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1 Muséum National d’Histoire Naturelle, Unité Mixte de Recherche Biologie des Organismes et Ecosystèmes Aquatiques
(UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National de la Recherche Scientifique (CNRS), Institut
de Recherche pour le Développement (IRD), Sorbonne Université, Paris, France, 2 Université Le Havre Normandie - Stress
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Corticotropin-releasing hormone (CRH) was discovered for its role as a brain
neurohormone controlling the corticotropic axis in vertebrates. An additional crh gene,
crh2, paralog of crh (crh1), and likely resulting from the second round (2R) of vertebrate
whole genome duplication (WGD), was identified in a holocephalan chondrichthyan, in
basal mammals, various sauropsids and a non-teleost actinopterygian holostean. It was
suggested that crh2 has been recurrently lost in some vertebrate groups including
teleosts. We further investigated the fate of crh1 and crh2 in vertebrates with a special
focus on teleosts. Phylogenetic and synteny analyses showed the presence of duplicated
crh1 paralogs, crh1a and crh1b, in most teleosts, resulting from the teleost-specific WGD
(3R). Crh1b is conserved in all teleosts studied, while crh1a has been lost independently in
some species. Additional crh1 paralogs are present in carps and salmonids, resulting from
specific WGD in these lineages. We identified crh2 gene in additional vertebrate groups
such as chondrichthyan elasmobranchs, sarcopterygians including dipnoans and
amphibians, and basal actinoperygians, Polypteridae and Chondrostei. We also
revealed the presence of crh2 in teleosts, including elopomorphs, osteoglossomorphs,
clupeiforms, and ostariophysians, while it would have been lost in Euteleostei along with
some other groups. To get some insights on the functional evolution of the crh paralogs,
we compared their primary and 3D structure, and by qPCR their tissue distribution, in two
representative species, the European eel, which possesses three crh paralogs (crh1a,
crh1b, crh2), and the Atlantic salmon, which possesses four crh paralogs of the crh1-type.
All peptides conserved the structural characteristics of human CRH. Eel crh1b and both
salmon crh1b genes were mainly expressed in the brain, supporting the major role of
crh1b paralogs in controlling the corticotropic axis in teleosts. In contrast, crh1a paralogs
were mainly expressed in peripheral tissues such as muscle and heart, in eel and salmon,
reflecting a striking subfunctionalization between crh1a and b paralogs. Eel crh2 was
weakly expressed in the brain and peripheral tissues. These results revisit the repertoire of
n.org July 2022 | Volume 13 | Article 9372181
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crh in teleosts and highlight functional divergences that may have contributed to the
differential conservation of various crh paralogs in teleosts.
Keywords: corticotropin-releasing hormone, phylogeny, synteny, tissue distribution, vertebrates, eel, salmon
INTRODUCTION

Corticotropin-releasing hormone (CRH), first named CRF (F for
factor) until its characterization, is the hypothalamic
neurohormone of the corticotropic axis involved in the control
of stress response. CRH control the production by the pituitary
of corticotropin (ACTH), which itself controls the production of
corticosteroids by the adrenals in mammals, birds and reptiles,
and by the interrenals in amphibians and teleosts. Being able to
activate other neuroendocrine axes, such as the thyrotropic and
somatotropic axes, under environmental and internal stimuli,
CRH has been proposed as the central coordinator of endocrine
activation during life transitions such as metamorphosis in
amphibians and teleosts, and egg hatching in birds and reptiles
[for reviews: (1, 2)].

Initial evidence of the existence of CRH was reported in 1955
(3, 4), and over 25 years were needed to isolate CRH peptide in
sheep (5). Subsequently, the ovine CRH precursor, named also
prepro-CRH, was cloned and its primary structure described (6).
Soon after, the characterization of CRH in rat (7, 8) and human
(9) revealed the strong structural and molecular conservation of
the CRH peptide that consists of an alpha helical peptide of 41
amino-acids (aa) which is C-terminally amidated and that is
produced from the cleavage of a larger precursor ranging from
160 to 210 aa depending on the species [for review (10)]. In
mammals , CRH-expressing neurons were found in
paraventricular nucleus (PVN) with the majority of neurons
projecting to the median eminence (11).

Other peptides showing similarities with CRH were
characterized: sauvagine from the skin of neotropical frog
Phyllomedusa sauvagei (12), urotensin-I from the urophysis of the
white sucker Catostomus commersoni (13) and urocortin from rat
midbrain (14), all now considered as “urocortin”, encoded by ucn
(named ucn1, 15), a paralogous gene of crh [for review (16)]. Two
other CRH-related peptides, named urocortin 2 (17) and urocortin
3 (18) were later found thanks to the completion of the human
genome project. According to current evolutionary scenarios, ucn1
would be in fact more closely related to crh than to ucn2 and ucn3
[for review (16); (15, 19)]. Only one crh gene (crh) had been
identified in vertebrates, until the discovery in 2011 of a second
crh in the elephant shark Callorhinchus milii (20). This second crh
gene (named crh2) was then identified in most vertebrate groups
(21), a result confirmed by other studies (15, 19). Phylogenetic and
syntenic analyses led to the hypothesis that the paralogs, the
“classical” crh (also named crh1 for clarification, 15) and crh2, as
well as ucn1 likely arose during the two rounds (1R/2R) of whole
genome duplication (WGD) that occurred early in the vertebrate
lineage (15, 21). In addition, it had been proposed that crh2 would
have been lost repeatedly during vertebrate radiation, in teleosts, in
amphibians and in placental mammals (15, 21, 22). Duplicated crh
n.org 2
(crh1a and crh1b) were found in teleosts likely resulting from the
teleost-specific WGD (3R) (15, 22). A further duplication of crh1a
and crh1b resulting from salmonid-specific WGD (4R) led to four
crh1 paralogs in salmonids (22, 23). Conservation of paralogs after
duplication may be related to evolutionary selection for either
amplification of initial function, sharing of initial pleiotropic
functions (subfunctionalization) or emergence of a new function
(neofunctionalization) [for review (24)].

In teleosts, as in other vertebrates, CRH conserved its role as a
major stimulator of pituitary ACTH release in response to stress
[for reviews (25, 26)]. CRH is also involved in metabolism, food
intake [for review (27)], immunity [for review (28)] and
locomotor activity [for review (29)]. In teleosts, CRH not only
controls the corticotropic axis but is also a potent activator of the
thyrotropic axis as in amphibians and birds. This suggests that
CRH is able to control several physiological functions in teleost
fish such as stress, osmoregulation, metabolism and may play an
important role as central coordinator of the activation of
endocrine axes for developmental transitions and adaptation to
environmental changes [for reviews (1, 2)].

In the present study, we investigated crh paralogs in
vertebrates and specially the fate of crh2 which was previously
assumed to be lost in teleosts. In addition, to get some insights
into the functional evolution of the crh paralogs, we analyzed
their sequences, 3D structures and tissue distributions in two
representative teleosts: a basal teleost, the European eel
(Elopomorph), in which we revealed the presence of three crh
paralogs (crh1a, crh1b and crh2), and the Atlantic salmon
(Salmoniformes) which possesses four crh paralogs, all of the
crh1-type. Our data show that teleost crh paralogs evolved
distinct expression patterns and likely diverse functions.
MATERIALS AND METHODS

In silico Identification of Corticotropin-
Releasing Hormone Genes
Corticotropin-releasing hormone (crh) genes were sought in
representative vertebrates with a special focus in the
actinopterygian lineage. Sequences from the most closely
related paralog to crh, ucn1, were also included. We screened
the genomes of 70 vertebrate species. Gene sequences were
retrieved from genome assemblies, either using GenBank gene
prediction, or by an exhaustive Blast search against GenBank and
UCSC genomic databases, and GenBank, UCSC and PhyloFish
transcriptomic databases (30). We used genome assemblies and
RNA libraries to search for non-annotated crh-like genes or to
confirm gene loss. Coding sequence (CDS) of the prepropeptide
were manually annotated by comparison with orthologous genes
July 2022 | Volume 13 | Article 937218
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using CLC Main Workbench (QIAGEN). Sequences references
and annotations are provided in Table S1. Phylogenetic analysis,
supported by synteny analysis, allowed us to identify orthologs/
paralogs and name or rename crh genes, accordingly. For gene
nomenclature of WGD paralogs in teleosts, we used in the
present study the letters “a/b” for teleost-specific 3R-duplicated
genes, according to Zfin nomenclature conventions, and the
symbols “a/b” for salmonid-specific 4R-duplicated genes
according to Robertson and colleagues (31).

The signal peptide was predicted using SignalP 4.0 browser
(32) and peptide cleavage site using both Modpred and
NeuroPred webbrowser (33, 34).

Phylogenetic Analysis
Phylogenetic analyses were performed using 166 CRH and UCN1
sequences from 48 vertebrates. CRH/UCN1 mature peptides are
highly conserved peptides, which makes it difficult to extract
information from their amino-acid sequences, so we used the
prepropeptide amino-acid sequences to infer the phylogenetic tree.
Multiple sequence alignments of the CRH/UCN1 protein family were
performed using the slow algorithm available on CLCworkbench and
further manually edited based on conserved amino-acid sequences.

The tree topology was inferred with a maximum likelihood
analysis using PhyML 3.0 on the web browser of ATGC
Montpellier bioinformatics platform and Seaview (35–37). The
WAG substitution matrix (38) was chosen to infer the trees of
CRH family. Strength of branch nodes was evaluated by both
aLRT and bootstrap using 100 replicates.

Synteny Analysis
To further resolve crh gene evolution in teleosts, the synteny of crh
and ucn1 genes was investigated in actinopterygians, using a basal
non-teleost actinopterygian, a Polyperidae, the reedfish
(Erpetoichthys calabaricus) as template. The four chromosomes
corresponding to the crh1/crh2/ucn1 tetraparalogon were
identified in reedfish by comparing with the crh1/crh2/ucn1
paralogous chromosomes of spotted gar (15). Conserved
neighboring gene families of crh1/crh2/ucn1 were identified by
comparing manually NCBI predicted genes lists on the crh1/crh2/
ucn1 chromosomes of reedfish (Figure S1). The following teleost
species were studied: representatives of two basal groups, an
elopomorph, European eel (Anguilla anguilla) and an
osteoglossomorph, arowana (Scleropages formosus); a Clupeidae,
herring (Denticeps clupeoides), a Cyprinidae, zebrafish (Danio rerio),
an Esocidae, pike (Esox lucius) and a Salmonidae, Atlantic salmon
(Salmo salar). Neighboring gene families with members inherited
from 1 and 2R vertebrate WGD, 3R teleost WGD and 4R salmonid
WGD were selected to illustrate the crh-gene paralogon evolution.
Additional genes were used to further discriminate 3R- and 4R-
paralogons. Neighboring gene identity was confirmed by examining
close gene neighborhood using the genome browser, Genomicus
(39). Non-predicted genes were sought by extensive blast against
genome assemblies to confirm the gene loss. References of the gene
neighborhood of the crh/ucn1 family is provided in Table S2. The
neighboring genes of crh2 in arowana were reexamined together
with those of another osteoglossomorph, Paramormyrops kingsleyae
and are given in Table S2.
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3D-Structure Prediction
The structure of human, eel and salmon CRH peptides was
predicted using iTASSER browser (40, 41). Protein model quality
was assessed using MoldFold (42). All the five resulting models
predicted by iTASSER, showed high quality score. For each
peptide, the top model ranked was rendered using ChimeraX
v1.3 (43). Logo sequences of the CRH precursors were generated
from the alignment generated for the phylogenetic analysis using
CLC Main Workbench (QIAGEN).

Fish and Tissue Samples
Female European eels (A. anguilla) were at the prepubertal
“silver” stage, corresponding to the end of the continental stage
of the eel life cycle, previous to migration to the ocean for
reproduction. They were purchased from Gebr. Dil import-
export BV (Akersloot, The Netherlands) and transferred to
MNHN, France. Animals were anesthetized by cold and then
killed by decapitation under the supervision of authorized person
(KR; No. R-75UPMC-F1-08) according to the protocol approved
by Cuvier Ethic Committee France (No. 68–027). The tissues
were dissected, incubated in RNA later overnight at 4°C and
stored at -20°C until RNA extraction.

For Atlantic salmon (S. salar), we reused the tissue samples
collected for a previous study (44). These tissues had been
collected from mixed sex (5 males and 5 females) juvenile fish
of the Loire-Allier population raised indoor under natural water,
temperature, and photoperiod conditions, at the Conservatoire
National du Saumon Sauvage (CNSS) (44).

The following tissues, dissected according to (44, 45), were
analyzed in both species: whole brain, pituitary, gill, heart, liver,
spleen, kidney, intestine, fat, muscle, skin and gonad. For detailed
brain distribution the following tissues were also analyzed:
olfactory bulbs, telencephalon, mesencephalon, diencephalon,
optic tectum, cerebellum, medulla oblongata as well as saccus
vasculosus, epiphysis, pituitary and retina.
Quantitative Gene Expression Analysis
RNA Extraction and cDNA Synthesis
Total tissue RNA was extracted using Trizol according to the
manufacturer recommendations. Tissues were homogenized in
Trizol with steel beads, twice at 30Hz for 2-5 min, using a
TissueLyzer II (Qiagen). Total RNA concentration was measured
using a nanodrop spectrophotometer (Thermo Fisher Scientific)
and treated with DNase I (Roche) according to the
manufacturer’s instructions at 37°C for 20 min. DNase I was
inactivated and removed by phenol extraction.

Complementary DNA was generated from 750 ng of
denatured total RNA (at 65°C for 5 min) and 75 ng random
primers using the superscript III (Invitrogen) under the
following conditions: a primer hybridization step at 25°C for
10 min, followed by an extension step at 50°C for 60 min and an
inactivation step at 70°C for 15 min. Two no-reverse
transcriptase controls for potential DNA contamination were
performed using total RNA from either brain or muscle in the
same reaction conditions but without superscript III: no product
or non-specific products were amplified by qPCR.
July 2022 | Volume 13 | Article 937218
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Quantitative Real-Time PCR
Many primer sets for each crh gene of eel and salmon were
designed using primer 3 browser (Table S3). The design of
primer sets for each gene were confined to the sequence parts
showing nucleotide divergence between paralogs, which was
especially critical for the pairs of salmon crh1 4R-paralogs that
showed strong identity between each other. Each primer set was
first tested on pools of tissues expressing the crh paralogs (brain
and muscle). These tissues were used to produce qPCR
standards: the standards were serial dilutions of cDNA from
pooled samples of eel brain for eel crh1b and crh2, of eel muscle
for eel crh1a, of salmon brain for salmon crh1ba and crh1bb and
of salmon muscle for salmon crh1aa and crh1ab. Standard
dilutions were run in duplicate to draw a calibration curve and
measure amplification efficiency of the different primer sets.
Primer sets were chosen according to the two following
conditions: 1) they showed a good amplification efficiency
(Table S3), 2) gene amplification efficiency was confirmed with
two different primer sets positioned at different gene regions
(same cycle quantification (Cq) for a same standard dilution)
and 3) the Tm of the amplicon could be discriminated from the
one resulting from primer-dimer amplification.

Quantitative PCR assays were performed using the
LightCycler (Roche) with the LightCycler FastStart Master plus
SYBR Green I kit (Roche) as recommended by the manufacturer
and 500 nM of each primer. Each sample was run in duplicate.
The PCR conditions were 95°C for 10 min followed by 50 cycles
at 95°C for 5 sec, 60°C for 10 sec and 72°C for 5 sec. The
specificity of amplified qPCR products was checked by
performing melting curve analyses and by sequencing the
amplicon. Transcript quantity was calculated using the
LightCycler software from quantification cycle (Cq)
determined by the automatic second derivative method,
according to the calibration curve method. Samples were
considered at the limit of detection when amplification was
obtained after 42 Cq and a minimal value was assigned which
was the lowest detectable dose of respective standard. Data are
expressed as arbitrary units of gene transcript level/total RNA
level. Results (means ± SEM) are presented as percentage per
tissue for the tissue comparison, according to (46, 47).
RESULTS

Identification of crh/ucn1 Genes in
Representative Vertebrates and
Phylogenetic Analysis
The presence of crh/ucn1 genes was investigated in 70 vertebrates
including 7 chondrichthyans, 14 sarcopterygians and 48
actinopterygians, and 252 sequences were retrieved from the
genome assemblies of representative vertebrates (Table S1). A
phylogenetic tree was inferred by maximum likelihood analysis
from prepro-CRH/UCN1 amino-acid sequences (Figure 1); a
second phylogenetic analysis was performed with a special focus
on a larger number of actinopterygian species (Figure S2).
Vertebrate CRH/UCN1 sequences clustered into three groups,
Frontiers in Endocrinology | www.frontiersin.org 4
including sequences of CRH1, CRH2 and UCN1 respectively
(Figure 1). Three genes were present in a basal vertebrate (a
cyclostome, the lamprey, Petromyzon marinus) as previously
reported (19) and their amino-acid sequences branched at the
basal position of each of the gnathostome CRH1, CRH2 and
UCN1 clusters in agreement with vertebrate phylogeny (Figure 1).

In chondrichthyans, three genes, crh1, crh2 and ucn1, were
present in a holocephalan (elephant shark, C. milii) as previously
described, and were also retrieved in the present study in
representatives of elasmobranchs, including selachians such as
catshark, Scyliorhinus canicula and Batoidae such as the thorny
skate, Amblyraja radiata (Table S1). Chondrichthyan amino-
acid sequences branched at the basis of the osteichthyan CRH1,
CRH2 and UCN1 clusters, respectively, also in accordance with
vertebrate phylogeny (Figure 1).

In basal sarcopterygians, we found three genes (crh1, crh2 and
ucn1) in actinistians (coelacanth, Latimeria chalumae) as previously
reported, branching at the basis of the sarcopterygian sequences.We
predicted two to three genes in the current status of the lungfish
(Dipnoi) genome assembly (Table S1). The genome of the
Australian lungfish (Neoceratodus forsteri) encoded indeed two
full-length genes, corresponding to crh2 and ucn1 according to
our phylogenetic analysis (Figure 1), as well as one crh1 pseudogene
showing a frameshift due to indels at two different positions on the
CDS. In theWest African lungfish (Protopterus annectens) only two
genes (crh1 and ucn1) could be retrieved (Figure S2; Table S1). In
amphibians, we retrieved only two genes (crh1 and ucn1) in various
anuran species (such as Rana temporaria) as previously reported for
Xenopus. In contrast we identified a third gene, corresponding to
crh2 according to our phylogenetic analysis, in representative
species of other amphibian groups, Gymnophiona (Microceacilla
unicolor), and Caudata (axolotl, Ambystoma mexicanum)
(Figure 1). The three genes (crh1, crh2 and ucn1) were present in
representative species of the various groups of sauropsids including
birds, as recently reported (48), as well as in protherian and
metatherian mammals, in agreement with previous studies (21)
(Figure 1; Table S1).

In basal actinopterygians, we retrieved three genes,
corresponding to crh1, crh2 and ucn1, in a representative of
cladistian Polypteridae (reedfish, Erpetoichthys calabricus), as
well as in two representative species of another non-teleost
group, holosteans (spotted gar, Lepisosteus oculatus, as
previously reported; and bowfin, Amia calva) (Figures 1, S2).
In chondrostean species, including Polyodontinae (paddlefish,
Polyodon spathula), and Acipenserinae (sterlet sturgeon,
Acipenser ruthenus), we found six genes corresponding to
duplicated genes for crh1, crh2 and ucn1 (Figures 1, S2) likely
resulting from the polyploidization of the genome in
these species.

In basal teleosts, four genes were predicted in elopomorphs,
Anguillidae (European, American and Japanese eels, Anguilla sp),
and Megalopydae (tarpon, Megalops cyprinoides) (Table S1),
corresponding to duplicated crh1 (crh1a and crh1b), a single crh2
and a single ucn1, according to our phylogenetic analyses
(Figures 1; S2). Crh1b paralog was present in all teleost species
investigated in the present study, while crh1a could not be found in
July 2022 | Volume 13 | Article 937218
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the fugu (Takifugu rubripes) in agreement with previous studies
(22). Among clupeiforms, full-length crh1a was found in
Denticipitidae (dendicle herring), and in Clupeidae (Atlantic
herring, Clupea harengus and American shad, Alosa sapidissima),
while a crh1a pseudogene was retrieved in an Engraulidae (anchovy,
Coilia nasus) (Figure S2; Table S1). No crh1a sequence could be
found in another Clupeidae (pilchard, Sardina pilchardus) nor in a
gymnotiform (electric eel, Electrophorus electricus), but this may be
due to the current status of their genome assemblies. We identified
crh2, previously assumed to be lost in teleosts, as a single gene not
Frontiers in Endocrinology | www.frontiersin.org 5
only in elopomorphs as mentioned above but also in
osteoglossomorphs, including Mormyridae (elephant fish, P.
kingsleyae), Gymnarchidae (aba, Gymnarchus niloticus), and
Osteoglossidae (arapaima, Arapaima gigas), and partial sequence
in arowana, as well as in Clupeiformes (denticle and Atlantic
herrings, American shad; Alice shad, (Alosa alosa), pilchard,
anchovy) and in several ostariophysian groups including
Gonorynchiformes (milkfish Chanos chanos), Characiformes
(Mexican tetra, Astyanax mexicanus) and Gymnotiformes
(electric eel) (Figure 1 and S2; Table S1). In contrast, we could
FIGURE 1 | Maximum-likelihood phylogenetic tree of CRH prepropeptide amino acid sequences of vertebrate representatives. Phylogenetic relationships of CRH
was inferred using the PhyML algorithm with the WAG substitution matrix and the best nearest neighbour interchange (NNI) and Subtree Pruning and Regrafting
(SPR) improvement algorithm. Numbers at the node indicate the confidence percent of 100 bootstrap replications. The three gnathostome monophyletic clades are
indicated with different branch colors and the corresponding CRH clade names are indicated using the same colour. Taxonomic group names are indicated at the
right of the tree. The list of corresponding gene references is provided in Table S1.
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not retrieve any crh2 gene in some other ostariophysian groups,
Silurifomes and Cypriniformes. Crh2 gene could not be found either
in any euteleostean species investigated, including esociforms,
salmoniforms, galaxiiforms, osmeriforms, gadiforms, nor in any
of the acanthopterygian groups. A single ucn1 gene could be
retrieved in all teleost genomes investigated, and was duplicated
in salmonids and some polyploid cyprinids, in relation to the further
genome duplication in these lineages (Figures 1 and S2; Table S1).
We also retrieved two ucn1 genes in denticle herring, one on the
chromosome 14 and the other one on an unplaced scaffold (Tables
S1, S3). These two genes showed 99.98% nucleotide identity
indicating they might result either from recent sequential
duplication or from a genome assembly artefact. In the present
study, only the UCN1 carried by the chromosome 14 was
further considered.

Synteny Analysis of crh Family Genes in
Actinopterygians
The gene family members xkr4/5/6/7/9, nkain2/3/4, bhlhe22/23,
dnajc5/dnajc5g, trim54/55/101, sulf1/2, eya1/2/4, rock1/2, dlgap1/
2/4, lpin1/2/3, and emilin1/2/3 were found to surround the crh1/
crh2/ucn1 family genes on the tetraparalogous chromosomic
regions of the reedfish (Figures 2–4 and S1), in agreement
with their 1R and 2R origin. Additional neighboring gene
families were used to further analyze the impact of 3R and 4R
in teleosts, such as cspp1 on crh1 paralogon, nol4l, commd7 and
uckl1 on crh2 paralogon, pomc andmpv7 on ucn1 paralogon. The
synteny comparison among actinopterygians showed that the
crh1, crh2 and ucn1 paralogons were duplicated by the teleost 3R
WGD and further duplicated by salmonid 4R WGD (SS4R)
(Figures 2–4).
Frontiers in Endocrinology | www.frontiersin.org 6
Concerning crh1 paralogon (Figure 2), 3R-duplicated crh1
paralogs (crh1a and crh1b) were conserved in eel, arowana,
zebrafish, pike, as well as 3R-duplicated neighboring gene
paralogs such as cspp1 and dlgpa1. The salmonid 4R WGD led
to quadruplicated crh1 paralogs (crh1aa, crh1ab, crh1ba,
crh1bb) as well as quadruplicated neighboring genes bhlhe22,
trim55 and dlgap1.

Concerning crh2 paralogon (Figure 3), some translocation
events occurred in this genomic region. It could still be inferred
that some neighboring genes, such as nol4l, sulf2, dnajc5, nkain4
and dlgap4, were conserved as duplicates after 3R and as
quadruplicate after 4R. In contrast, a single crh2 gene was present
in eel, arowana and herring, and we could not find any crh2 gene in
the genome assemblies of zebrafish, pike and salmon. Comparison
of neighboring genes conserved as single paralogs allowed to infer
that a different crh2 paralog was conserved in eel and herring versus
in arowana. The crh2 paralog named crh2a conserved in eel and
herring was located in the paralogon bearing the single conserved
paralog of commd7, trim101, nkain4, while the crh2 paralog named
crh2b conserved in arowana was located on the other paralogon.
Since the crh2 gene retrieved from the arowana genome assembly is
fragmented, we also examined the crh2 gene neighborhood in
another osteoglossomorph species belonging to the Mormyridae,
the P. kingsleyae for which crh2 gene encodes a putative functional
Crh2 (Table S2). This confirmed the presence of a crh2 (crh2b) gene
in the other 3R- ohnologous region than the one carrying eel and
herring crh2 (crh2a) gene. The lack of crh2 in pike and salmon
suggests that a loss of crh2 already occurred in their common
ancestor and therefore no impact of 4R. We observed a
chromosome fusion between the two crh2 genomic regions in
herring, pike and salmon that may have occurred prior the
FIGURE 2 | Synteny of crh1 genomic region in actinopterygians. Crh1 gene neighborhood is compared between teleost representatives, eel, arowana, herring,
zebrafish, pike and salmon. The polypteriform actinopterygian, reedfish, was used as model of the gene arrangement prior the teleost genome duplication 3R.
Chromosomes are indicated by Chr or Ssa for salmon. Gene position are indicated under the genes. Loss of crh1 gene is indicated with a red cross. Neighboring
genes non-represented are considered as lost. Gene references are presented in Table S3. Letters a and b indicate the 3R-teleost duplicated paralogs and the
symbols a and b the 4R-salmonid duplicated paralogs. Members of gene families conserved on the vertebrate tetraparalogon (issued from 1R/2R WGD) are with the
same color in Figures 3–4.
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radiation of Clupeocephala. Such genome reorganization between
paralogous regions have already been described for other gene
duplicated paralogs such as the melatonin receptors (47). These
events were related to intense rate of interchromosomal
rearrangements that occurred in some lineages during the
rediploidization process after the 3R (49).

Concerning ucn1 paralagon, some neighboring genes such as
xkr6, rock2, emilin1, dlgap2 were conserved as duplicates in eel,
arowana, herring, zebrafish, and pike and as quadruplicates in
salmon, reflecting the impact of 3R and 4R on this genomic
region. In contrast, ucn1 was found as a single gene in eel,
arowana, herring, zebrafish and pike. This single ucn1 was
located in all these species on the paralogon bearing the single
conserved paralog ofmpv7, trim54, nkain2 and eye4 neighboring
genes, indicating that the same ucn1 paralog was conserved in
the different teleost species. Synteny analysis indicated that this
single ucn1 gene was inherited by salmonids and duplicated by
the 4R.

Comparison of Eel and Salmon CRH
Prepropeptides and Peptides Sequences
Both European eel crh1a and crh1b paralogous genes, located on
the chromosome 8 and 4 respectively, code for 164 amino acid
(aa) precursors, prepro-Crh1a and prepro-Crh1b respectively,
including a 24 aa signal peptide required for the hormone release,
a 97 aa cryptic region with at its C-terminus a proteolytic
cleavage site at the position R121, and the 41 aa C-terminal
region coding for CRH peptide with a C-terminal Gly-Lys
amidation site. At the difference of the prepro-Crh1b, the
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prepro-Crh1a showed putative additional cleavage sites at the
positions R83 and R103. Japanese eel crh (BAP90537), previously
characterized (50), is the ortholog to European eel crh1b. The eel
crh2 gene located on the chromosome 11 encodes a 149 aa
prepropeptide including a 23 aa signal peptide, a cryptic region
of 81 aa at the N-terminus and a proteolytic cleavage site at the
position R104, and the C-terminal region encoding a 43 aa mature
Crh2 with a C-terminal amidation site. The prepro-Crh2 shows a
putative additional cleavage site at the position R33. The eel ucn1
gene located on chromosome 6 codes for a 168 aa prepropeptide,
including a 24 aa signal peptide, a 101 aa cryptic region, the C-
terminal region coding for a 41 aa Ucn1 peptide with a C-
terminal amidation site.

The two Atlantic salmon crh1aa and crh1ab 4R-paralogous
genes (located on the chromosomes 14 and 3, respectively) encode
171 and 170 aa prepropeptides, including a 24 aa signal peptide, a
100 and 101 aa cryptic region, respectively, and a C-terminal
sequence encoding a 44 aa Crh1 mature peptide with a C-
terminal amidation site. The two salmon crh1ba and crh1bb 4R-
paralogous genes (located on chromosomes 29 and 19) both encode
for a 167 aa prepropeptide, including a 24 aa signal peptide, and a
C-terminal sequence encoding for a 41 aa Crh1mature peptide with
a C-terminal amidation site. The two salmon ucn1a and ucn1b 4R-
paralogous genes (located on chromosomes 6 and 15) code for 165
and 162 aa prepropeptides respectively, including a 24 aa signal
peptide, a cryptic region of 98 aa and 95 aa respectively, and a 41 aa
Ucn1 peptide with a C-terminal amidation site (Figures 5 and S3).

Comparison with salmonid cDNA sequences from previous
studies indicates that: - Atlantic salmon “crh” (DY733166) (22,
FIGURE 3 | Synteny of crh2 genomic region in actinopterygians. Crh2 gene neighborhood is compared between teleost representatives, eel, arowana, herring,
zebrafish, pike and salmon. The polypteriform actinopterygian, reedfish, was used as model of the gene arrangement prior the teleost genome duplication 3R.
Chromosomes are indicated by Chr or Ssa for salmon. Gene position are indicated under the genes. Loss of crh2 gene is indicated with a red cross. Neighboring
genes non-represented are considered as lost. Gene references are presented in Table S3. Letters a and b indicate the 3R-teleost duplicated paralogs and the
symbols a and b the 4R-salmonid duplicated paralogs. Members of gene families conserved on the vertebrate tetraparalogon (issued from 1R/2R WGD) are with the
same color in Figures 3, 4.
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51, 52), Atlantic salmon “crf1b1” (23), Atlantic salmon “crf-b1”
(53), and trout, Oncorhynchus mykiss, crh (NM_001124286) (46)
correspond to salmon crh1ba in our study; - Atlantic salmon
“crf1b2” (23), Atlantic salmon “crf-b2” (53), and trout “crh2”
(AY156929 and NM_001124627) (46, 54) correspond to
salmon crh1bb.

The aa sequences of European eel 3R-paralogs Crh1a and Crh1b
shared 65 and 90% identity for the prepropeptides and the peptides,
respectively. Eel prepro-Crh1a and prepro-Crh1b shared 38 and
42% identity with human prepro-CRH1, and 19 and 16% identity
with human prepro-UCN1. Eel Crh1a and Crh1b peptides shared
86 and 95% identity with human CRH peptide, and 49 and 44%
identity with human UCN1 peptide. When comparing eel Crh1a
and b with eel Crh2 the percentage of identity fell down to 18 and
19% for the prepropeptides and 49% for the peptides. Eel Crh2
peptide shared higher identity with other Crh2 peptides: 88% for the
tarpon, 39-67% for the other teleosts, 72-81% for the non-teleost
actinopterygians, 41-67% for the sarcopterygians, 56-60% for the
chondrichthyans. Eel prepro-Crh2 shared 15 and 11% identity with
human prepro-CRH1 and prepro-UCN1, respectively, and eel Crh2
peptide 54 and 36% identity with the human CRH1 and UCN1
peptides. Eel Ucn1 shows 50 and 21% identity with human prepro-
UCN1 and prepro-CRH1, respectively, and 60 and 56% identity for
the corresponding peptides.

Atlantic salmon 4R-Crh1aa and Crh1ab paralogs shared 86
and 89% identity between the prepropeptides and the peptides,
respectively and the 4R-Crh1ba and Crh1bb paralogs showed 93
and 100% identity between the prepropeptides and the peptides,
respectively. When Crh1aa/b and Crh1ba/b pairs of paralogs
were compared, the identity fell down to the range of 56 to 58%
between prepropeptides, and to the range of 66 to 68% between
Frontiers in Endocrinology | www.frontiersin.org 8
peptides. The salmon Crh1aa and Crh1ab prepropeptides
showed 36 and 35% identity with the human prepro-CRH1,
respectively, and the Crh1aa and Crh1ab peptides shared 77 and
82% identity with human CRH1 peptide. The salmon Crh1ba
and Crh1bb prepropeptide showed 38 and 37% identity with the
human prepro-CRH1 respectively and Crh1ba/bb peptides
showed 76% identity with human CRH1 peptide, respectively.
The percentage of identity fell down when compared with
human prepro-UCN1 (18-19%) and UCN1 peptide (40-43%).
The two salmon 4R-Ucn1 showed higher identity with human
UCN1 (21 and 22% for the prepro-UCN1 respectively, and both
64% for UCN1 peptide) than with human CRH1 (18 and 17% for
the prepropeptides, respectively, and both 56% for the peptides).

Using a sequence logo, the overall comparison of CRH1,
CRH2 and UCN1 prepropeptides sequences from various
vertebrates used in the phylogeny (Figure 1; Table S1),
revealed a high sequence conservation of CRH1, CRH2 and
UCN1 peptides and of the signal peptides. The conservation of
some parts of the cryptic regions was also observed for CRH1
prepropeptide, to lesser extent for UCN1 prepropeptide, but not
for CRH2 prepropeptide (Figure S3).
Comparison of CRH Peptides Primary and
3D Structure
In order to get some insights on potential differences in
structure-function relationships between CRH paralogous
peptides conserved in eel and in salmon, we further examined
their aa sequences and 3D structures.

Human CRH1 was predicted to adopt a variable N-terminal
loop conformation (low structure confidence) and a long a-
FIGURE 4 | Synteny of ucn1 genomic region in actinopterygians. Ucn1 gene neighborhood is compared between teleost representatives, eel, arowana, herring,
zebrafish, pike and salmon. The polypteriform actinopterygian, reedfish, was used as model of the gene arrangement prior the teleost genome duplication 3R.
Chromosomes are indicated by Chr or Ssa for salmon. Gene position are indicated under the genes. Loss of ucn1 gene is indicated with a red cross. Neighboring
genes non-represented are considered as lost. Gene references are presented in Table S3. Letters a and b indicate the 3R-teleost duplicated paralogs and the
symbols a and b the 4R-salmonid duplicated paralogs. Members of gene families conserved on the vertebrate tetraparalogon (issued from 1R/2R WGD) are with the
same color in Figures 2–3.
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helical conformation for the residues 7 to 39 (Figure 5A). We
found a similar 3D structure for eel and salmon Crh peptides. In
the eel, the a-helix was predicted for aa 8-39 for both Crh1a and
Crh1b and for aa 9-41 for Crh2. In salmon, Crh1aa and Crh1ab
have both a a-helical structure for the residues 10-42 and 9-43,
respectively, and Crh1ba/Crh1bb (which have exactly the same
sequence) have a a-helical structure for 8-39 residues. Like in
human CRH1, the N-terminal structure adopts a variable loop
conformation in eel and salmon Crh peptides (Figure 5A).

The Crh1 or Crh2 peptides in eel and salmon conserved most
of the first 7-18 residues involved in human in receptor binding
including, the hydrophobic residues (L8, L10, L14, L15, V18 and
L19) shaping hydrophobic interactions and the residues (S7, D9,
T11 and R16) involved in electrostatic interactions stabilizing the
bond peptide conformation within the peptide binding pocket
(Figure 5B) (55–57).

Tissue Distribution of crh Paralogs in the
European Eel and the Atlantic Salmon
In order to get more insight into the fate and functional evolution
of the 3R- and the 4R-crh paralogs, we compared crh paralog
tissue expression in both eel and salmon.

Tissue Distribution in the Eel
In eel, the three crh paralogs (crh1a, crh1b and crh2) were not only
expressed in the brain but also in other tissues, with differential
tissue distribution profiles (Figure 6A). All crh paralog transcripts
were found in the brain, but comparison of their mean cycle
Frontiers in Endocrinology | www.frontiersin.org 9
quantification (Cq) suggested the following range of expression:
crh1b (Cq 24.5) > crh1a (Cq 26.0) > crh2 (Cq 29.5). Crh1a gene
showed the highest expression in the muscle (Cq 23.3), followed by
gonads, heart and various other tissues including the brain; its
expression in muscle was 15.5-fold than in the brain. In contrast,
crh1b gene was mainly expressed in the brain while its transcript
was also detected at a low level in the eye and at the limit of
detection in the other tissues (Figure 6A). Crh2 gene was expressed
at a low level in the gonad (Cq 27.3), intestine and spleen, and at
lower levels or at the limit of detection in the other tissues.
Regarding the distribution of the crh paralogs in the brain
regions, the two crh1a and b paralogs showed a similar expression
profiles but with much higher levels for crh1b than crh1a as
mentioned above. For both paralogs, higher transcript levels were
found in the frontal brain including olfactory bulbs, telencephalon,
mesencephalon and diencephalon, and in medulla oblongata as
compared to lower levels in optic tectum, cerebellum epiphysis,
retina, saccus vasculosus and cerebellum (Figure 6B). In the
pituitary, crh1a was moderately expressed, while crh1b levels were
at the limit of the detection. Crh2 transcript was detected in the
different brain regions but at very low levels.

Tissue Distribution in the Salmon
In salmon, the four crh1 paralogous genes (crh1aa, crh1ab, crh1ba,
crh1bb) were expressed in the brain (Figure 7A). Comparison of
their mean Cq suggested the following range of expression in the
brain: crh1bb (Cq 25.9) > crh1ba, (Cq 28.3) > crh1aa, (Cq 29.0) >
crh1ab (Cq 29.4). The pair of 4R-crh1aa and crh1ab paralogs
A

B

FIGURE 5 | Primary and 3D structure of CRH peptides. (A) 3D structure of human CRH1 peptide, and the three CRH peptides (3R-Crh1a and b, Crh2) in European
eel and four CRH peptides (4R-Crh1aa and ab, 4R-Crh1ba/bb which have the same sequence) in Atlantic salmon. CRH peptide structures were modelled using
iTASSER. (B) Sequence alignment of human CRH1, eel 3R-Crh1a and b and Crh2, and Atlantic salmon 4R-Crh1aa, ab, and 4R-Crh1ba/bb. Residue numbering are
based on human CRH1. The region of CRH peptides interacting with the CRH receptor transmembrane domain are highlighted in light purple and the region of CRH
peptides interacting with the CRH receptor extracellular domain are highlighted in orange. Conserved hydrophobic residues involved in the receptor binding are
indicated in orange and the residues involved in electrostatic interaction with the receptor are indicated in red and bold.
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showed a similar tissue distribution profile, with highest expression
in muscle [crh1aa (Cq 23.8) and crh1ab (Cq 26.7)], followed by
heart, then skin, retina, brain and pituitary (Figure 7A). The
paralogs crh1aa and crh1ab showed respectively 13- and 3-fold
higher transcript levels in the muscle than in the brain. In contrast,
the crh1b 4R-pair of paralogs, crh1ba and crh1bb, are mainly
expressed in the brain with very low or no detectable expression
in the other tissues. The paralogs, crh1ba and crh1bb showed,
respectively 403- and 50-fold higher transcript levels in the brain
than in the muscle. When comparing the expression of 4R-pairs of
paralogs in various brain regions, some differences were observed
between the two crh1a paralogs, with the crh1ab mostly expressed
in the retina while the crh1aa expression more widely
distributed (Figure 7B).
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DISCUSSION

Overview of the Evolution of crh Family
in Vertebrates
The evolution of the CRH neuropeptide family has been
previously investigated by other authors, unveiling the
existence of five crh paralogs in vertebrates, crh (crh1), crh2,
ucn (ucn1), ucn2 and ucn3, while a single related peptide gene
would be present in invertebrate genomes, named in arthropods,
diuretic hormone 44 (DH44). The timing of the crh/ucn family
diversification has been under debate (15, 19, 58). It was first
presumed that the whole crh/ucn gene family expanded from a
chordate crh/ucn single ancestor gene, through the two
vertebrate WGD (58). However, the comparison of gene
B

A

FIGURE 6 | Tissue distribution of crh paralogs in silver female European eels as measured by qPCR. (A) crh1a, crh1b and crh2 expression in the brain (Br), pituitary
(Pit), eyes (Ey), and various peripheral organs, gills (Gi), heart (He), liver (Li), spleen (Sp), kidney (Ki), intestine (Int), fat (Fat), muscle (Mu), skin (Sk) and gonad (Go).
(B) crh1a, crh1b and crh2 expression in various brain regions: olfactory bulb (OB), telencephalon (Tel), mesencephalon (Mes), diencephalon (Di), saccus vasculosus
(SV), cerebellum (Cer), medulla oblongata (Mo), optic tectum (OT), epiphysis (Ep), pituitary (Pit) and retina (Ret). Results (means ± SEM; n=9-10) are presented as
percentage per tissue.
B

A

FIGURE 7 | Tissue distribution of crh paralogs in juvenile Atlantic salmon as measured by qPCR. (A) crh1aa, crh1ab, crh1ba and crh1bb expression in the brain
(Br), pituitary (Pit), eyes (Ey), aand various peripheral organs, gills (Gi), heart (He), liver (Li), spleen (Sp), kidney (Ki), intestine (Int), fat (Fat), muscle (Mu), skin (Sk) and
gonad (Go). (B) crh1aa, crh1ab, crh1ba and crh1bb expression in various brain regions: olfactory bulb (OB), telencephalon (Tel), mesencephalon (Mes),
diencephalon (Di), saccus vasculosus (SV), cerebellum (Cer), medulla oblongata (Mo), optic tectum (OT), epiphysis (Ep), pituitary (Pit) and retina (Ret). Results (means
± SEM; n=8-10) are presented as percentage per tissue.
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chromosome location showed that the crh/ucn family evolved in
two distinct gene environments, suggesting that the crh/ucn
family was generated by a first local duplication of a crh/ucn
ancestor gene, followed by the two successive rounds of
vertebrate WGD along with the secondary losses of some
paralogs during the rediploidization events (15, 19, 59).
Contrary to what the “crh” versus “ucn” gene names suggest,
sequence similarities, together with the location of crh1/crh2/
ucn1 and ucn2/ucn3 in two distinct gene environments, point out
a closer relationship of ucn (ucn1) with crh1 and crh2 than with
ucn2 and ucn3. After the local duplication of the common
ancestral crh/ucn gene, the two vertebrate WGD would have
given rise on the one hand to the triplet crh, crh2 and ucn1, and
on the other hand to ucn2 and ucn3 genes (15, 19, 21). Therefore,
based on their phylogenetical relationships, and according to the
nomenclature recommended for 1R/2R duplicate genes, ucn
(ucn1) could be named “crh3”.

In the present study, we further investigated the evolutionary
history of the two crh (crh1 and crh2) and their closest paralog
ucn1 throughout vertebrate radiation. Taking advantage of the
increasing number of genomes being sequenced, we investigated
additional species and key group representatives. In our
phylogenetical analysis of the prepropeptide amino acid
sequences, the three sequences present in the lamprey, a
representative of the most basal group of vertebrates
(cyclostomes), clustered at the basis of each vertebrate CRH1,
CRH2 and UCN1 clades, respectively, supporting the early origin
in vertebrates of the triplet crh1/crh2/ucn1 (19). We also further
assessed the presence of the triplet crh1, crh2 and ucn1 in the
various gnathostome lineages, in agreement with previous
studies (15, 21). Among chondrichthyans, in addition to
holocephalan (elephant shark) as previously described, we also
showed the presence of crh1, crh2 and ucn1 in representatives of
the two subclasses of elasmobranchs, selacians (catshark), and
Batoidae (thorny skate), allowing to generalize the presence of
the triplet to all chondrichthyan lineages. Various studies suggest
the conservation of CRH role as regulator of the stress axis in
chondrichthyans as in other vertebrates [for review (60)].
Regarding CRH2, although it has been first discovered in the
holocephan elephant shark, knowledge of its role and mode of
action remained to be studied.

In basal sarcopterygians, we took advantage of the recent release
of two lungfish giant genomes (61, 62) to search for crh/ucn
sequences. Thus, in addition to actinistians (coelacanth), where
the three genes have been previously reported (15, 21), we also
identified the triplet in dipnoans (lungfish). In Australian lungfish
we identified full-length crh2 and ucn1, but revealed a pseudogene
for crh1, while inWest African lungfish we were able to retrieve full-
length crh1 and ucn1 but no crh2 gene. If these findings do not result
from genome assembly artefacts, this suggests species-specific
variations in crh1 and crh2 conservation or loss among lungfish,
with possible compensation of function between crh1 and crh2.

In amphibians, crh1 and ucn1 genes, as well as the sauvagine
gene, were previously identified while crh2 gene was reported to
have been lost in this lineage (15, 21). Isolated from the skin in
the leaf frogs P. sauvagii and Pachymedusa dacnicolor, sauvagine
Frontiers in Endocrinology | www.frontiersin.org 11
is considered as a Ucn1 peptide coded by a ucn1 paralog gene
that may have recently highly diverged [for review (63); (64)].
Likely present only in the Phyllomedusinae family, we could not
identify any “sauvagine” gene in the available amphibian
genomes corresponding to other families. We retrieved only
two genes (crh1 and ucn1) in various anuran species (such as
Rana temporaria) as previously reported for Xenopus. However,
in opposite to the previous assumption of the loss of crh2 in
amphibians, we revealed the presence of a crh2 gene in
representatives of caudatan and gymnophionan (such as the
axolotl) amphibian lineages. The loss of crh2 gene would thus be
specific to the anuran lineage. In sauropsids, our study further
assessed the conservation of the three crh genes, crh1, crh2 and
ucn1 in various lineages, including birds, as recently reported
(48). In mammals, we found a crh2 gene only in monotremes and
marsupials, confirming its loss in the eutherian lineage (15, 21).
These data indicate repeated independent losses of crh2 in
tetrapods, such as in anuran amphibians and eutherian
mammals. This opens the way to new investigation on the role
and mode of action of crh2 in order to understand how its
function has evolved through the tetrapod radiation.

In actinopterygians, the crh gene triplet was previously reported
in the spotted gar (21, 22), a representative of holosteans, the sister
group of teleosts, and belonging with teleosts to the neopterygians.
Our study also showed the conservation of crh1, crh2 and ucn1
genes in another holostean species, the bowfin. We also identified
the triplet in the reedfish, a representative of the basal
actinopterygian group of, Polypteriformes. When we looked at
chondrosteans, number of copies was doubled for crh1, crh2 and
ucn1 genes in an Acipenseridae, the sterlet and in a Polyondontidae,
the paddlefish. Chondrosteans, both Acipenseridae and
Polyondotidae, are known to have experienced lineage-specific
WGD (65, 66). In our phylogeny analysis, crh2 duplicated
paralogs clustered together on one side the sterlet paralogs, and
on the other side the paddlefish paralogs (Figure S2). The crh2
pairing suggests independent gene doubling events for the crh2
paralogs in sterlet and paddlefish lineages. Similar relationships have
been recently observed for the oxytocin and vasotocin receptors (67)
and is in agreement with the independent lineage specific WGD in
the Acipenseridae and Polyondotidae (65, 67, 68). Surprisingly, crh1
and ucn1 sterlet duplicated paralogs clustered with one of the
respective paddlefish paralogs, with well supported nodes,
suggesting the duplication events that produced the crh1 and
ucn1 doubling in chondrosteans may have preceded the split
between paddlefish and acipenser lineages. Further investigation
may clarify the pattern of the impact of lineage-specific WGD on
the fate of crh1/crh2/ucn1 triplet on chondrosteans, including also
investigation of other sturgeon species which displayed additional
WGD events.

Impact of Teleost-Specific WGD and Gene
Losses on crh1 Repertoire
We investigated, by phylogeny and synteny analyses, the impact
of the teleost-specific WGD (3R) that occurred early in the
teleost lineage, and of the additional WGD (4R) that occurred
in some specific groups, as well as of gene losses, on crh1
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repertoire in various extant teleost species. We found that crh1
duplicated paralogs (crh1a and crh1b) are present in basal
teleosts, elopomorphs (eel and tarpon), osteoglossomorphs
(arowana) as well as in many clupeocephalan representatives.
Synteny analysis supported the 3R WGD origin of crh1a and
crh1b paralogs in all teleosts. After 3R, both crh1a and crh1b
paralogs have been conserved in most teleost species studied,
with a few exceptions where crh1a was missing, such as in a
tetraodontiform, the fugu, in agreement with a previous report
(22). Our observations further suggest that crh1a may have also
been lost independently in some other teleost species, such as in
some clupeiforms, with crh1a being present in some
Denticipitidae (dendicle herring) and Clupeidae (Atlantic
herring, American shad) but detected as a pseudogene in an
Engraulidae (anchovy) and missing in some other Clupeidae
(pilchard). Crh1a was also missing in a gymnotiform (electric
eel). Further studies are needed to assess if the absence crh1a in
these species is related to a loss of function or just a genome
sequencing artefact. The conservation of crh1b paralog in all
teleosts compared to the loss of the crh1a paralog in some
species, suggests that the crh1b paralog is subjected to a higher
evolutionary pressure than the crh1a duplicate across
teleost radiation.

The crh1a and crh1b paralogs were further duplicated in the
polyploid carp (Cyprinus carpio) and barbel (Sinocyclocheilus
grahami) while the other ostariophysians had only a single copy
of each paralog. The doubling pairs of paralogs of carp and
barbel showed orthologous relationships (Figure S2) suggesting
duplicated pairs arose from the specific cyprinid WGD
allotetraploidization event (CC4R) that occurred after 23 Mya
and before the split between Sinocyclocheilus and Cyprinus
lineages (9.7 Mya) (69). Our phylogenetic and syntenic
analyses indicated that the four Atlantic salmon crh1 paralogs
paired with the four of other salmonid species, were located on
ohnologous genomic regions, in agreement with the 4R-origin of
salmonid-specific crh1a and crh1b paralog doubling (22, 23). In
the present study, we named the four salmonid paralogs crh1aa,
crh1ab, crh1ba and crh1bb, respectively, in agreement with the
nomenclature for salmonid 4R duplicated genes (31).

In contrast to the conservation of 3R-duplicated crh1a and
crh1b paralogs in most teleost species, we found a single ucn1
paralog type in all teleosts investigated, in agreement with
previous reports (15, 21, 70). Synteny analysis showed that the
same ucn1 paralog was conserved in the different teleost species,
supporting an early loss after 3R of the other ucn1 paralog. Two
ucn1 paralogs were found in polyploid cyprinids, and in
salmonids. Synteny analysis further supported that the single
ucn1 gene was inherited by salmonid ancestor and duplicated by
the 4R.

Presence and Fate of crh2 in Teleosts
The absence of crh2 gene in teleosts was assumed to result from the
loss of crh2 gene in a teleost ancestor prior the 3RWGD (15, 19, 21,
22). In order to trace the evolutionary trajectory of the crh2 gene in
teleosts, we investigated a large number of species from various
teleost groups. Strikingly, our gene search and phylogenetic analysis
revealed the presence of a crh2 gene in representative species of basal
Frontiers in Endocrinology | www.frontiersin.org 12
teleost taxa, elopomorphs and osteoglossomorphs, as well as
of some basal clupeocephalan orders such as Clupeiformes,
Gonorynchiformes, Characiformes and Gymnotiformes. In
contrast, crh2 gene was missing in Siluriformes and Cypriniformes
as well as in all euteleosts investigated.

In teleost species where a crh2 was present, a single gene was
identified. The presence of only a single crh2 gathering in one
clade for teleost species in the phylogenetic analysis, may have
suggested an early loss of one of the 3R-duplicated paralogs
before the teleost radiation. Synteny analysis confirmed that crh2
gene environment has been duplicated in accordance with the 3R
WGD event. However, gene neighborhood exploration revealed
that the crh2 gene was not located on the same paralogon in
osteoglossopmorphs, as compared to elopomorphs and
clupeocephalans, and corresponded to different 3R-paralogs.
This raises the question about the timing of crh2 3R-duplicate
gene loss. According to our synteny study, both 3R-crh2 paralogs
would have been retained after the divergence of the teleosts,
with elopomorphs and clupeocephalans having conserved one
3R crh2 paralog, that we named crh2a and lost the crh2b paralog,
while osteoglossomorphs having conserved the crh2b paralog
and lost the crh2a paralog. The lack of crh2 gene in cypriniforms
and siluriforms indicates in addition to the loss of crh1b in a
clupocephalan ancestor, crh2a paralog was lost independently
twice in the ostariophysian lineage, one time before the radiation
of cypriniforms and the other time before the radiation of
siluriforms. We could not find any crh2 genes either in any
representatives of basal euteleostean taxa, including esociforms,
salmoniforms, galaxiiforms and osmeroiforms, supporting the
loss of crh2b paralog before the radiation of clupeocepalans,
followed by the loss of crh2a paralog before the radiation
of euteleosts.

The present data allow us to refute the previous assumption of
the absence of crh2 in teleosts and to infer the evolutionary scenario
of crh2 in teleosts. Crh2, present in basal actinopterygian taxa,
polypterids, chondrosteans, and holosteans, would have been
inherited by teleost ancestor and duplicated via the teleost-specific
3R WGD into crh2a and crh2b paralogs. The crh2a paralog would
have been lost in osteoglossomorphs while it would have been
conserved in elopomorphs and clupeocephalans. Conversely, crh2b
would have been conserved in osteoglossomorphs but lost
independently in elopomorphs and clupeocephalans. While crh2a
has been conserved in various basal clupeocephalan taxa
(Clupeiformes, Gonorynchiformes, Characiformes and
Gymnotiformes), it would have been lost independently in some
other basal clupeocephalan taxa (Siluriformes, Cypriniformes), as
well in the euteleostean lineage leading to the lack of any crh2 in the
majority of extant teleost species.
Conservation of Structure-Function
Relationships of CRH Peptides
The vertebrate CRH1 and CRH2 precursors have all the same
overall structure, including a signal peptide, a cryptic region with
at its C-terminus a proteolytic cleavage site and the C-terminal
region coding for the CRH peptide with a C-terminal Gly-Lys
amidation site. The different branch sizes of CRH prepropeptides
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in our inferred phylogenetic tree indicates different selective
constraints between the prepro-CRH. Together with the
sequence alignment it showed a higher variability of CRH2
than CRH1 prepropeptide sequences among vertebrates in
agreement with previous observations (15, 21). This suggests a
higher evolutionary constraint on CRH1 than CRH2, which is
also supported by the conservation of crh1 gene in all vertebrates,
while crh2 gene had been repeatedly lost in various lineages, such
as in anuran amphibians, eutherian mammals, and some teleost
taxa. The strong conservation of CRH1 has been associated to the
evolutionary pressure related to its central role as coordinator of
the corticotropic axis in all vertebrates, while the potential
physiological roles of CRH2 have still to be investigated.

When comparing the sequences of Crh1a, Crh1b and Crh2
peptides themselves, a striking sequence conservation is
observed, as for example seen in eel and salmon. In salmon,
the 4R-duplicated Crh1ba and bb peptides even have exactly the
same sequence. 3D structure prediction revealed, as for human
CRH1, the conservation of the alpha helical structure in eel and
salmon Crh peptides including eel Crh2. The action of the
neuropeptides of CRH family, including CRH1 and CRH2,
UCN1 as well as UCN2 and UCN3, is mediated by receptors
belonging to the class B of G protein-coupled receptors (GPCR)
of the secretin-like receptor superfamily [ (71, 72); for review
(73)]. Two CRH receptors, CRHR1 and CRHR2 arose from the
vertebrate WGD and have been first characterized in mammals
(71, 74–78). The recent single-particle cryoelectron microscopy
(cryo-EM) resolution of CRH1 and UCN1 complexes to the
CRH receptors revealed a conserved mode of ligand binding and
receptor activation for the CRH family peptides and their
receptors (55, 56). CRH binding to the receptor induces the
rearrangement of the receptor transmembrane domains driving
the receptor activation and the coupling with G proteins (55).
The C-terminal helical segment of CRH peptide interacts with
the receptor extracellular loops promoting recognition specificity
and the N-terminal helix segment that bind to the receptor
transmembrane domain core pocket stimulates the receptor
activation and G protein coupling (55, 57). In addition to the
helical structure conservation, Crh peptides in both salmon and
eel conserved the residues reported in human CRH as the key
residues for the receptor recognition and activation. These data
suggest that all these peptides conserved CRH biological ability
to stimulate CRH receptors. CRH role has been investigated in
teleosts using heterologous CRH1 peptides in vitro and in vivo.
In eel, bovine CRH is active and able to stimulate in vitro release
of growth hormone (GH) by pituitary cells (79). In salmon, ovine
CRH stimulates thyroid-stimulating hormone (TSH) release
(80), as well as transcription of gh and tshb subunit paralogs
(81) in vitro. Central administration of ovine or of rat/human
CRH increases locomotor activity in Chinook salmon
(Oncorhynchus tshawytscha) (82) and downstream migration
in smolt coho salmon (Oncorhynchus kisutch) (83).

While CRH1 peptide in mammals is known to exert mainly
its actions through the activation of the CRHR1 receptor for
which it shows higher affinity, little is known about CRH2
receptor preference. The functional characterization of chicken
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(Gallus gallus) CRH2 using recombinant chicken CRHR1 and
CRHR2 expressed in CHO cells revealed CRH2 is more selective
for CRHR2 than CRHR1 while CRH1 activates both receptors
with similar potency (48).

Gene coding for CRH receptors (crhr1 and crhr2) underwent
duplication during the teleost 3R WGD, but one of the 3R-crhr2
paralog would have been early lost in the teleost lineage. Some
species have conserved the two 3R-paralogs of crhr1 such as the
tilapia (Oreochromis niloticus) (77). Japanese medaka (Oryzias
latipes), belongs to the species that have conserved the pair of 3R-
crh1 paralogs, but a single paralog of Crha and Crhb (70). Both
medaka Crh1a and Crh1b peptides were reported to be able to
stimulate the two CRH receptor types (Crhr1 and Crhr2)
transiently expressed in HEK293T cells and subsequently
cAMP production with an EC50 for Crh1b peptide slightly
lower for both receptors (70). Eels have conserved 3 genes
cod ing for CRHR, two c rhr1 and a s ing le c rhr2
(LOC118216809, LOC118218028 and LOC118234689).
Atlantic salmon has two pair for both crhr1 (LOC106600876
and LOC105023366) and crhr2 (LOC106569328 and
LOC106599903), each duplicate arising likely from the
duplication of a single 3R-paralog crhr1 and crhr2 during the
salmonid tetraploidization (4R). Crhr1 and Crhr2 in chum
salmon (Oncorhynchus keta) show highly conserved amino
acid sequences with human orthologs (84). Functional study of
these receptors showed that rat/human CRH can bind and
activate both receptor type with similar potency (84). Further
functional experiments using homologous CRH peptides and
CRHR will contribute to deeper understanding of the functional
evolution of the multiple CRH-CRHR systems in fish.

Potential Major Role of crh1b Paralogs in
the Brain in Eel and Salmon
Conservation of paralogous gene after duplication is under
selective pressure likely related to either amplification of
function, functional partitioning (subfunctionalization), or
emergence of new function (neofunctionalization). The strong
conservation of CRH1 and CRH2 peptide sequences and 3D
structure as discussed above suggests that conservation of
multiple crh genes is not related to major differences in the
abilities of the peptides to bind and activate CRH receptors.
Selection may have rather targeted differential crh gene tissue
expression and regulation. In the present study we got some
insights on the potential differential functions of crh paralogous
genes by comparing their tissue expression in two key models, a
basal teleost, an elopomorph, the European eel, which has
conserved both 3R-crh1a and crh1b paralogs, as well as a single
crh2 gene, and a salmonid, the Atlantic salmon, which possesses
four crh1 paralogs resulting from 4R duplication of crh1a and
crh1b, and no crh2 gene. Furthermore, in addition to the relevance
of their phylogenetical position and crh repertoire among teleosts,
eel and salmon are also of wide interest in biology, ecology,
conservation or aquaculture. It should be noted that our study
was performed on juvenile fish and that the relative tissue
expression of crh paralogs may vary according to maturation
status and other physiological conditions, such as stress.
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All crh paralog transcripts could be detected by qPCR in the
brain, in the eel and salmon, including in the brain region
(mesencephalon/diencephalon) where hypophysiotropic
neurons are located. Early immunocytochemical studies in
mammals located CRH neurons in the paraventricular nucleus
of the hypothalamus (11). Since then, this principal center of
CRH expression, with neurons projecting to the median
eminence, has been confirmed in other tetrapods [birds: (85,
86); reptiles: (87); amphibians: (88–90). In teleosts, due to the
absence of hypophyseal portal system and the direct innervation
of the pituitary by hypophysiotropic neurons, the situation is
slightly different, with CRH neurons in the preoptic area
projecting up to the pituitary [Carassius auratus and C. carpio:
(91); white sucker C. commersoni: (92, 93); Anguilla species: (94);
Salmo, Oncorhynchus and Anguilla species, Mugil ramada and
Myoxocephalus octodecimspinosus: (95); rainbow trout: (96);
Chinook salmon: (97); tilapia Oreochromis mossambicus: (98)].

In our study, the detection in eel and salmon of the expression
of each crh paralog in the brain hypophysiotropic region,
suggests that all crh paralogs may potentially be involved in
the major role of CRH as brain regulator of the corticotropic axis.
However, comparison of Cq values indicates that crh1b paralog is
expressed at a higher levels than crh1a in the brain in the eel, and
a similar situation is observed in the salmon for the 4R-pair of
crh1b paralogs as compared to the 4R-pair of crh1a paralogs.
Furthermore, comparison of the distribution of each paralog in
the brain and various peripheral tissues showed that crh1b
paralogs (crh1b in the eel and the pair of 4R-crh1b in salmon)
are mostly expressed in the brain, while crh1a paralogs (crh1a in
eel and the pair of 4R-crh1a in salmon) are mostly expressed in
the muscle. Our results are in accordance with the distribution of
the 3R-crh1 paralogs in other teleosts (22; 70). In medaka crh1a is
more expressed in the muscle, heart and gonad than in the brain.
In the brain, crh1b is broadly expressed including in the
hypophysiotropic neurons in zebrafish, in Astatolipia burtoni
and medaka while crh1a paralogs are found in different location
through the brain including the ventral hypothalamus but not
expressed in the hypophysiotropic neurones (22; 70).

This suggests an early functional partitioning between crh1
paralogs issued from the 3R before teleost radiation, with crh1b
playing a major role in the brain and crh1a in the muscle. The
potential major role of crh1b paralog in the neuroendocrine
control of the corticotropic action, may represent the
evolutionary constraint that led to the conservation of crh1b
paralog in all extant teleost species while crh1a paralog has been
lost in some taxa/species such as in tetraodontiforms (fugu) and
some clupeiforms and gymnotiforms.

Concerning 4R-pairs of crh1a and crh1b paralogs in salmon,
their general central and peripheral tissue distribution is quite
similar within each pair, reflecting some low differentiation of
4R-issued paralogs. Some differences could still be observed
when comparing the expression of salmon 4R-paralogs
between various brain regions, as also previously reported (23).
The authors showed that crh1ba (in their article crf1b1) was the
most abundant in the post-smolt brain but that the four paralogs
may be involved in the response to various stress exposures
Frontiers in Endocrinology | www.frontiersin.org 14
(hypoxia, chasing, combination of both and confinement) (23).
Crh1ba (in their article crf-b1) was also suggested to be involved
in the activation of the pituitary interrenal axis leading to the
elevation of cortisol at smoltification (53).

Apart from the hypothalamus, a widespread distribution of
CRH peptides or transcripts in the brain has been reported in
other vertebrates [mammal: (99); bird: (100); reptile: (87);
amphibian: (89)]. In our study, the different paralogs
characterized in the European eel and the Atlantic salmon are
expressed in the various brain regions. This supports that in
addition to be the activator of neuroendocrine axes, CRH1 is
involved in the control of many other brain physiological
functions including various behaviors [for review: (10)] such as
food intake and feeding behavior [mammals: (101); teleosts: (29,
102)], sensory processing, locomotion and migration
[vertebrates: (103); teleosts: (29)].

Potential Major Autocrine/Paracrine Role
of crh1a Paralogs in Muscle and Heart in
Eel and Salmon
CRH1, originally isolated from the hypothalamus for its
neuroendocrine role on the pituitary, is also secreted locally in
various peripheral tissues, where it can exert autocrine or
paracrine effects, as its receptors are widely distributed [for
review: (10)].

Strikingly, the highest level of expression for eel crh1a and
salmon 4R-crh1a pair was observed in the skeletal muscle, as
compared to other tissues including the brain and various
peripheral tissues. A relatively high expression of crh1a was
also seen in the heart in salmon and eel. In contrast, crh1b
paralog transcripts were at low levels in the skeletal muscle in the
eel and undetectable in the salmon, and crh1b paralogs were not
detected in the heart in both species. Mirroring the potential
major role of crh1b paralog in the brain, this suggests a major
potential role of crh1a paralog in the control of muscle and heart
functions in teleosts, further supporting the functional
partitioning between 3R-crh1 paralogs.

The expression of crh1 in skeletal and cardiac muscles has
already been reported in other teleosts. In A. burtoni, crh1b
expression was detected using RT-PCR in skeletal muscle and
heart (104), but these results were not confirmed for heart and
not tested for muscle by qPCR (59). Crh1b was also detected by
qPCR in muscle and heart of Schizothorax prenanti at low and
middle levels, respectively (105), and of Schizothorax davidi at
low levels (106). In the medaka, high levels of crh1a transcripts
have been reported in muscle and heart (70). In zebrafish, both
crh1a and crh1b mRNAs were detected in the heart (107). These
data suggest possible species-specific variations in the functional
partitioning and the relative roles of crh1a and crh1b paralogs in
skeletal muscle and heart, according to teleost species.

Expression of crh1 has also been reported in the heart of
Xenopus laevis, but was absent in the muscle (108). No matter
which paralogs are involved, the expression of crh1 in the heart
in teleosts allows to raise the hypothesis that CRH1 may have a
protective role against stressors in the heart, as shown for CRH-
related peptides in mammals [for review: (109)]. In zebrafish, it
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has recently been reported that hypoxia-reperfusion exposure
increased cardiac crh1b expression, and rat/human CRH was
protective against hypoxia/reoxygenation-induced apoptosis in
vitro in this tissue (107). These data suggest a potential direct
action of CRH-like peptides on cardiac myocytes without the
involvement of nervous system. CRH in teleosts may also
modulate glucose uptake and insulin sensitivity, as urocortin 2
does in mouse skeletal muscle (110). Finally, it can be
hypothesized that CRH1 modulation of locomotor and
migratory activities in teleosts, as shown in salmon species
[Chinook salmon: (82, 111); chum salmon: (83); coho salmon:
(112)], may be mediated not only via central actions on behavior
and neuroendocrine axes, but also via direct peripheral actions
on heart and muscle function. Injection of CRH1 in
hypophysectomized rats increases locomotor activity
demonstrating that CRH1 can produce behavioral activation
independently of its effect on the corticotropic axis (113). In
salmon and eel, CRH1 effects in the brain would be mostly
ensured by crh1b paralogs while the effects on skeletal muscle
and heart by crh1a paralogs.

Potential Autocrine/Paracrine Roles of
crh1 Paralogs in Various Other Organs in
Eel and Salmon
In the eel, after muscle and heart, crh1a paralog was found to be
expressed in the gonads (ovarian tissue from prepubertal silver
eels). Low expression of crh1a 4R-paralogs could also be detected
in ovarian tissues in immature smolt salmons. In contrast, crh1b
paralog transcripts were not detectable in the gonads of both
species. Expression of crh1 has been previously reported in the
ovary or testis of some other teleosts, such as common carp
(114), A. burtoni [crh1b: (104)], fathead minnow (Pimephales
promelas) (115). A recent study in zebrafish showed that both
crha and crhb paralogs (corresponding to crh1a and crh1b) are
expressed in the ovary, with a differential regulation of their
expression according to vitellogenic stages (116). Furthermore,
the authors demonstrated an inhibitory effect of CRH1 on
estradiol production by zebrafish follicular cells in vitro. In
mammals, CRH1 immunoreactivity or expression was reported
in gonads, testis [rat: (117–119)] and ovary [rat: (120); human:
(121, 122)]. In the testis, CRH1, produced by the Leydig cells of
the testis, exerts autocrine inhibition of testosterone biosynthesis
(118, 123). Similarly, in the ovary, CRH1 inhibits steroid
biosynthesis as shown in vitro [rat and human granulosa cells:
(124); human granulosa-lutein cells: (125); human thecal cells:
(126); mouse preantral follicles: (127)]. Altogether these data
suggest a conserved direct inhibitory role of CRH1 on gonadal
steroidogenesis in vertebrates, which may participate, together
with interactions between neuroendocrine axes, in the well-
known stress-related impairment of reproduction, as observed
in many species [for review (128)]. In teleosts, this role of CRH1
on the gonads may likely be fulfilled by either one or the other
crh1 paralog according to species.

In the pituitary, we detected a low expression of 3R-paralog
crh1a in eel and of 4R-paralog crh1ab in salmon. This is in
agreement with the recent report of the expression of “crf1a2”
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(corresponding to crh1ab in our study) in the salmon pituitary (23).
In other teleosts, the expression of crh in the pituitary has been
mostly studied for crh1b, the firstly identified “classical” crh, and
absence [goldfish, Northern-blot: (129); European flounder
(Platichthys flesus), RT-PCR: (130); A. burtoni RT-PCR: (104)] or
low expression [S. prenanti, qPCR: (105); grass carp
(Ctenopharyngodon idellus), RNAseq: (131); RT-PCR: (59)] were
reported. When crh1a was studied, no expression could be detected
in the pituitary [medaka, ISH: (70); grass carp, RNAseq: (131); A.
burtoni RT-PCR: (59)]. Together with ours, these data suggest
species-specific variation in the expression of 3R-crh1a or b
paralog in the pituitary across teleost species. In other vertebrates,
the amphibian Xenopus laevis (108) and various mammals [rat:
(132); baboon: (133)], CRH expression (transcript or peptide) have
been reported in the pituitary. Altogether, this indicates that CRH
may exert a paracrine/autocrine role in the pituitary in addition to
its neuroendocrine major role, in teleosts as in other vertebrates.

In the retina, we detected the expression of crh1a in the eel while
the crh1b was at the limit of the detection. In the salmon, the 4R-
crh1ab was much more expressed than the other 4R-crh1 paralogs.
The relatively higher expression of a crh1a paralog in both eel and
salmon as compare to crh1b reflects a functional differentiation of
the 3R paralogs in these species. The low retinal expression levels of
4R-crh1aa as compared to 4R-crh1ab indicates that functional
differentiation also occurred between the 4R-crh1a paralogs. Early
immunocytochemical studies reported the presence of CRH in the
retina in teleosts [goldfish: (134)] as well as in birds [chicken: (135)],
reptiles [turtle: (136)] and mammals [rat: (137, 138)]. Among
teleosts, when retina was tested, it was shown to be a site of
expression of crh1 [crh1a in medaka: (70); crh1b in Shizothorax
species: (105, 106); crh1a and crh1b in A. burtoni: (59, 104)]. Using
ISH, 22 observed some differences in the retinal expression of crh1 a
and b paralogs between two teleosts, A. burtoni and zebrafish (22).
Crh1a expression was either absent (zebrafish) or present (A.
burtoni) in the retina, while crh1b expression was present but in
distinct cells: amacrine and ganglion cells in zebrafish; amacrine and
bipolar cells in A. burtoni. As for other organs, this suggests species-
specific variations among teleosts in the respective roles of crh1a
and b paralogs in the retina.Whatever the crh1 paralog involved, the
expression of CRH in the retina supports possible local autocrine/
paracrine actions of CRH1 in the neuromodulation of retinal
function in teleosts (22).

Potential Pleiotropic Roles of crh2 in
the Eel
This study is the first one to demonstrate the presence of crh2
gene in teleosts and thus to investigate the tissue distribution of
its expression in a teleost species. Measure of crh2 transcripts by
qPCR in the eel revealed a tissue expression profile distinct from
those of crh1a and crh1b. Crh2 expression was low and widely
distributed in central and peripheral tissues, with no striking
major site of expression. The general tissue distribution shows
that, differently from crh1a and b, the main sites of expression of
crh2 are the gonads, the intestine and the spleen. However, even
in these tissues, crh2 transcripts were at lower (gonads, spleen) or
similar (intestine) levels than those of crh1a, as suggested by Cq
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comparison, while crh1b transcripts were at the limit of
detection. CRH activation of the corticotropic axis, in response
to stress, is known to stimulate digestive tract motility as for
instance in human (139). The expression of crh2 and crh1a in the
eel intestine suggests an additional autocrine/paracrine action of
CRH in addition to its central effect. The expression of crh2 and
crh1a in the spleen in the eel also suggests a direct action of CRH
on immune function. Chronic stress is recognized to impair
immunity and notably humoral response in mammals, an effect
involving not only CRH-activated corticotropic axis but also a
direct effect of CRH on immune cells as indicated by the
expression of CRH receptors by splenic B cells (140). Crh2
expression in the digestive tract and spleen of chicken has also
been reported (48). When looking at the detailed central
distribution, crh2 expression was very low, with slightly higher
transcript levels in the retina, pituitary and cerebellum than in
the other brain parts, a distribution profile also different from
those of crh1a and b.

The low and wide expression of crh2 in the eel does not
support any major specific function for crh2, as compared to
crh1a and crh1b which in contrast may play out predominant
roles in the muscle and in the brain, respectively. To the best of
our knowledge only one other study investigated the central and
peripheral tissue distribution of crh2 in vertebrates: in the
chicken, qPCR analysis showed that crh2 is widely expressed in
various brain regions as well in multiple peripheral tissues (48),
similarly to our finding in the eel. Differently, a very limited
distribution of crh2 was observed in the spotted gar, but using
ISH on the brain, with crh2 expression restricted to a specific
nucleus of the hindbrain and in particular no expression detected
in the retina. Further studies, including representatives of other
actinopterygians as well as of other vertebrate taxa having
conserved crh2, are clearly needed to evaluate common and
divergent patterns of crh2 expression across vertebrate radiation.

The low expression and wide distribution pattern of crh2 in a
basal teleost, the eel, suggests a low specific evolutionary
constraint, paving the way to the repeated losses of crh2
through teleost radiation, such as shown in our study for
siluriforms, cypriniforms and the euteleostean lineage, leading
to the absence of crh2 in the majority of extant teleost species. A
similar situation may have occurred in tetrapods with the losses
of crh2 in anuran amphibians and eutherian mammals.
CONCLUSION

The pituitary gland and its control by brain neurohormones is a
major anatomical and functional innovation of vertebrates. Families
of neuropeptides and receptors, pre-existing in metazoans before
the emergence of vertebrates, have been diversified via the two
vertebrate WGD and recruited for the control of the pituitary (for
review: 24). This is the case for CRH, the neurohormone responsible
for the control of the vertebrate corticotropic axis, which represents
a typical case of neofunctionalization in the CRH/UCN family, as
compared to the ancestral role in non-vertebrate metazoans. The
present study further assesses the role of vertebrate crh1 paralog in
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the neuroendocrine control of the corticotropic axis, a strong
evolutionary constrain that led to its conservation in all extant
vertebrates. It highlights the subfunctionalization between the
duplicated crh1 paralogs issued from teleost-specific WGD (3R),
with crh1b assuming the neuroendocrine control of the pituitary
and being conserved in all extant teleost species, while crh1a being
mainly involved in local autocrine/paracrine functions, with a lower
selective pressure leading to species-specific variations in crh1a
expression and functions, up to the loss of crh1a paralog in some
teleost species. Concerning the more recently identified vertebrate
crh2 paralog, this study reveals some wider conservation across
vertebrates than previously assumed, with its presence in additional
vertebrate groups including elasmobranchs, dipnoans, caudatan and
gymnophionan amphibians, actinopterygian polypterids,
chondrosteans and teleosts. The low and wide tissue expression of
crh2 as observed in a basal teleost, the eel, suggests various local
autocrine/paracrine functions. Future studies should aim at
investigating the regulation of crh2 expression in relation to
development, maturation and stress challenges in teleost species,
such as the eel, that have retained this paralog. These results revisit
the repertoire of crh in teleosts and highlight functional divergences
that may have contributed to the conservation of various crh
paralogs in teleosts. This study also supports that no major
specific function of crh2 paralog would have led to low
evolutionary constraint and repeated losses of crh2 across
vertebrate radiation, such as in some amphibians, in eutherian
mammals and in various teleosts including the large group
of euteleosts.
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prepro-CRH was inferred using the PhyML algorithm with the WAG substitution
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www.phylopic.org).

Supplementary Figure 3 | Sequence logo of CRH1, CRH2 and UCN1
prepropeptides. The logo sequence was built for each CRH prepropeptides from
the sequence alignment of the phylogenetic tree (Figure 1) using CLC Main
Workbench (QIAGEN). Consensus position of different domains in the CRH
prepropeptides are underlined: the signal peptide, the cryptic region, the CRH
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