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Abstract
Aim: Predictions for the future of coral reefs are largely based on thermal exposure 
and poorly account for potential geographic variation in biological sensitivity to ther-
mal stress. Without accounting for complex sensitivity responses, simple climate ex-
posure models and associated predictions may lead to poor estimates of future coral 
survival and lead to policies that fail to identify and implement the most appropri-
ate interventions. To begin filling this gap, we evaluated a number of attributes of 
coral taxa and communities that are predicted to influence coral resistance to thermal 
stress over a large geographic range.
Location: Western Indo-Pacific and Central Indo-Pacific Ocean Realms.
Major taxa studied: Zooxanthellate Scleractinia – hard corals.
Methods: We evaluated the geographic variability of coral resistance to thermal 
stress as the ratio of thermal exposure and sensitivity in 12 countries during the 2016 
global-bleaching event. Thermal exposure was estimated by two metrics: (a) histori-
cal excess summer heat (cumulative thermal anomaly, CTA), and (b) a multivariate 
index of sea-surface temperature (SST), light, and water flow (climate exposure, CE). 
Sensitivity was estimated for 226 sites using coordinated bleaching observations and 
underwater surveys of coral communities. We then evaluated coral resistance to ther-
mal stress using 48 generalized linear mixed models (GLMMs) to compare the poten-
tial influences of geography, historical SST variation, coral cover and coral richness.
Results: Geographic faunal provinces and ecoregions were the strongest predic-
tors of coral resistance to thermal stress, with sites in the Australian, Indonesian and 
Fiji-Caroline Islands coral provinces having higher resistance to thermal stress than 
Africa-India and Japan-Vietnam provinces. Ecoregions also showed strong gradients 
in resistance with highest resistance to thermal stress in the western Pacific and Coral 
Triangle and lower resistance in the surrounding ecoregions. A more detailed evalua-
tion of Coral Triangle and non-Coral Triangle sites found higher resistance to thermal 
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1  | INTRODUC TION

The capacity of corals to adapt to climate change is among the 
Earth’s most pressing environmental challenges (Hughes et al., 
2017). Localized studies have shown that corals acclimate or adapt 
by changing protein expressions (Palumbi et al., 2014), switching of 
symbionts (Boulette et al., 2016), acclimating to variable sea-sur-
face temperature (SST) environments (Safaie et al., 2018; Sully 
et al., 2019), and after experiencing warm-SST anomalies (Guest 
et al., 2012; Hughes et al., 2019; McClanahan, 2017). However, the 
responses of scleractinian corals to thermal stress at large spatial 
scales are increasingly important for predicting the future of coral 
reefs and implementing appropriate conservation actions (Sully 
et al., 2019; Van Hooidonk et al., 2016).

Ecological responses to stress are often mediated by resilience, 
a concept that integrates the ability of ecosystems to resist and re-
cover from disturbances. With recovery windows shrinking for coral 
reefs (Hughes et al., 2018), here we focus on the ability of coral 
communities to resist large-scale thermal stress events influenced 
by climate change. Resistance is a measure of system change when 
exposed to stress, and a key component of coral reef resilience that 
determines how coral communities survive major disturbances, such 
as climate change and increasing thermal stress (McClanahan et al., 
2012). Under the increasing impacts of climate change, coral bleach-
ing, or the rapid decline of coral’s endosymbiotic microalgae, is an 
early and obvious indicator of thermal stress (Hughes et al., 2018). 
Nevertheless, bleaching can be patchy in space and time, whereby 
some corals bleach either more or less than expected given the ex-
posure to thermal stress, and this patchiness can be mediated by 
historical and current environmental conditions (McClanahan et al., 
2020; Sully et al., 2019). Ultimately, the resistance of corals to stress 
should be influenced by variation in geographic and evolutionary 
history and associated genotypic diversity, adaptation rates and 
taxonomic composition (Edmunds & Gates, 2008; Palumbi et al., 
2014). However, these patterns remain untested across large bio-
geographic scales. These tests will, however, be critical for calibrat-
ing future climate impact models that are based on the spatial and 

temporal variability of the current and projected thermal exposures 
(Couce et al., 2013; Freeman et al., 2013; McManus et al., 2019).

Here, we combine satellite SST observations with a globally co-
ordinated effort to survey corals exposed to a large-scale thermal 
stress event in 2016 in order to evaluate their resistance across a 
large geographic gradient (Figure  1a). We evaluated resistance as 
the exposure to thermal stress and the resulting sensitivity of eco-
logical communities. We define exposure as the degree, duration 
and extent of perturbations beyond background levels. Corals are 
threatened by exposure to heat and light extremes and their vari-
ability exacerbated by climate change. However, the impacts may 
be attenuated by variability in the sensitivity of coral taxa and lo-
cations (Sully et al., 2019). To evaluate coral reef exposure, we 
considered two models derived from the United States National 
Oceanic and Atmospheric Administration (NOAA) Advanced Very 
High Resolution Radiometer multivariate satellite measurements as 
proxies for a number of essential ocean variables that are used to 
estimate stress to corals (Eakin et al., 2010; Maina et al., 2008, 2011; 
Muller-Kager et al., 2018).

To evaluate sensitivity, we used coordinated field surveys to es-
timate coral bleaching and therefore the sensitivity of different coral 
taxa and community assemblages, which can be influenced by previ-
ous thermal stress or other disturbances that can alter coral assem-
blages and their sensitivity to further disturbances (Darling et al., 
2013, 2019). Sensitivity can take various forms, but here we define 
and document it as the percentage of bleached corals as a proxy for 
coral morbidity and mortality (Fitt et al., 2001; McClanahan et al., 
2001). Our objectives were to: (a) assess coral resistance to the 
2014–2016 mass bleaching event in the Indo-Pacific; and (b) evalu-
ate the influences of geography, historical SST variation, coral cover 
and coral richness on bleaching resistance.

2  | MATERIAL S AND METHODS

Resistance is a system-level metric used to estimate the balance be-
tween environmental exposure and biological sensitivity. There are 
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stress within the Coral Triangle, associated with c. 2.5 times more recent historical 
thermal anomalies and more centralized, warmer, and cool-water skew SST distribu-
tions, than in non-Coral Triangle sites. Our findings identify the importance of en-
vironmental history and geographic context in future predictions of bleaching, and 
identify some potential drivers of coral resistance to thermal stress.
Main conclusions: Simple threshold models of heat stress and coral acclimation are 
commonly used to predict the future of coral reefs. Here and elsewhere we show that 
large-scale responses of coral communities to heat stress are geographically variable 
and associated with differential environmental stresses and histories.
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F I G U R E  1   Distribution of geographic regions and coral reef resistance to the pan-tropical thermal stress event of 2014–2016. (a) 
Resistance is a metric for measuring the capacity of coral reefs to resist bleaching, estimated from exposure to environmental stress divided 
by ecological sensitivity. (b) Map of 226 Indo-Pacific coral reefs showing resistance calculated using a cumulative thermal anomaly (CTA) 
exposure model and (c) using a multivariate climate exposure (CE) model. Coloured dots show resistance; background shading represents 
chronic heat stress, evaluated as cumulative degree-heating months (DHM) between 1982 and 2016 estimated from satellite data. Spatial 
groups are overlain as polygons differentiated by colour, numbers represent spatial subgroups. Ecoregions (blue) – 1: East African Coral 
Coast, 2: Northern Madagascar, 3: Mascarene Islands, 4: Maldives, 5: Andaman and Nicobar Islands, 6: Western Sumatra, 7: Sunda shelf/Java 
sea, 8: Sulawesi sea/Makassar strait, 9: Lesser Sunda, 10: South Kuroshio, 11: Solomon archipelago and 12: Fiji islands. Coral Triangle (red) 
– 13. Coral faunal provinces (dark green) – 14: Africa-India, 15: Andaman Nicobar islands, 16: Japan-Vietnam, 17: Indonesian, 18: Australian 
and 19: Fiji-Caroline islands

(a)

(b)

(c)
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a number of potential variables affecting resistance and, therefore, 
a number of ways to calculate resistance. Here, for example, higher 
resistance can indicate sites with high thermal exposure and low re-
sulting sensitivity, while lower resistance can identify sites with low 
thermal exposure yet high sensitivity. Exposure and sensitivity can 
be measured by single or multiple variables, having different units, 
and often require being weighted, standardized or normalized for 
appropriate comparisons. Moreover, resistance can be calculated as 
either the difference or ratio between exposure and sensitivity. We 
evaluated a series of possibilities to assess resistance based on this 
framing, which we describe below for our study of 226 coral reef 
sites from East Africa to the South Pacific (detailed in McClanahan 
et al., 2019). Overall, we evaluate coral resistance across six coral 
faunal provinces (Keith et al., 2013) and 12 marine ecoregions 
(Spalding et al., 2007).

2.1 | Exposure

We considered two exposure models: (a) a single metric of tempera-
ture stress that measures the cumulative incremental sum of SSTs 
above local summer SSTs (cumulative thermal anomaly, CTA), and (b) 
a multivariate metric of climate exposure (climate exposure, CE) that 
combines heat, light, and water flow variables weighted by each vari-
able’s strength of association with field observations of coral bleach-
ing (Maina et al., 2008, 2011).

The CTA model is based on the concept of cumulative de-
gree-heating weeks or months, or the amount of excess tempera-
tures above a summer baseline, and is the most commonly used 
metric to assess the probability of coral bleaching and the future 
state of coral reefs (Donner & Carilli, 2019; Eakin et al., 2010; Van 
Hooidonk et al., 2013). To estimate CTAs, we extracted daily SST 
time series for each site from the 5-km NOAA Coral Reef Watch 
version 3.1 products between 1985 and 2015, available from the 
NOAA website (https://coral​reefw​atch.noaa.gov/produ​ct/5km/). 
Daily temperature measurements were used to calculate monthly 
hotspots, defined as positive SST anomalies referenced to the max-
imum of the monthly mean (MMM) SST climatology (Strong et al., 
2004). We then calculated the degree-heating months (DHM) as the 
sum of hotspots with monthly means ≥ 0 °C. To derive the cumula-
tive DHM product for each site, we summed cells with DHM ≥ 0 °C 
for each year over the 1985–2015 time series. We did not include 
the 2016 SST satellite measurements in this metric of historical ther-
mal stress to maintain statistical independence with the sensitivity 
metric, which was derived from surveys completed in 2016. CTAs 
between 1985–2015 ranged from 7.8 to 48.0 DHM across the 226 
reef sites included in this study.

The CE values were extracted from an existing multivariate model 
published in Maina et al. (2008, 2011), which used variables of histori-
cal SST (mean, variability, maximum, minimum), ocean current velocity 
in zonal and meridional direction, wind velocity (number of doldrum 
days and wind speed magnitude), and average satellite derived UV and 
photosynthetic active radiation measurements. Based on Maina et al. 

(2008, 2011), climate exposure is weighted based on past bleaching 
observations to produce values ranging between 0 (least exposure) 
and 1 (highest exposure). Overall, this multivariate metric of coral 
exposure has a strong relationship to previous compilations of coral 
bleaching data (Maina et al., 2008; McClanahan et al., 2015).

The distributions of CTA and CE values for the 226 sites indi-
cated that the CTA values were lower (< .50 normalized values) and 
had a right skew (i.e., less frequent high-stress values) compared 
to CE values that were higher (>  .50 normalized values) and had 
a left skew (i.e., less frequent low values) (Supporting Information 
Figure S1). This suggests these models capture different character-
istics of thermal stress and are useful in estimating different aspects 
of exposure.

2.2 | Sensitivity

Coral sensitivity to thermal stress was based on coordinated field 
surveys of coral bleaching during the 2016 El Niño-Southern 
Oscillation (ENSO). Surveys were conducted within 3 weeks of peak 
SSTs when bleaching was greatest (McClanahan et al., 2020). We 
surveyed 226 sites in 12 countries during summer months between 
March and September 2016. We used a roving observer method-
ology where an observer evaluated the frequency and severity of 
bleaching for every coral colony in a series of haphazardly replicated 
quadrats (c. 1.5 m2 × c. 15 replicates, across an area of c. 1,000 m2, 
and an 18-m depth range). Within each quadrat, we identified hard 
coral colonies >  5  cm to the genus using the taxonomy of Veron 
(2000), and scored each colony on a seven-point scale for bleach-
ing severity (McClanahan et al., 2007). We recorded the site’s depth, 
habitat type and management. Further, we estimated hard coral 
cover in each quadrat to the nearest 5% and summarized number 
of observed colonies, coral taxa richness and relative abundance for 
each site. The full details of the sites are presented in a companion 
paper where 26 environmental variables associated with bleach-
ing in 2016 were evaluated (McClanahan et al., 2019; Supporting 
Information Table S1).

2.3 | Data analyses

2.3.1 | Sensitivity estimates

Sensitivity was estimated in two ways, using both an unweighted 
and a weighted seven-point ordinal bleaching intensity model that 
accounted for the intensity of the bleaching. Three sites were miss-
ing one or more of the variables leading to slightly reduced sample 
sizes in some analyses. The unweighted bleaching sensitivity method 
calculated the percentage of coral colonies that were pale to fully 
bleached as the percentage of all corals sampled.

(1)Percentage bleached =
(c1+c2+c3+c4+c5)

(c0+c1+c2+c3+c4+c5)
× 100%

https://coralreefwatch.noaa.gov/product/5km/
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where c0 = number of unbleached coral colonies, c1 = number of pale, 
c2 = number of 0–20%, c3 = number of 21–50%, c4 = number of 51–
80%, c5 = number of 81–100%. The weighted method scales each of 
these bleaching categories, as described in McClanahan et al. (2007). 
The two bleaching sensitivity estimates were highly correlated (r = .92, 
p < .0001). Nevertheless, comparison between the percent bleaching 
versus the weighted bleaching index against the independent predic-
tor variables indicated lower corrected Akaike information criterion 
(AICc) values for the percentage [AICc = 125.7 ± 97.1 (± SD), n = 28 
comparisons] than the weighted bleaching index (AICc = 141.1 ± 78.1, 
n = 28). Thus, only the percentage bleached corals (unweighted) were 
used in subsequent evaluations.

Bleaching susceptibility is a related metric used to estimate the 
sensitivity of the community to bleaching, where the relative abun-
dance of each taxon was multiplied by the mean weighted bleach-
ing intensity (BI) for that taxon based on historical observations and 
summed.

where i is one taxon, D is the relative abundance of this taxon and N is 
the total number of taxa. Here, we used the 2016 bleaching intensity 
observations for each taxon. Bleaching susceptibility provides a single 
number for each site, where higher values indicate a coral assemblage 
with a higher susceptibility to bleaching and lower values indicate a 
coral assemblage that is less susceptible to bleaching.

2.3.2 | Selecting the resistance estimate

Before calculating a resistance metric, the timing of the exposure, 
based on satellite temperature observations, and ecological sensitiv-
ity, based on the percentage of bleached corals, were evaluated for 
the strength of their relationships with predictor variables. First, we 
extracted daily 5-km SST time series for 90 days prior to field survey 
at each site and calculated the date of maximum observed DHMs. 
We found that all of the final 226 selected sites were sampled within 
21 days after peak SSTs. Thereafter, we evaluated the unweighted 
percent bleaching metric for its distribution, outliers, and associa-
tions with seven predictor variables based on AICc values. We found 
that 10 sites in Ningaloo reefs were outliers as per the multivariate 
Mahalanobis distance method that calculates the distance from a 
point to the normalized distribution of a principal component axis. 
Exploration of these outliers suggests local oceanographic effects at 
Ningaloo were overriding the broader-scale satellite measurements 
(Woo et al., 2006; Xu et al., 2016). Some sampling error is expected 
in these analyses due to the mismatch in spatial coverage between 
the satellite and field surveys – field survey locations were con-
tained within the spatial dimensions of the satellite measurements 
but covered less area. Nevertheless, all sites were retained in all 
analyses as they represented some natural and sampling variability 
that is expected for the locations and models we explored.

2.3.3 | Resistance estimates

To evaluate coral resistance to thermal stress, we first normalized 
the exposure of the two metrics and the metric of ecological sensi-
tivity selection for all sites between 0 and + 1, added + 1 to all val-
ues and then divided exposure by sensitivity. These transformations 
eliminated zeros and negative numbers and produced resistance 
values between 0.5 and 1.75 (Supporting Information Figure  S1). 
Prior to calculating resistance, we evaluated statistical attributes 
of the single variables, interacting variables, and the exposure-
sensitivity ratio versus subtraction methods to calculate resistance. 
Comparing the subtraction and the ratio method for estimating re-
sistance found the ratios produced considerably lower AICc values 
(AICc = 62.8 ± 56.6, n = 28) than subtraction (AICc = 204.1 ± 46.1, 
n = 28) and the ratio was therefore used in subsequent evaluations. 
Distributions of the chosen exposure, sensitivity, and the two met-
rics of resistance showed good spread and continuous distributions 
with weak centralization that should increase the probabilities of de-
tecting patterns (Supporting Information Figure S1).

2.3.4 | Spatial structure and comparisons

We were interested in knowing if resistance varied by biogeographic 
locations based on environmental forces, the attributes of the coral 
taxa and communities, and the historical conditions that influenced 
the taxa in their locations. Therefore, we estimated resistance as 
exposure divided by sensitivity (% bleached corals) and tested the 
hypothesis that resistance differed locally and geographically. All 
sites were allocated to one of the six studied coral faunal provinces 
(Keith et al., 2013) and 12 ecoregions (Spalding et al., 2007) based 
on position within the geographic polygons. An ecoregion is defined 
as a modern association of similar taxa, and faunal provinces have 
similar geological and evolutionary histories (Spalding et al., 2007). 
These two groupings were used as random effects within the statis-
tical modelling approach to help account for existing biogeographic 
and latitudinal patterns in coral reef productivity and diversity. We 
made one change to the existing classifications by including the 
Lakshadweep Islands of India in the Africa-India coral province due to 
their close proximity (205 ± 63 km) to other sites in this same region. 
Additionally, due to concerns about the threats of climate change 
to global marine biodiversity (McManus et al., 2019), we specifically 
evaluated whether the sampled sites in coral fauna provinces, Coral 
Triangle and non-Coral Triangle, and in ecoregions differed in resist-
ance. To classify sites as Coral Triangle versus non-Coral Triangle, we 
used identified sites within the Eastern and Western Coral Triangle 
provinces identified by Spalding et al. (2007).

We tested for differences within these three spatial groupings 
(ecoregion, faunal province, and Coral Triangle versus non-Coral 
Triangle) using the Kruskal–Wallis test and Dunn’s test for multiple 
comparisons where p-values were adjusted by both the Bonferroni 
and Benjamin-Hochberg’s methods, as it was not possible to distin-
guish the efficacy of these two evaluation methods for our data and 

(2)Bleaching susceptibility =

N
∑

i=1

BIi×Di

N
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hypotheses. More detailed comparisons of sites in the Coral Triangle 
(n = 27) and non-Coral Triangle (n = 199) included tests for differ-
ences in resistance, thermal environments, coral communities, and 
bleaching by major taxon. Most data failed to pass tests of normal-
ity [using Kolmogorov–Smirnov–Lilliefors (KSL) tests] and therefore 
nonparametric Wilcoxon tests were undertaken for comparisons of 
all variables. Temperature data were pooled to visualize their distri-
butions in the two regions. To test for differences in coral commu-
nities that might confound spatial comparisons, we described them 
using multivariate community correspondence analysis (CCA) using 
the vegan package in R (Oksanen et al., 2020; R Core Team, 2019). 
Thereafter, the first and second axis CCA values for each site were 
extracted and tested for differences between the two geographies.

2.3.5 | Model building, variables and 
selection procedures

Previous studies have suggested that background SST distribution 
metrics, such as the standard deviation, skewness (a measure of 
the thickness of the tails of the SST data distributions), and kurto-
sis (a measure of shape and spread of data distributions) can influ-
ence bleaching and mortality by influencing coral acclimation and 
adaptation mechanisms (Ainsworth et al., 2016; Ateweberhan & 
McClanahan, 2010; Grottoli et al., 2014; Langlais et al., 2017; Safaie 
et al., 2018). Many of these temperature distribution metrics can 
covary to inflate covariance in multivariate models. However, visu-
alization of the scatterplot matrix of the independent variables indi-
cated that mean SST and kurtosis were the only strongly correlated 
variables (r = .83) while all other variables’ correlations were weaker 
(r < .56.) Therefore, we specified the model below to not simultane-
ously include kurtosis and mean SST. Variance inflation factor (VIF) 
scores, another indicator of multicollinearity, were < 3, which indi-
cates that collinearity was not a serious concern.

We fit generalized linear mixed models (GLMMs) with different 
random structures to account for the spatial structure of the sam-
pling sites. After comparing diagnostic tests, we chose a random 
factor of a spatial exponential covariance structure that uses the 
latitude-longitude coordinates of each site. This models the correla-
tion of observations using spatial coordinates to estimate distance 
between sites using an exponential function (Dormann et al., 2007; 
Nishida & Chen, 2004). We used the R package glmmTMB (R Core 
Team, 2019) and the function ‘numFactor’ to add coordinate infor-
mation to the observational-level random effect (Equation 3; Lewy & 
Kristensen, 2009). Models were fit with a gamma family distribution 
and a log link error structure in the glmmTMB package in R (Brooks 
et al., 2017; R Core Team, 2019); we considered this error structure 
to account for the non-negative distribution of our calculated resis-
tance metrics. The gamma-log link error structure (AICc = −264) im-
proved model AICc by c. 20 points as compared to the Gaussian log 
link error structure (AICc = −245), thus it was retained in subsequent 
models. Thereafter, we used a multi-model inference framework and 
fit the GLMMs with the resistance ratio calculated from each of the 

two exposure models (CTA versus CE) against the six predictor vari-
ables for each spatial group with the following equation.

3. Generalized linear mixed 
model equation

Formula

z = Xβ + u(x,y) + ε; where: 
Z = N × 1 column vector; 
Xβ = X is a N × p matrix of 
the p predictor variables; β 
is a p × 1 column vector of 
the fixed-effects regression 
coefficients; u = observational-
level grouping; x = Longitude; 
y = Latitude; ε = N × 1 column 
vector of the residuals

Resistance ~ Intercept + 
Ecoregion + Faunal 
Province + Coral 
Triangle versus non-
Coral Triangle + Hard 
Coral Cover + Number 
of Genera + Skewness + 
Kurtosis or SST + Spatial 
exponential covariance 
structure (random factor)

Models were constructed and implemented using a custom 
function that generates all possible combinations of the fixed ef-
fects and then tests each combination for multicollinearity using 
VIFs using the usdm package in R (Naimi et al., 2014; R Core Team, 
2019). Model combinations that passed a multicollinearity threshold 
(VIF < 1.5) were then passed on for model construction and fitting, 
and ultimately evaluation and AICc ranking using the model.sel func-
tion in the MuMIn package (Barton, 2020). This generated 48 model 
options for each resistance and spatial group combination. We eval-
uated all possible mechanistically sound models to minimize subjec-
tivity that may arise when selecting significant variables but not the 
most parsimonious models (Burnham & Anderson, 1998). All R code 
is provided at the link in the Data accessibility section.

We present all the results of the top set of models where delta 
AICc values were < 2. To ensure the Akaike weights of the top mod-
els were not confounded by uninformative variables (Arnold, 2010), 
we excluded duplicate models and recalculated their weights. To 
compare among predictor variables using coefficients and associ-
ated confidence intervals, we performed conditional model averag-
ing of the top models (Supporting Information Table S1).

3  | RESULTS

3.1 | Provincial and ecoregional patterns

We found that resistance varied considerably across our study 
sites (Figure  1b,c). Statistical comparisons indicated a number 
of differences between provinces and ecoregions, which de-
pended on the metric of resistance and multiple-comparison cor-
rections (Figure  2; Supporting Information Table  S2). Resistance, 
based on the CE metric, indicated two to four significant groups 
of shared resistance depending on the method used to adjust p-
values. Regardless of specific statistical differences, there was a 
gradient of most to least resistance in the order of the Australian, 
Fiji-Caroline Islands, Indonesian, Andaman Nicobar Islands, Africa-
India, and Japan-Vietnam coral provinces (Figure  2a). Resistance, 
based on the CTA metric, was similar but showed fewer differences 
between the Andaman Nicobar Islands, Africa-India, and Japan-
Vietnam provinces (Figure 2b). The 12 ecoregions showed similar 
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gradients where CE distinguished ecoregions more than the CTA 
metric (Figure  2c,d). The order of resistance was also more vari-
able between the two metrics but generally the Indian Ocean and 
Japanese ecoregions had lower resistance than the Pacific and 
Indo-Pacific ecoregions.

3.2 | Resistance models

Geography, as represented by the three regional classifications, 
played a significant role in affecting resistance in the top models (< 2 
AICc), with ecoregion performing better than coral provinces and 

F I G U R E  2   Box plots of the variation in the sites’ coral resistance metrics based on (a, b) coral faunal provinces and (c, d) marine 
ecoregions for the two metrics of resistance. Box plot symbols – thick bars: medians; boxes: interquartile range; whiskers: minimum and 
maximum values < 1.5 the interquartile range. Statistical differences and multiple comparisons are presented in Supporting Information 
Table S2. CE = climate exposure; CTA = cumulative thermal anomaly.

(a)

(c) (d)

(b)
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Coral Triangle/non-Coral Triangle, but it also interacted with SST 
variables depending on the resistance metric (Table 1).

3.2.1 | Coral exposure resistance

When evaluating coral provinces, the top CE resistance models in-
cluded the site’s mean, skewness, and kurtosis of SSTs along with 
the geographic position. Model averaged coefficients for resistance 
based on CE suggested that ecoregion spatial group explained CE 
based resistance better than coral provinces (Supporting Information 
Table S1). In this set of models, resistance to thermal stress increased 
with increasing temperature and kurtosis but decreased with in-
creasing skewness. When evaluating ecoregions, CE resistance indi-
cated the high strength of the ecoregion as a single variable and also 
when kurtosis and geographic location were included, which then 
had a high conditional R2 of .94. When evaluating the Coral Triangle 
with non-Coral Triangle sites, CE resistance indicated the strength of 
the SST’s mean, skewness, kurtosis, as well as the geographic posi-
tion of the sites in the top three models. The Coral Triangle region 
was included in the fourth ranked model and all models were statisti-
cally significant and had a high conditional R2 of .88.

3.2.2 | Cumulative thermal anomaly resistance

When evaluating coral provinces, the top CTA resistance models in-
cluded the province, mean and skewness of SST distributions and 
geographic position, which were all strongly significant and had a 
high conditional R2 of .93. SST-skewness and province were the two 
variables that were statistically significant as single variables and 
ranked 17th and 21st among all models. When evaluating ecore-
gions, resistance by the CTA methods found high model strength 
for the variables of ecoregion, SST-kurtosis, SST-skewness, and geo-
graphic position, with ecoregion being the strongest single variable 
and ranked 12th. Evaluation of the Coral Triangle versus non-Coral 
Triangle sites by the CTA resistance metric indicated a high condi-
tional R2 of .92 for the variables of region, SST-skewness, and geo-
graphic position.

3.3 | Comparison of Coral Triangle versus non-Coral 
Triangle sites

The more detailed comparisons of the Coral Triangle and non-Coral 
Triangle sites illuminated some associations in the distinct patterns 
of SST, coral communities, and resistance (Table  2). Pooling and 
evaluating the SST time series indicated considerable differences 
between regions in the distributions of temperature (Figure 3a). The 
higher CTA in the Coral Triangle was one of the most pronounced 
difference with 2.5 times more 1985–2015 CTAs than non-Coral 
Triangle sites. Moreover, Coral Triangle sites had warmer SSTs, more 
bell-shaped distributions (neutral kurtosis), and more frequent rare 

cold water (negative skewness) compared to non-Coral Triangle sites 
(Figure  4). In fact, distinct differences in the SST-skewness kurto-
sis associations were some of the main distinctions between these 
localities. Coral Triangle sites had only neutral to high SST-kurtosis 
and, as kurtosis increased, skewness declined and was negative. 
SST-kurtosis was highly variable in non-Coral Triangle sites but rare 
warm-water was more frequent when temperature distributions 
were centralized.

Differences in the resistance of corals to thermal stress between 
Coral Triangle and non-Coral Triangle sites cannot be attributable to 
differences in the coral communities but, rather, to taxon sensitiv-
ity. While there were more taxa in the Coral Triangle, we found that 
coral cover, the relative generic composition and the community’s 
generic susceptibility to bleaching metrics did not differ between 
localities (Table  2 and Figure  5). What did consistently differ was 
the percentage of bleached corals and the percentage of the domi-
nant genera that were bleached in 2016. All metrics showed higher 
bleaching outside the Coral Triangle despite the lower mean SSTs.

4  | DISCUSSION

Mean SSTs, rates of temperature rise, and CTAs are the key met-
rics used to model current and future impacts of thermal stress and 
refuge from climate change (Beyer et al., 2018; Hoegh-Guldberg, 
1999; Van Hooidonk et al., 2013, 2016). Use of these and related 
thermal metrics produce dire predictions for corals, especially in 
warm equatorial regions (Couce et al., 2013; McManus et al., 2019). 
Yet, these models largely fail to account for taxa, regional, or other 
large-scale differences in coral resistance to thermal stress. We see 
here that there are large regional differences in responses of corals 
to thermal exposure. Spatial differences in the rates of acclimation/
adaptation to thermal stress at the coral taxa and community levels 
are unknown but are also expected to change with the location and 
histories of stress and adaptation (2020). This spatial variability in re-
sistance was found in both metrics of resistance and all evaluations 
of provincial or regional biogeographic structure. Community com-
positions were not different between Coral Triangle and non-Coral 
Triangle sites, therefore differences in the measured resistance were 
likely due to taxa having different sensitivity to exposure and not 
attributable to community structure (Figure 5). Thus, resistance ap-
pears to have a strong component of regionalism that is not clearly 
related to differences in coral community composition but more 
likely related to variable sensitivity responses to environmental con-
ditions of SST distributions and possibly other stress variables.

Coral provinces, marine ecoregions, and the marine biodiversity 
centre or Coral Triangle were all metrics of regionalism that were 
statistically strong and frequently picked in the top CE and CTA 
models. Definitively distinguishing between regional classifications 
in terms of their AIC model strengths would be premature as our 
ad-hoc sampling design was not random or balanced, and the areas 
and habitats covered varied between regions. The models were 
strongest when SST distribution, coral metrics and regions were all 
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included in the model, which indicates the importance of the inter-
action between the region’s corals and the recent environmental 
conditions. Nevertheless, our findings show the importance of a 
site’s location in geographic regions that are currently distinguished 
by biogeographers.

Provinces and ecoregions differed in their levels of resistance. 
The comparison of the Coral Triangle and non-Coral Triangle shows 
how unique temperature environments can harbour similar taxa of 
corals but with differential resistance to exposure. Historically, the 
Coral Triangle has been influenced by oceanographic processes, 
such as ENSO and the Pacific Decadal Oscillation (PDO). The 
strengths and interaction of ENSO with the PDO have long fluctu-
ated to create geographic differences in thermal stress and ocean 
productivity across the Pacific (Cobb et al., 2003; Houk et al., 2020). 
Consequently, we hypothesize that tropical oceanographic variation 
and inter-annual warm thermal anomalies in the western Pacific may 
be primary drivers of coral resistance along the east–west equato-
rial gradient from East Africa to Fiji. Moreover, resistance of corals 

to thermal stress is higher but unequally distributed towards the 
equator (Sully et al., 2019). This indicates that exposure to ther-
mal radiation alone is insufficient to explain the regional variability. 
Latitudinal variation in resistance may explain the overall higher 
bleaching reported in mid-tropical latitudes (15–20°) despite equal 
or higher CTA near the equator (Sully et al., 2019). Some variation 
in bleaching was attributable to average background SST variation 
but we found that the interactions and variation in the SST shape 
parameters of kurtosis and skewness was more likely to distinguish 
sites along this equatorial belt.

The evaluated Coral Triangle sites differed from non-Coral 
Triangle sites in having more cool and evenly-spread variance in 
temperature distributions, which were associated with increased 
resistance to thermal stress. The causes of these temperature distri-
bution patterns require more investigation but the island nature of 
the Coral Triangle is expected to create localized variability in water 
clarity, ocean currents, and up- and downwelling (Gove et al., 2016; 
Peñaflor et al., 2009). Archipelagos may also create higher stability 

Variable
Coral Triangle 
mean (SD)

Non-Coral Triangle 
mean (SD) Z

Prob > 
|Z|

Resistance variables

Resistance, CTA 1.38 (0.23) 0.83 (0.22) 7.5 < .0001

Resistance, CE 1.42 (0.27) 1.03 (0.26) 5.7 < .0001

Temperature variables

Mean sea-surface 
temperature

28.93 (0.44) 27.57 (1.16) 6.3 < .0001

Kurtosis 0.05 (0.31) −0.70 (0.49) 6.3 < .0001

Skewness −0.48 (0.19) 0.03 (0.27) −7.3 < .0001

Cumulative DHM 43.10 (4.30) 18.80 (7.40) 8.3 < .0001

Coral community variables

Hard coral cover, % 43.65 (21.59) 43.75 (21.64) 0.2 NS

Number of coral taxa 21.26 (5.78) 18.18 (7.16) 2.5 .01

Community axis 1 −0.11 (0.78) 0.02 (0.76) −1.0 NS

Community axis 2 −0.17 (0.39) 0.02 (0.74) −0.4 NS

Community bleaching 
susceptibility, %

27.34 (2.69) 27.98 (2.43) −1.4 NS

Coral bleaching

Bleached colonies, % 39.78 (25.11) 59.71 (28.60) −3.4 .0007

Acropora, % 43.33 (30.03) 60.86 (34.36) −2.7 .008

Montipora, % 32.85 (24.31) 59.98 (40.17) −2.8 .005

Pocillopora, % 59.32 (35.88) 71.62 (36.29) −1.9 .05

Porites branching, % 19.38 (29.48) 54.12 (38.41) −3.6 .0003

Porites massive, % 26.36 (27.65) 53.84 (34.44) −3.8 .0002

Note.: DHM = degree-heating months from 1985 to 2015; CTA = cumulative thermal anomaly 
model based on sum of DHM; CE = climate exposure model based on multiple environmental 
variables. Long-term temperature metrics (mean, kurtosis and skewness) for sites within the 
Coral Triangle (n = 27) and sites outside the Coral Triangle (n = 199) compared by the Wilcoxon 
tests of significance. Metrics of the coral communities and two measures of their bleaching 
responses. Community axes 1 and 2 are the first and second community correspondence axes of 
a multivariate evaluation of coral taxa. Susceptibility weights taxa abundance by a mean bleaching 
response during the 2016 period.

TA B L E  2   Regional comparisons of 
temperature, coral community, and 
dominant taxa
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of temperatures if islands are separated by deep water channels that 
buffer or prevent the penetration of large-scale oceanographic fluc-
tuations (McClanahan 2020). Thus, islands and archipelagos provide 
some combination of stability and localized variation in radiation, 
temperatures, planktonic productivity, and coral resistance (Gove 
et al., 2016; McClanahan et al., 2005).

The statistical outlier sites found at Ningaloo reef may provide 
some insights into coral resistance. These sites were an exception to 
the differences between Coral Triangle and non-Coral Triangle sites 
and mid-latitude patterns. We speculate that the higher than ex-
pected resistance found in Ningaloo arose from some combination 
of localized upwelling, onshore geostrophic transport, and stirring 
by offshore eddies that produced lower than expected bleaching 
(Xu et al., 2016). Satellite measurements, even at 5 km2, may not 
capture these local processes well (Woo et al., 2006; S. Wilson, 
personal communication, March 2019). Similar reductions in ther-
mal stress have been observed for internal sub-surface waves that 
can cool water at depths and prevent bleaching (Wyatt et al., 2020). 

Regardless, all these sites fall within the most resistant Australian 
coral province and may share similar environmental and evolutionary 
histories. It should be appreciated that bleaching observations are 
done at a smaller scale than the satellite-based exposure estimates, 
a problem that troubles most ground-truthing studies, which can re-
sult in errors and anomalous observations that can weaken predic-
tions (McClanahan et al., 2019).

Variability in SST distributions have produced similar coral com-
munity patterns in other studies. For example, change in coral cover 
over the 1998 bleaching event was influenced by variation in the 

F I G U R E  3   Temperature distributions, exposure, and the two 
coral resistance metrics in the Coral Triangle compared to non-
Coral Triangle sites. The (a) density of temperature distributions 
of the 27 sites in and 199 sites outside the Coral Triangle based 
on monthly temperatures from 1985 to 2015. (b) Resistance as a 
function of the cumulative thermal anomaly (CTA) exposure model, 
and (c) resistance as a function of the multivariate climate exposure 
(CE) model in and outside the Coral Triangle. MMM = mean 
monthly summer maximum temperatures and CTA is based on 
the cumulative degree-heating months. DHM = degree-heating 
months.

(a)

(b)

(c)

F I G U R E  4   Scatterplots between the three sea-surface 
temperature (SST) metrics in the Coral Triangle and non-Coral 
Triangle sites. Relationships between mean SST, kurtosis, and 
skewness variables used to test the factors influencing resistance 
models based on 226 study sites

(a)

(b)

(c)
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shapes of SST distributions – more frequent rare warm-water dis-
tributions associated with higher coral mortality (Ateweberhan & 
McClanahan, 2010). Further, in a large-scale study of coral cover 
and community composition in Western Australia, SST-kurtosis and 
skewness were frequently among the top variables for predicting 
coral abundance (Zinke et al., 2018). Right-skewed SST distributions 
were associated with lower cover of all corals and those classified 
as stress-resistant. Both of these SST shape variables would be ex-
pected to influence physiological processes that promote or limit the 
potential for coral acclimation.

On the basin scale of the Indian Ocean, coral taxonomic richness 
was found to be positively influenced by mean SST and negatively 
influenced by more frequent rare warm-water SST distributions 
(Ateweberhan et al., 2018). Consequently, background SSTs have 
repeatedly been shown to influence taxon sensitivity and resis-
tance and differ most clearly in the complex relationships between 
SST-standard deviations, kurtosis and skewness (McClanahan et al., 
2020). Thus, the mean SSTs–bleaching association (Claar et al., 2018; 
Sully et al., 2019) has the potential to be modified by other back-
ground SST distribution factors and not just the standard deviation 
(Langlais et al., 2017; Safaie et al., 2018). For example, we found that 
the potentially negative effects of centralized temperature distribu-
tions may not be detrimental when temperature profiles lack fre-
quent rare warm temperatures. Thus, the interaction between these 
key temperature distribution variables in space and time may prove 
useful in exposing some of the complexities of chronic and acute 
stress and subsequent coral responses.

Coral community variables of hard coral cover and number of 
genera were frequently chosen indicators of resistance but sel-
dom among the top models. Both metrics contributed to resistance 
measures but, given that they are often correlated with mean SST 

and geography, they could be proxies rather than ecological driv-
ers of resistance. Nevertheless, there is the possibility that the di-
versity-portfolio provides some resilience to disturbances such 
as thermal stress with number of taxa being a proxy for this re-
silience mechanism (Cardinale et al., 2012; Schindler et al., 2015). 
Distinguishing cause and effect between these variables and associ-
ations with resistance is a priority area for future research that might 
be uncovered by stronger scientific experimental designs. Moreover, 
how taxon- and community-specific sensitivities have changed in 
the past few decades among these disparate localities should lend 
further insight into the differences in resistance observed here. 
Patterns seen here may actually underestimate the differences in 
resistance, given some of the recent large-scale losses of sensitive 
taxa in the East African ecoregion, for example (Darling et al., 2013, 
McClanahan et al., 2014, 2020).

Measuring future resistance of corals to thermal stress and the 
future state of reefs will depend on the effectiveness of exposure 
and sensitivity metrics to reveal tolerance and adaptation to stresses. 
Exposure will also vary over time in unique ways for each region 
(Houk et al., 2020). Climate change and increasing ocean variability 
in heating patterns mean that exposure and locally adapted sensitiv-
ity could change and potentially decouple in the future (Abram et al., 
2020; McClanahan et al., 2019, 2020). Moreover, there is the ques-
tion of how good bleaching or the loss of coral colour are at measur-
ing sensitivity to thermal stress (Buddemeier et al., 2004). Bleaching 
is potentially one of a number of possible stress or adaptive re-
sponses to heat or climate warming stress. Mortality without bleach-
ing, for example, is an infrequently examined response that could 
influence resistance estimates (McClanahan, 2004). Differential 
rates and clearly identified causes of mortality and recovery among 
taxa create challenges for large-scale evaluations of climate impacts 

F I G U R E  5   Community correspondence analysis (CCA) of the coral communities in and out of the Coral Triangle region indicate that 
communiteis were not statistically different. Summary of the statistical comparisons of the Coral and non-Coral Triangle are presented in 
Table 2
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(Darling et al., 2019; McClanahan et al., 2001). Estimating mortality 
requires inter-annual monitoring to evaluate changes that could be 
poorly tied to heat stress alone (Darling et al., 2013; Donner & Carilli, 
2019). While we acknowledge this weakness, bleaching is currently 
the most commonly used and quantifiable way to measure sensitiv-
ity to heat stress (Donner et al., 2017; Sully et al., 2019).

The difference between the two exposure models contributes 
to understanding the geography of environmental stress in the trop-
ics. The propagation of east–west inter-annual SST variability driven 
by the ENSO and Indian Ocean Dipole (IOD) are critical exposure 
forces (Abram et al., 2020; DeCarlo, 2020). Longitudinal propagation 
of thermal exposure is likely to explain the uneven distribution of 
CTAs, differences between the two exposure models, the types of 
stresses that corals experience, and the separate responses of the 
various geographic regions. For example, CTA was better at distin-
guishing the Pacific from the Indian Ocean regions than the CE met-
ric (Supporting Information Table S1). ENSO and PDO are likely to be 
the dominant oceanographic forces over historical time, controlling 
reef development in the eastern Pacific and recently increasing in 
strength in the western Pacific (Peñaflor et al., 2009; Toth et al., 
2015). Thus, CTAs are likely to be a distinguishing feature and driver 
of Pacific coral population dynamics (Houk et al., 2020).

The increasing strengths of ENSO and IOD variability are emerg-
ing oceanographic phenomena (Abram et al., 2020; Cai et al., 2019). 
Increasing ENSO strength has been associated with increases in the 
penetration of warm waters into the eastern Indian Ocean (Abram 
et al., 2008; Zinke et al., 2015). More importantly, there are broad-
scale teleconnections and occasionally strong coupling between 
these two ocean-basin oscillations (Abram et al., 2020). The IOD 
has been increasing in strength since the 1920s and, when coupled 
with ENSO, adds to heat stress (Abram et al., 2008; McClanahan, 
2017; Nakamura et al., 2009). IOD changes since 1200 CE are com-
plicated with, for example, periodicity changing from 25 to 8 years 
at the 1590 CE boundary. Moreover, between the 1800s and 1960, 
the IOD was not strong or regular compared to strong and reoccur-
ring ENSO oscillations with 2- to 7-year periodicities (Cobb et al., 
2003). At times, however, IOD is more tightly coupled with ENSO 
and promoted by ocean states with shallow thermoclines (Abram 
et al., 2020). Finally, warm IODs show clustering associated with 
shallow thermoclines, such that there may be short periods of in-
tense thermal stress punctuating longer periods of stability. Ocean 
models indicate that greenhouse warming decreases the depth of 
the thermocline and, therefore, the Indian Ocean is expected to ex-
perience stronger and more clustered warm IOD events (DiNezeo 
et al., 2020). Consequently, the more recent origins, current, and 
expected increase of these inter-annual thermal forces in the Indian 
Ocean may explain the higher sensitivity and lower resistance of cor-
als observed here. This history and associated resistance are likely to 
increase the risk of detrimental climate impacts of climate change on 
Indian Ocean more than Indo-Pacific corals.

The higher resistance of corals to thermal stress in the west-
ern Pacific and some Indo-Pacific ecoregions is associated with the 
global marine biodiversity centre. This suggests that coral resistance 

is positively associated with coral reef diversity but, as shown here, 
not with differences in community structure (Parravicini et al., 2013; 
Veron et al., 2011). The Coral Triangle has a geographically variable 
SST environment (McLeod et al., 2010; Peñaflor et al., 2009) but we 
found a similar combination of high anomalies, neutral to cold SSTs, 
and more bell-shaped SST distributions in our study sites. We sug-
gest that these SST distribution patterns provided some resistance 
to episodic strong thermal disturbances. High biodiversity in the 
Coral Triangle has arisen from a number of interacting forces that 
are likely to include environmental as well as geological complex-
ity, isolation, and changing sea level forces (Barber & Meyer, 2015). 
Nevertheless, the coverage of sampling in the Coral Triangle was 
not extensive enough to make conclusions about resistance beyond 
our study sites. Additionally, ecoregions including the Philippines, 
Borneo, Timor-Leste, Central and Northern Sulawesi, and reefs in 
Molucca, Halmahera, and Ceram Seas will need to be sampled for 
thermal sensitivity to determine coral resistance and evaluate the 
full spatial extent of the Coral Triangle resistance patterns.

Our findings support the contention that historical forces may 
be associated with a higher capacity to tolerate episodic large-scale 
global heat stress, as observed here during this pan-tropical thermal 
stress event of 2014–2016. Many models that predict the future of 
coral reefs treat CTAs, bleaching and mortality as interchangeable. 
Yet, we show here and elsewhere that sensitivity is highly variable 
and geographically contextual (McClanahan et al., 2019, 2020). 
Therefore, predictions for coral reefs should be improved by the use 
of taxa and regionally-specific coral resistance metrics rather than 
just simple exposure metrics, such as the initial and projected SSTs. 
Greater resistance to thermal stress in some provinces and regions 
may delay and attenuate the observed increases in warm-water 
stress responses (Hughes et al., 2018). Thus, our findings here indi-
cate a limited window of opportunity to better manage the impacts 
and produce less severe outcomes arising from multiple human 
stresses. Stronger experimental sampling designs and broader spa-
tial coverage of sensitivity of corals exposed to variable environ-
mental conditions will be needed to better understand regional and 
global climate change outcomes. Nevertheless, reducing heat-re-
taining gas emissions, developing sustainable fisheries, and improv-
ing watershed and pollution management remain priorities for coral 
reef persistence.
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