −0.5 to 0.5, and “good” 
for values above 0.5 (i.e., occurrences in regions with high habitat 
suitability). To investigate whether the random selection of data influ-
enced the modeling of the ecological niche, we randomly selected 
70% of the observed data to build the ENM, and the other 30% was 
used to evaluate its accuracy. This procedure was repeated 30 times 
for each simulation to provide the mean and SD of metric values. 
For each month and each run, the CBI was computed and averaged 
per simulation.
Selection of environmental variables
Seven models were performed to determine the best combination of 
environmental variables (i.e., the three variables that contributed most 
to the spatial distribution of Atlantic bluefin tuna; table S2). The model 
that considered each occurrence of bluefin tuna associated to a unique 
triplet of environmental parameters (SST, SSS, and bathymetry) displayed 
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the highest adequacy with the observed spatial distribution (CBI = 
0.84; table S2); we therefore retained this optimal configuration to 
assess the spatiotemporal variability in the habitat suitability of 
Atlantic bluefin tuna over the period 1891–2011.
Estimation of the potential influence of localized intensive 
sampling or duplicates
Fisheries data are typically biased toward undersampling in remote 
areas and oversampling in known fishing grounds (40). To consider 
this potential bias, we tested 5 levels of homogenization of the refer-
ence matrix (see the “Ecological niche model: NPPEN” section) by 
using an increasing number of occurrences (from 1 to 3, 5, and 10) 
to evaluate the representativeness of each set of environmental con-
ditions (i.e., SST, SSS, and/or bathymetry) on the model accuracy. 
The model that considered one species occurrence per triplet of envi-
ronmental conditions outperformed other models (highest mean 
values and lowest SDs of the evaluation metric; table S2) and was 
selected for subsequent analyses.
Long-term changes in habitat suitability of Atlantic 
bluefin tuna
We then investigated long-term changes in anomalies of probabil-
ity of occurrence of bluefin tuna (also termed habitat suitability) 
obtained from the NPPEN model (fig. S1). We first calculated month-
ly anomalies for each geographical cell of the spatial domain, i.e., the 
difference between each probability of occurrence of bluefin tuna 
from 1891 to 2011 and the climatology of probabilities of occur-
rence of bluefin tuna calculated for the period 1891–2011. We then 
performed a standardized PCA to examine long-term changes in 
habitat suitability in the distribution range of bluefin tuna (i.e., 
the Atlantic Ocean and Mediterranean Sea from 100°W to 37°E and 
from 12°S to 75°N). The first four PCs (55% of the total variance) 
reflected the main long-term changes in habitat suitability, and the 
normalized eigenvectors represented the correlation between changes 
in habitat suitability in each geographical cell and the corresponding 
PCs (fig. S4).

We also evaluated long-term changes in habitat suitability by av-
eraging monthly anomalies of probability of occurrence of bluefin 
tuna for different time periods: (i) negative (climatology from 1896 to 
1928 and from 1963 to 1994) and positive (climatology from 1929 
to 1962 and from 1995 to 2011) AMO phases (Fig. 3), (ii) before and 
after the Nordic fisheries collapse circa 1963, (iii) per decades from 
1896 to 2011 (fig. S5), and (iv) at an annual scale from 1896 to 2011 
in the Nordic region (from 30°W to 12°E and 48°N to 70°N; Fig. 3C). 
Abrupt changes in the Nordic region were then investigated by ap-
plying the method of optimal detection of change points with a lin-
ear computational cost (41). Mean change in habitat suitability was 
also assessed at an annual scale in the whole species’ distribution range 
(Atlantic Ocean and Mediterranean Sea from 100°W to 37°E and from 
12°S to 75°N), and the relationship with NHT was investigated with 
linear correlation.

Relationships between long-term changes in habitat 
suitability and abundance
We calculated the partial correlations between the observed At-
lantic bluefin tuna abundance index and the first four PCs obtained 
from the PCA applied on anomalies of probability of occurrence of 
bluefin tuna (fig. S4). After application of a forward/backward pro-
cedure, the first, second, and fourth PCs were used to elaborate a habitat 
suitability index of the Atlantic bluefin tuna (Fig. 2). The relationship 
between changes in our habitat suitability index and the observed 

Atlantic bluefin tuna abundance index was then investigated by a 
linear correlation analysis (Fig. 2).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/1/eaar6993/DC1
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eastern Atlantic bluefin tuna.
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