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Abstract

Models of the future of coral reefs are potentially sensitive to theoretical

assumptions, variable selectivity, interactions, and scales. A number of

these aspects were evaluated using boosted regression tree models of num-

bers of coral taxa trained on ~1000 field surveys and 35 spatially complete

influential environmental proxies at moderate scales (~6.25 km2).

Models explored influences of climate change, water quality, direct

human-resource extraction, and variable selection processes. We examined

the predictions for numbers of coral taxa using all variables and compared

them to models based on variables commonly used to predict climate

change and human influences (eight and nine variables). Results indicated

individual temperature variables alone had lower predictive ability

(R2 < 2%–7%) compared to human influence variables (6%–18%) but overall
climate had a higher training–testing fit (70%) than the human influence

(63%) model. The full variable model had the highest fit to the full data

(27 variables; R2 = 85%) and indicated the strongly interactive and complex

role of environmental and human influence variables when making

moderate-scale biodiversity predictions. Projecting changes using Coupled

Model Intercomparison Project (CMIP) 2050 Representative Concentration

Pathways (RCP2.6 and 8.5) water temperature predictions indicated high

local variability and fewer negative effects than predictions made by coarse

scale threshold and niche models. The persistence of coral reefs over

periods of rapid climate change is likely to be caused by smaller scale vari-

ability that is poorly simulated with coarse scale modeled predictions.
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INTRODUCTION

Understanding large-scale patterns of species distribution
and richness is challenged by our limited modeling
methods (Pilowsky et al., 2022). Most recent models
are largely based on limited, coarse scale sampling
(i.e., >100 km2), existing environmental conditions,
and widespread interpolations and extrapolations.
Therefore, the inferred patterns and distributional
maps may often reflect the incompleteness of habitat
information and sparse sampling (Kusumoto et al., 2020).
Consequently, predicted distributions may be poorly
connected to the local underlying environmental and
habitat elements that produce and maintain local diver-
sity. For example, many large-scale distributional maps
are based on presence/absence data, rarefaction, niche
modeling, and interpolative mapping (Ateweberhan &
McClanahan, 2016; Couce et al., 2023; Jenkins & Van
Houtan, 2016; Molinos et al., 2016; Selig et al., 2014). Critical
evaluations suggest that these methods can fail to estimate
local and fine-scale diversity, particularly in poorly sampled
regions (Kusumoto et al., 2020; Lee-Yaw et al., 2022;
McClanahan, Friedlander, Wickel, et al., 2024). The conse-
quence is often reliance on other indirect or proxy metrics of
biodiversity and impacts, such as spatial patterns of connec-
tivity or satellite-derived thermal stress (Beyer et al., 2018;
Crochelet et al., 2016; Maina et al., 2011, 2020).
Consequently, conservation prioritization has a history of
using anecdotal information that often fails to correspond
between studies and modelled predictions (McClanahan,
Friedlander, Wickel, et al., 2024). Given recent advances in
predictive algorithms and fine-scale data and mapping, how
can climate and predictive sciences better evaluate finer
scale distributions of current and future biodiversity?

Predicting and mapping diversity metrics using
fine-scale and globally complete environmental proxies is
an emerging approach (Pilowsky et al., 2022). Models
that use satellite and shipboard data with broad coverage
can make predictions at the scale of the collected, binned,
or mapped environmental data (i.e., <10 km2). For exam-
ple, coral cover and taxonomic diversity have been
predicted on large scales based on coral metrics and
satellite-derived environmental data relationships (Couce
et al., 2023; Kim et al., 2023; McClanahan & Azali, 2021;
Shlesinger & van Woesik, 2023). Specifically, algorithms
such as random forest and boosted regression tree (BRT)
use machine learning methods to predict biodiversity at
scales finer than past rarefaction and correlational
methods (McClanahan, Friedlander, Wickel, et al., 2024).
Comparing and competing multiple options is expected
to improveunderstanding and model predictions used to
establish biodiversity priority locations (McClanahan &
Sola, 2024).

The coral reef diversity and climate change
context

Contemporary studies of coral reefs have focused on how
increasing heat, coral bleaching, and benthic cover are
responding to climate change (Chan et al., 2023;
McClanahan & Azali, 2021; Santana et al., 2023;
Shlesinger & van Woesik, 2023; Sully et al., 2019, 2022;
Vercammen et al., 2019). Numbers of coral taxa remain
less evaluated, but coarse spatial scale models suggest
they are potentially threatened by species’ rarity and sus-
ceptibility to climate stress (Carpenter et al., 2008; Couce
et al., 2023; Kim et al., 2023; Sheppard et al., 2020).
Consequently, historical and contemporary environmen-
tal change may be among the strongest predictors of coral
diversity to climate threats (McClanahan et al., 2019,
McClanahan, Maina, et al., 2020; van Woesik et al.,
2012). Therefore, increasing the knowledge of coral
taxa-environmental relationships should improve cli-
mate change predictions.

This study presents an effort to evaluate the application
of predictive spatial models in order to improve biodiversity
predictions and climate forecasts for coral reefs in the
Western Indian Ocean (WIO). Current predictions have
largely relied on the rates of temperature rise and the fre-
quency of annual excess heat thresholds (i.e., International
Panel on Climate Change (IPCC) projections; Cornwall
et al., 2021; Hoegh-Guldberg et al., 2018). Past and
projected excess heat metrics greatly influence public com-
munications, policies, and conservation actions (Klein
et al., 2024; Lee et al., 2023). Annual excess heat was, how-
ever, largely developed to predict the summer loss of coral
symbionts (“bleaching”). Excess heat is just one of many
environmental factors that influence coral community vari-
ables, which range from gene expression to species compo-
sition changes. Moreover, aggregated coral bleaching and
cover studies are simple proxies for a more complex evalua-
tion of coral reef health and diversity.

Five advancements in environmental science have
created the potential to better understand current and
future coral reef biodiversity. These include (1)
moderate-resolution mapping of coral reefs, (2) global-scale
satellite coverage of environmental variables and proxies
of impact, (3) increased scale of field data collection and
data sharing, (4) climate model predictions at moderate
scales, and (5) statistical machine learning algorithms.
We combined these tools as described below to create a
6.25-km2 resolution predictive map of numbers of coral
taxa for the currently mapped reefs in the WIO biogeo-
graphic province. The Coupled Model Intercomparison
Project (CMIP) models’ variables were then used to predict
numbers of taxa in 2020 and 2050 under a high
Representative Concentration Pathways RCP8.5 and
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modest RCP2.6 emission scenario. The carbon emissions
have tracked RCP8.5 between 2005 and 2020 and suggest a
4–5�C temperature increase by 2100 (Schwalm et al., 2020).
At the time of this writing (2024), global temperatures had
reached the 2050 thresholds 26 years prior to predictions.
These are likely due to reduced atmospheric particles and
increased irradiance that appear to be hastening climate
warming (Hansen et al., 2023; Yuan et al., 2024).
However, there are also ongoing changes that suggest
declining nonrenewable energy usage and carbon emis-
sions (Hausfather & Peters, 2020). The consequence of
this uncertainty and changes in aerosols and
nonrenewable energy consumption since the original for-
mulation of scenarios makes it difficult to predict the
year when future heat stress will be consistently at or
above RCP predictions. For simplicity of the text, the
RCP8.5 predictions are referred to here as an extreme
and RCP2.6 as a modest emission scenario. Relationships
between changes in coral cover and numbers of taxa were
used to estimate community change for all reef cells
across the 2020–2050 RCP prediction periods.

METHODS

Study region

A coral reef satellite-based map was used to establish the dis-
tribution of coral reefs (https://data.unep-wcmc.org/
datasets/1) (Burke et al., 2011). Specifically, we used the
map of the WIO and 9 ecoregions, namely, the Northern
Monsoon Current Coast, East African Coral Coast,
Seychelles, Cargados Carajos/Tromelin Island, Mascarene
Islands, Southeast Madagascar, Western and Northern
Madagascar, Bight of Sofala/Swamp Coast, and Delagoa
(Spalding et al., 2007). Empirical coral surveys of taxonomic
diversity were available using comparable methods for
six of these ecoregions. The WIO province comprises
11 national jurisdictions that were also included in the
model (Appendix S1: Figure S1). The WIO was chosen as
a pilot location due to widespread collection of a shared
rapid-assessment method to estimate coral taxonomic
composition and diversity (McClanahan et al., 2007).
Therefore, our focus was on predicting and mapping
numbers of coral taxa at a faunal provincial level while
contextualizing the finding within IPCC-CMIP climate
change scenarios.

Modeling framework

To diversify and compare models, we selected commonly
published variables often chosen when investigating

impacts of climate change, water quality, and human
resource on coral biodiversity. We were interested in
knowing how an investigator’s selection of variables
might influence the understanding of causative relation-
ships and subsequent predictions. Comparisons of differ-
ent variable and model choices and statistical procedures
allowed us to evaluate their importance on potential
associations, causation, and predictions of numbers of
taxa. Specifically, we used a multivariate machine learn-
ing predictive modeling algorithms (BRT) to predict
and evaluate changes in coral cover and taxonomic
diversity over the 2020 and 2050 prediction period
using the CMIP sea-surface temperature projections.
This approach was provoked by a review of climate
impacts on corals, which found that common excess
heat models used to make predictions have infre-
quently implemented variable choice and selection
procedures (McClanahan, 2022). Many variables
known to influence the condition of coral communities
have therefore not been used for making predictions.
Our study examines the consequences.

Environmental data sources

Spatially complete environmental data are now available
for coral reefs at moderate scales of resolution. For exam-
ple, we were able to compile 70 environmental databases
of variables with spatially resolved layers potentially asso-
ciated with coral condition. Variables were subjected to
standard selection and ensemble model processes to eval-
uate local scale diversity of hard corals (Scleractinia and
Milleporidae) in the WIO province. We considered many
variables and followed a standard procedure of variable
selection and fits to data, while addressing concerns
about “unfairly” eliminating causative variables. We then
compared this approach to two models with the climate
or direct human impact selected variables.

Environmental data compilations using several online
sources resulted in a compilation of 70 variables derived
from satellite and shipboard measurements (Tyberghein
et al., 2012; Yeager et al., 2017) (Appendix S1: Table S1).
The compilations were a mixture of oceanographic infor-
mation, such as surface photosynthetically active radiation
(PAR), pH, calcite and dissolved oxygen concentrations, dif-
fusion attenuation, salinity, net primary productivity,
chlorophyll a variables, phytoplankton carbon, and wave
height. The units and data sources are described in more
detail in Appendix S1: Table S1. Several seawater tempera-
ture (SST) or thermal stress metrics were calculated over
the 1985–2020 satellite data period including SST mean,
median, range, standard deviation, skewness, kurtosis, rate
of rise, and cumulative degree-heating weeks (cumDHW)
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(https://coralreefwatch.noaa.gov/product/5km/index_5km_
sst.php). Several composite variables were used. These
included an integration of nine thermal variables
(i.e., temperature and light variables) combined into a
global stress model variable developed by Maina et al.
(2011). Similarly, a water quality stress metric was used
based on the composite nutrient and sediment concentra-
tion estimates developed by Andrello et al. (2022). Reef con-
nectivity calculations were used to assess larval dynamics
including measures of net flow, indegree, outdegree, and
retention for each cell in this region (Fontoura et al., 2022).
Geographic variables comprised latitude, ecoregion, nation,
and wilderness (>4 h travel time from human populations).
Human impacts were determined from variations of a
human gravity metric, where human populations onshore
or in cities were divided by the square of the distance
or travel time to the sampled cell (Maire et al., 2016).
Cells were assigned four fishery management catego-
ries including unrestricted fishing (42% of all cells),
restricted fishing (42%), low compliance closures (14%), and
high compliance closures (2%). These classifications were
based on information in published literature, the experience
of the observers, and discussions with knowledgeable
observers (McClanahan, Graham, et al., 2015).

Field data collection

Coral cover and numbers of taxa were sampled haphaz-
ardly while snorkeling or scuba diving in either visually
estimated or measured quadrats of ~2 m2 between 1998
and 2022. All corals >5 cm were identified and counted
in ~15–20 replicates (McClanahan et al., 2007). We also
recorded the depth and habitats of the sites as reef edge,
reef crest, reef flat, or reef lagoon. Thus, the values used
here were the total numbers of taxa in ~40 m2. Taxa iden-
tification was to the genus level, but Porites colonies were
distinguished further as massive, branching, or Porites
rus, and Galaxea as either Galaxea astreata or Galaxea
fascicularis. A total of 67 taxa in 1001 sites were sampled
in six of the ecoregions (Appendix S1: Figure S1).
Observers were included in the statistical analysis to
determine and account for expected variations between
observers, their specific methods, and taxonomic iden-
tification experience. Sixteen observers contributed to
the database, but most contributed few sites. There
were significant differences between observers but not
among the three observers who sampled 939 of the
1001 sites. Data collected in the same reef cell grid
within a 5-year window of time were pooled into
575 6.25 km2 cells prior to analyses. We included
observers/methods in the statistical analysis to evalu-
ate its effect on numbers of taxa, but differences were

accounted for in the final predictive model by partial
effects methods described below.

Data analyses

Variable selection

We began our investigation using variable choice proce-
dures for 70 environmental spatially complete variables
to evaluate their potential (Appendix S1: Figure S2). For
example, first we investigated collinearity between pre-
dictor variables. Variables with a Spearman rank correla-
tion coefficient ≥0.7 were either removed from the
analysis or used to build an alternative model if the vari-
ables were suspected of causative relationships (Dormann
et al., 2013). Second, we further investigated associations
using variance inflation factors (VIF) with a cutoff VIF <5.
Employing these redundancy procedures, the final number
of variables evaluated for fits to field data was reduced from
70 to 37.

We further investigated two likely models based on
variables commonly used by coral-environmental mod-
elers (McClanahan, 2022). First, a model based on eight
climate and oceanographic variables identified by many
investigators as important metrics for climate impacts.
Second, nine commonly used human resource extraction
and water pollution variables assessed human impacts
(Table 1; Appendix S1: Table S1). These two models were
compared to the full model of 37 variables that passed
the variable selection process. The comparisons allowed
us to test investigators, and disciplinary choices might
influence conclusions. Nevertheless, the final ecoregional
and national model, mapping, and forecasts used the
final selected variables that passed the above redundancy
and data-fit procedures.

BRT models

We implemented BRT models with a Poisson distribution
against numbers of taxa. We used the gbm package ver-
sion (2.1.8) in the R statistical programming language
(Greenwell et al., 2020; R Core Team, 2021). BRT has a
number of advantages for addressing complexity includ-
ing the ability of the users to fit inputs of number of trees,
a shrinkage parameter to handle an expanding model,
tree complexity that allows for variable interactions, min-
imum number of observations, and stochasticity of the
training data to propose the next tree (Breiman, 1996;
Elith et al., 2008). BRT has also been shown to make bet-
ter predictions of numbers of taxa than common rarefac-
tion methods when evaluated by fits to environmental
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TAB L E 1 Statistical results of (a) the boosted regression tree (BRT) relative contributions (in percent) to numbers of coral taxa for the

two full variables and two models selected based on climate and human influences foci; (b) R2 fits of best model to all data, and a 70%

training and 30% testing of the data (see Methods).

Variable

Full variable models
Climate

variable model
Human

variable modelModel 1 Model 2

(a) Variable importance

1. Observers 15.6 15.2 NI NI

2. Depth (m) 9.2 9.4 15.4 NI

3. Cumulative DHW (�C-weeks) 6.9 NI 14.4 NI

4. SST kurtosis 5.6 NI 11.1 NI

5. Mean wave energy (kW m−2) 5.0 4.1 NI NI

6. Dissolved oxygen (ml l−1) 4.3 2.4 NI NI

7. Country 4.0 3.6 NI 18.5

8. Salinity (PSS) 4.0 2.3 NI

9. Reef visitation value, number of tourist
visits

3.8 3.2 NI 13.5

10. Median chlorophyll a (mg m−3) 3.8 NI NI NI

11. Calcite concentration (mol m−3) 3.7 3.9 NI NI

12. Travel time to market (h) 3.4 NI NI 11.1

13. SST rate of rise (�C) 3.3 4.0 16.3 NI

14. Maximum photosynthetically active
radiation (einsteins m−2 day−1)

3.1 3.7 NI NI

15. Retention connectivity 2.7 2.8 NI NI

16. Indegree connectivity 2.4 1.8 NI NI

17. Net primary productivity
(mg C m−2 day−1)

2.2 NI NI NI

18. Habitat 2.2 2.2 NI NI

19. SST median (�C) 2.1 NI 8.2 NI

20. Travel time nearest population (h) 2.0 NI NI 7.5

21. Hard coral cover (%) 1.9 1.8 5.7 NI

22. Ecoregion 1.9 0.3 NI NI

23. Netflow connectivity 1.9 1.6 NI NI

24. Outdegree connectivity 1.9 1.5 NI NI

25. Fisheries management 1.6 1.6 NI 5.7

26. Nutrients (nitrogen, tons km−2) 1.6 NI NI 9.0

27. SST skewness NI 7.3 19.2 NI

28. Climate stress model NI 6.0 NI NI

29. Current velocity (m s−1) NI 4.6 NI NI

30. pH NI 3.6 NI NI

31. Gravity to nearest population, population/
travel time (h)2

NI 3.1 NI 13.4

32. Gravity to nearest city, population/travel
time (h)2

NI 3.0 NI 10.9

33. Diffuse attenuation coefficient (m−1) NI 2.8 NI NI

34. SST bimodality NI 2.0 9.7 NI

35. Sediments (tons km−2) NI 2.0 NI 10.4

(Continues)
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data (McClanahan, Friedlander, Chabanet, et al., 2024).
Finally, variables can be held constant via partial effect
methods to make predictions when nuisance variables
(i.e., variable sampling methods or observers) mask the
comparisons of key predictions.

We initially calibrated the model by considering up to
400 model parameter combinations and comparing the
other models by their error rates. The parameter combi-
nation that produced the smallest error rate, with >1000
trees, was used to specify the coral taxa BRTs
(i.e., nt = 5000, lr = 0.01, tc = 3, minobs = 8). We set bag
fraction to 0.5 and performed a 10-fold cross validation to
determine the optimal number of trees needed to minimize
deviance and maximize predictive performance.

Model performance was evaluated by testing the
best-fit model to the original data (full data) and by split-
ting the data into a 70% training and 30% testing set
(Kuhn & Johnson, 2013). The calculated performance
metrics included Theil’s U statistic, percent deviance
explained (analogous to R2), and Pearson correlation
coefficients. Further, we assessed the relative influence of
each predictor variable, calculated by averaging the num-
ber of times a variable was selected to split a tree, and
weighted by the squared improvements from the splits
(Friedman, 2001). Partial dependence plots were gener-
ated to characterize relationships between the responses
and each predictor variable using the pdp package (version
0.8.1) in R (Greenwell, 2017). To reduce the possibility of
removing potentially causative variables, we developed
an ensemble model based on two sets of variables and
models. Both models included all potentially strong
variables, but the second model included those elimi-
nated in the first model suspected of a potential causa-
tive association (i.e., SST mean, SD, skewness, and
kurtosis) (Table 1). This ensemble model process
reduces the chances of eliminating variables that could
be important but eliminated based on small differences
in predictive strength. Thereafter, we used the average
of the two models weighted by each model’s explained
deviance when creating the final predictive map, hold-
ing depth constant at 10 m.

Forecasting climate scenarios

The CMIP5.0 model scenarios make predictions of seawa-
ter temperature changes. Predictions include calculations
of median, kurtosis, cumDHW, rate of rise, and skewness
for each reef cell in 2020 and 2050. As described in the
results, these variables were among the top predictive
variables by our empirical field-based BRT analysis. The
cumDHW variable used for 2020 predictions was the
CMIP5.0 annual DHW sum from 1985 to 2019, whereas
for 2050, it was the DHW sum from 2020 to 2050. The
multiyear predictions should be better for predicting
coral community attributes, such as taxa, rather than
annual DHW values used to predict coral bleaching.
Moreover, the empirical predictive model is based on the
summed DHW from 1985 to the midpoint sampling of
corals for each grid cell.

Coral predictions in 2020 and 2050 included the other
BRT empirically selected variables but they were held con-
stant. Specifically, using environmental variable values
taken from the time that the corals were sampled. In other
words, the variables of waves, dissolved oxygen, calcite,
salinity, and others in 2020 and 2050 were the values
extracted for the cell grid when sampled. Therefore, predic-
tions should be seen as influenced mostly by temperature.
We present model predictions for 2020 and 2050 for both
the RCP8.5 and the RCP2.6 scenarios.

Coral cover predictions for 2020 and 2050 used simi-
lar BRT methods described by McClanahan and Azali
(2021). Specifically, these modeled cover predictions were
used for producing scatterplots of changes in coral cover
and numbers of taxa for the two CMIP scenarios at the
scale of the evaluated cells. Calculations of differences
between years (2050–2020) were normalized relative to
the 2020 values. In one calculation, we compared the
30-year change in coral cover and numbers of taxa to
itself or the same cell, whereas in a second evaluation,
we compared each cell to the WIO provincial averages in
2020. These normalized averages of numbers of taxa and
cover were referred to as local and provincial resilience.
Normalized resilience metrics (−1 to 1 scale) were

TAB L E 1 (Continued)

Variable

Full variable models
Climate

variable model
Human

variable modelModel 1 Model 2

(b) Model performance (R 2)

Full data 0.83 0.81 0.70 0.63

70% training and 30% testing 0.46 0.45 0.42 0.41

Note: See Appendix S1: Table S1 for all variables, additional details, and sources of access. Cumulative degree-heating weeks (cumDHW) is the annual sum

from 1985 to the mid-point of the cells sampling date.
Abbreviations: NI, not included in the model when the model was fit to field data; PSS, practical salinity scale; SST, sea surface temperature.
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mapped for the 7039 cells. No human influenced variables
were included in the climate-change scenarios. The data
and code used in the analyses are located at 10.5061/dryad.
3xsj3txn1 and 10.5281/zenodo.13463413, respectively.

RESULTS

Model fits to numbers of coral taxa

By the BRT procedures, the local numbers of taxa
predicted per ~40 m2 was sensitive to the observer and
depth (Table 1). Numbers of taxa peaked and leveled at
>10 m depth. Using partial effects to account for observer
and depth influences, the strongest variables were shown
to depend on the specific model. When fitted to the
empirical field data, the full Model 1 selected 26 variables
while the alternative Model 2 selected 27 variables. These
best-fit predictions had similarly high fits to the full data
(Model 1 R2 = 0.83 and Model 2 R2 = 0.81) and similarly
weaker fits to the 70/30 training and testing procedure
(R2 = 0.46 and 0.45). For the climate and human influ-
ence variable models, the climate model fit to the full
data was higher (R2 = 0.70) than the human variable
model (R2 = 0.63), but both were similar for the 70/30
training and testing procedure (R2 = 0.42 and 0.41).

The full variable Model 1 was the methodological
default and indicated that only five variables contributed
>5% in explaining the variance, underlining the impor-
tance of SST excess heat (6.9%) and kurtosis (5.6%) after
accounting for observer, depth, and wave energy. In
Model 2, replacing kurtosis with skewness resulted
in moderate predictive values for SST skewness (7.3%)
and climate stress (6.0%) while no other environmental
variables contributed >5% of the explained variance. This
arises because important SST variables of excces heat,
median, kurtosis, skewness, and bimodality are highly
correlated. Therefore differentiating their influences on
number of coral taxa is challenging.

While all models selected several similar variables,
their ranks differed based on the inclusion or exclusion
of variables. For example, the climate selected variables
frequently ranked highly were SST skewness (7.3%),
cumulative excess heat (6.9%), rate of SST rise
(3.3%–4.0%), kurtosis (5.6%), wave energy (4.1%–5.0%),
dissolved oxygen (2.4%–4.3%), salinity (2.3%–4.0%), chlo-
rophyll (3.8%), calcite (3.7%–3.9%), sunlight (PAR)
(3.1%–3.7%), net primary productivity (2.2%), and median
SST (2.1%). Some of the selected human influence vari-
ables, such as country (18.5%), gravity to population and
city (13.4% and 10.8%), reef visitation value (13.5%), travel
times to markets and population (11.1% and 7.5%), fisheries
management (5.7%), and sediments and nutrients (10.4%

and 9.0%), had higher fits than individual temperature met-
rics. Given the overall climate model had a somewhat
higher fit to the full data than the human influence model,
the inclusion of many physio-chemical environmental vari-
ables increased the predictive ability. Connectivity metrics
in all models had <3% relative influences. Larval retention
and indegree were stronger than the larval net flow and
outdegree variables.

Response relationships

The response relationships among the full model’s top
variables with numbers of coral taxa indicated several dif-
ferent relationships (Figure 1). There were saturating
relationships for depth, SST kurtosis, and the climate
stress model; more hump-shaped relationships for SST
skewness, cumDHW, and current velocity; and declining
relationships for mean wave energy, dissolved oxygen,
rate of SST rise and mean salinity. The two models’
responses largely tracked each other when variables were
shared but Model 2 had lower numbers of taxa for
dissolved oxygen and higher numbers for SST rate of rise.

The response relationships among the selected climate
change variables indicated high numbers of taxa were asso-
ciated with cool-water skewness, a centralized to mildly flat
SST distribution, moderate excess heat of 15–25 cumDHW,
moderate SST bimodality, and median SSTs of ~27–28�C
(Figure 2a,b). The relationship with SST rate of rise was
more u-shaped with the lowest numbers of taxa predicted
at ~0.015�C/year. The numbers of taxa and coral cover rela-
tionship were more sinusoidal, but high numbers of taxa
were generally predicted when coral cover exceeded 40%.

Selected human influenced variables identified country
as the strongest variable with the highest local taxa predicted
for Tanzania and offshore to Mayotte and the Comoros
Islands (Figure 2c,d). The adjacent continental countries of
South Africa, Kenya, and Mozambique had moderate num-
bers. Madagascar and Seychelles were the two islands with
the highest numbers followed by the more remote France’s
Eparses Islands, Reunion, and Mauritius. Distances from
people and cities were weaker and had various relationships
that generally suggested that number of taxa increased away
from humans but local fishery management had minor
influences. Numbers of taxa were maximized at moderate to
low numbers of tourist visits and were highest with low
levels of nutrients or nitrogen loading.

Forecasting coral changes

The CMIP model’s predicted change in mean SST for all
WIO ecoregions across the 30 years was 0.47 ± 0.54�C
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(mean ± SD) for the extreme RCP8.5 and 0.19 ± 0.55�C
for the modest RCP2.6 scenarios (Table 2). Consequently,
CMIP models predict high spatial variability in tempera-
ture rises with emissions forcing, with the greatest
increases in mean temperatures in the northern regions

of the Northern Monsoon Coast (RCP8.5 = 0.80
± 0.09�C), the Seychelles (0.88 ± 0.23�C), the southern
Bight of Sofala/Swamp coast (1.02 ± 0.11�C), and the most
at Delagoa (1.33 ± 0.19�C) or spanning the Mozambican
and South African coastlines. The central ecoregions of
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F I GURE 1 Boosted regression tree (BRT) response relationships for top selected variables for two versions of the model predicting
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Model 1 and 27 in Model 2. See Table 1 for relative importance for all selected variables. Cumulative DHW, cumulative excess heat above
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the Western and Northern Madagascar (0.33 ± 0.73�C),
East African Coral Coast (0.49 ± 0.19�C), and Southeast
Madagascar (0.36 ± 0.51�C) had more moderate

temperature increases. The lowest temperature changes
for RCP8.5 were predicted for both the off-continent
Mascarene Islands (−0.03 ± 0.10�C) and Cargados Carajos/
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F I GURE 2 (a, c) Relative importance and (b, d) responses of top variables selected for predicting the number of coral taxa and human

influences variables by the boosted regression tree (BRT) analysis. See Table 1 for relative importance of selected variables. Sediments and

nutrients derived from satellite information are a multivariate value taken from Andrello et al. (2022) that is a measure of nitrogen delivery

from a plume model. Cumulative DHW, cumulative excess heat above summer temperature threshold as degree-heating weeks; SST, sea

surface temperature.
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TAB L E 2 Results of impacts on coral cover and numbers of taxa for two climate change scenarios using Coupled Model

Intercomparison Project 5.0 (CMIP5.0) variables for Relative Concentration Pathways (a) RCP8.5 and (b) RCP2.6: predicted coral cover (in

percent) and numbers of taxa (per ~40 m2) in 2020 and 2050; the number of coral reef cells predicted to have the four combinations of gains

and losses (2050–2020) of coral cover and numbers of taxa; measures of local and provincial resilience or the normalized average of the

change in coral cover and numbers of taxa.

Country or
ecoregion

Coral cover (%) No. taxa No. cells (%)

Local
resilience

Provincial
resilience Delta SST2020 2050 2020 2050

Cover
loss/
taxa
loss

Cover
loss/
taxa
gain

Cover
gain/

taxa loss

Cover
gain/
taxa
gain

(a) CMIP5.0 RCP8.5 extreme scenario

Madagascar 34.6 24.6 16.5 15.6 1643 183 289 167 −0.14 −0.28 0.29

(11.1) (9.9) (1.9) (1.5) (72) (8) (12.7) (7.3) (0.2) (0.15) (0.79)

Tanzania 36.4 21.8 25.8 22.6 1524 0 0 0 −0.26 −0.16 0.45

(5.4) (5.9) (2.9) (2.2) (100) (0.07) (0.1) (0.15)

Mozambique 37.6 21.5 24.4 22.0 1091 80 0 9 −0.26 −0.17 0.60

(5.2) (6.9) (3.3) (2.4) (92.5) (6.8) (0.8) (0.09) (0.14) (0.14)

Seychelles 41 13.7 20.4 18.6 574 127 0 0 −0.38 −0.37 0.88

(3.9) (6.2) (1.2) (1.4) (81.9) (18.1) (0.1) (0.11) (0.23)

Kenya 18.8 17.3 21.3 20.0 145 13 197 17 −0.01 −0.28 0.78

(6.5) (3.1) (2.4) (1.6) (39) (3.5) (53) (4.6) (0.22) (0.06) (0.08)

Mauritius 32.6 37.2 16.8 17.1 23 31 125 125 0.09 −0.07 0.02

(7.8) (9.6) (2.2) (2.2) (7.6) (10.2) (41.1) (41.1) (0.13) (0.13) (0.14)

Mayotte 47.1 44.8 25.5 23.1 214 0 55 0 −0.07 0.18 0.75

(3) (4.2) (2) (1.4) (79.6) (20.4) (0.04) (0.07) (0.20)

Comoros 31.5 29.5 23.4 22.6 236 2 0 0 −0.05 −0.05 0.27

(5) (5.5) (1.7) (1.6) (99.2) (0.8) (0.02) (0.08) (0.07)

French Eparses
Islands

35.9 28 14.8 14.3 80 50 8 0 −0.12 −0.27 0.32

(6.3) (9) (1.8) (1.2) (58) (36.2) (5.8) (0.1) (0.14) (0.67)

Reunion 33.1 43.2 16.4 16.8 0 0 6 19 0.17 0.01 −0.14

(1) (1.3) (1.9) (1.9) (24) (76) (0.03) (0.04) (0.11)

South Africa 43.4 24.4 20.2 17.6 6 0 0 0 −0.29 −0.24 0.89

(2.3) (20.5) (0.7) (0.8) (100) (0.22) (0.27) (0.33)

(b) CMIP5.0 RCP2.6 scenario

Madagascar 34.6 31.4 16.5 15.7 1259 48 656 319 −0.03 −0.18 0.01

(11.1) (16) (1.9) (1.6) (55.2) (2.1) (28.7) (14) (0.28) (0.24) (0.80)

Tanzania 36.4 28.6 25.8 24.2 1345 179 0 0 −0.14 −0.02 0.18

(5.4) (5.6) (2.9) (2.7) (88.3) (11.7) (0.05) (0.1) (0.15)

Mozambique 37.6 30.7 24.4 22.6 1086 34 3 57 −0.13 −0.03 0.32

(5.2) (6.3) (3.3) (2.6) (92) (2.9) (0.3) (4.8) (0.09) (0.12) (0.35)

Seychelles 41 31.7 20.4 19.1 583 42 76 0 −0.15 −0.1 0.60

(3.9) (10.5) (1.2) (1.1) (83.2) (6) (10.8) (0.1) (0.16) (0.23)

Kenya 18.8 20.0 21.3 20.7 139 1 90 142 0.05 −0.23 0.53

(6.5) (5.5) (2.4) (1.6) (37.4) (0.3) (24.2) (38.2) (0.16) (0.1) (0.08)

Mauritius 32.6 30.8 16.8 16.9 112 83 4 105 −0.03 −0.17 −0.28

(7.8) (10) (2.2) (2.4) (36.8) (27.3) (1.3) (34.5) (0.1) (0.16) (0.15)

(Continues)
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TAB L E 2 (Continued)

Country or
ecoregion

Coral cover (%) No. taxa No. cells (%)

Local
resilience

Provincial
resilience Delta SST2020 2050 2020 2050

Cover
loss/
taxa
loss

Cover
loss/
taxa
gain

Cover
gain/

taxa loss

Cover
gain/
taxa
gain

Mayotte 47.1 56.7 25.5 24.7 17 0 212 40 0.08 0.38 0.44

(3) (9) (2) (1.8) (6.3) (78.8) (14.9) (0.09) (0.15) (0.20)

Comoros 31.5 20.7 23.4 22.3 226 12 0 0 −0.2 −0.18 −0.04

(5) (4.6) (1.7) (1.9) (95) (5) (0.03) (0.08) (0.07)

French Eparses
Islands

35.9 32.2 14.8 14.1 78 0 1 59 −0.06 −0.21 0.04

(6.3) (10.4) (1.8) (1.2) (56.5) (0.7) (42.8) (0.19) (0.14) (0.70)

Reunion 33.1 35.7 16.4 16.3 8 4 7 6 0.04 −0.11 −0.44

(1) (5.9) (1.9) (1.9) (32) (16) (28) (24) (0.09) (0.09) (0.10)

South Africa 43.4 29.9 20.2 18.2 6 0 0 0 −0.21 −0.15 0.68

(2.3) (12.9) (0.7) (0.5) (100) (0.14) (0.17) (0.33)

(c) CMIP5.0 RCP8.5 extreme scenario

Western and
Northern
Madagascar

35.7 27.2 17.9 16.9 2126 224 337 167 −0.13 −0.22 0.33

(10.8) (10.9) (3.7) (3.2) (0.18) (0.2) (0.73)

East African
Coral Coast

35.8 21.9 25.3 22.4 2645 14 68 16 −0.24 −0.16 0.49

(6.9) (5.6) (2.9) (2.1) (0.1) (0.1) (0.19)

Seychelles 41 13.7 20.4 18.6 574 127 0 0 −0.38 −0.37 0.88

(3.9) (6.2) (1.2) (1.4) (0.1) (0.11) (0.23)

Mascarene
Islands

38 42.4 16.3 17.6 0 31 21 144 0.1 0.01 −0.03

(3.9) (5) (2.2) (2.2) (0.05) (0.08) (0.1)

Cargados
Carajos/
Tromelin
Island

24.2 30.4 17.2 16.1 23 0 118 0 0.09 −0.19 0.05

(3.4) (9.8) (2.1) (1.8) (0.18) (0.11) (0.17)

Northern
Monsoon
Current Coast

14.3 18.6 20.5 19.6 0 0 129 1 0.14 −0.27 0.80

(2.1) (1.6) (1.4) (1.4) (0.1) (0.04) (0.09)

Bight of Sofala/
Swamp Coast

30.5 18.2 20.5 21.6 31 73 0 9 −0.17 −0.23 1.02

(4.8) (7.9) (1.5) (1.6) (0.16) (0.12) (0.11)

Delagoa 39.2 7.2 17.2 16 90 6 0 0 −0.45 −0.52 1.33

(8.4) (8) (1.4) (1.1) (0.08) (0.12) (0.19)

Southeast
Madagascar

31.3 19.6 14.7 13.9 47 11 7 0 −0.21 −0.39 0.36

(3.5) (10.8) (1.1) (1.1) (0.2) (0.17) (0.51)

WIO province 35.6 23.6 21.0 19.3 5536 486 680 337 −0.19 −0.21 0.47

(9.2) (10.1) (4.7) (3.6) (0.18) (0.17) (0.54)

(d) CMIP5.0 RCP2.6 moderate scenario

Western and
Northern
Madagascar

35.7 33.2 17.9 17.1 1523 51 862 418 −0.03 −0.13 0.05

(10.8) (16.8) (3.7) (3.5) (0.26) (0.27) (0.74)

East African
Coral Coast

35.8 29.2 25.3 23.6 2393 185 66 99 −0.12 −0.03 0.22

(6.9) (5.6) (2.9) (2.5) (0.09) (0.1) (0.20)

Seychelles 41 31.7 20.4 19.1 583 42 76 0 −0.15 −0.1 0.60
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Tromelin Island (0.05 ± 0.17�C). The moderate RCP2.6 sce-
nario reduced these changes, such that temperatures
were predicted to decline in the Mascarene and Cargados
Carajos/Tromelin islands.

Scatterplots of predicted changes in coral cover and
numbers of taxa indicated larger losses for the RCP8.5
versus the RCP2.6 scenarios (Figure 3; Table 2). Responses
differed considerably among countries and ecoregions
(Figure 4). For example, there were cells in all four
loss-gain categories in both scenarios. Overall, in the
extreme RCP8.5 scenario, the WIO province was predicted
to change from 35.6 ± 9.2% (SD) to 23.6 ± 10.1% cover and
21.0 ± 4.7 to 19.3 ± 3.6 taxa per 40 m2 between 2020 and
2050. Coral cover in the moderate RCP2.6 scenario declined
to 30.7 ± 12.5% (−4.9%) and taxa to 19.9 ± 4.3 (−1.1 taxa).
The between cells variability of cover and numbers of taxa
were predicted to increase over the 30 years.

In the RCP8.5 scenario, 5536 of 7039 or 79% of the
reef cells were predicted to lose coral cover and taxa
while only 337 or 5% were predicted to both gain cover
and taxa. The remaining 1160 cells were split between
cover and taxa gains and losses. Under the moderate

RCP2.6, 4859 or 69% of the cells were predicted to lose
both cover and taxa, 728 gain both, and 1452 split the
gains and losses. Most of the cover and taxa-gain cells
were in Madagascar and Mauritius. Under the extreme
RCP8.5, most of the cover gains but taxa losses were simi-
larly found in Madagascar and Mauritius but also in
Kenya and Mayotte. Cover losses but taxa gains were
broadly distributed with the exceptions of Tanzania,
Mayotte, Reunion, and South Africa. Tanzania and
South Africa were predicted to lose both cover and taxa
in the RCP8.5, but Tanzania was predicted to gain taxa in
12 cells under the RCP2.6 scenario.

The resilience metric combined cover and numbers of
taxa changes. Results are presented as local change relative
to the specific cell or provincial change relative to the pro-
vincial average baseline in 2020 (Table 2; Figure 4). Most
nations and ecoregions were predicted to lose cover and
numbers of taxa or resilience. The peripheral and small
Cargados Carajos/Tromelin Island Ecoregion was the only
exception. Mayotte was the jurisdiction predicted to be most
locally and provincially resilient across the two RCP scenar-
ios. The relationship between local and provincial resilience

TAB L E 2 (Continued)

Country or
ecoregion

Coral cover (%) No. taxa No. cells (%)

Local
resilience

Provincial
resilience Delta SST2020 2050 2020 2050

Cover
loss/
taxa
loss

Cover
loss/
taxa
gain

Cover
gain/

taxa loss

Cover
gain/
taxa
gain

(3.9) (10.5) (1.2) (1.1) (0.1) (0.16) (0.23)

Mascarene
Islands

38 37.7 16.3 17.1 10 87 11 88 0.02 −0.06 −0.34

(3.9) (7.3) (2.2) (2.2) (0.08) (0.11) (0.10)

Cargados
Carajos/
Tromelin
Island

24.2 21.3 17.2 16.2 118 0 0 23 −0.09 −0.31 −0.23

(3.4) (2.6) (2.1) (2.6) (0.07) (0.08) (0.18)

Northern
Monsoon
Current Coast

14.3 14.5 20.5 20.4 59 1 27 43 0.01 −0.31 0.56

(2.1) (3.4) (1.4) (1.5) (0.14) (0.07) (0.09)

Bight of Sofala/
Swamp Coast

30.5 29.8 20.5 21.4 34 22 0 57 0.01 −0.07 0.75

(4.8) (9.1) (1.5) (1.8) (0.16) (0.13) (0.12)

Delagoa 39.2 21.5 17.2 16.1 90 6 0 0 −0.26 −0.31 1.11

(8.4) (10.7) (1.4) (1.1) (0.11) (0.16) (0.19)

Southeast
Madagascar

31.3 20.8 14.7 13.6 49 9 7 0 −0.21 −0.38 0.04

(3.5) (8.1) (1.1) (1) (0.09) (0.12) (0.5)

WIO province 35.6 30.7 21.0 19.9 4859 403 1049 728 −0.08 −0.10 0.19

(9.2) (12.5) (4.7) (4.3) (0.19) (0.21) (0.55)

Note: Values in parentheses are SDs. Local resilience compared a cell to itself while provincial compared a cell to the provincial average of cover and numbers
of taxa. Nation and ecoregions are ordered from most to least coral reef cells.
Abbreviations: SST, sea surface temperature; WIO, Western Indian Ocean.
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found that variability increased with increasing local resil-
ience (Figure 5). In general, reefs with high coral cover and
numbers of taxa were losing more local but less provincial
resilience over the 30-year period. These plots demonstrated
that many, but particularly some reefs in Mayotte, the
Mascarene Islands, Northwest Madagascar, and
Mozambique, should experience increases in resilience
under the moderate emissions RCP2.6 scenario.

DISCUSSION

Our findings indicate the complexity of the relationship
between environmental variables and numbers of coral
taxa and the subsequent distribution of coral diversity.

Moreover, there are considerable consequences arising
from investigators’ foci, variable reduction methods, and
selectivity decisions. These choices affect the relative or
rank importance of variables. Comparing models
improves understanding potential sources of causation,
predictions, and subsequent policies. Despite the com-
plexity, there was a common suite of interacting environ-
mental variables associated with the numbers of coral
taxa response. Among the temperature variables, skew-
ness, excess heat (cumDHW), rate of rise, kurtosis, and
median SSTs were frequently selected as influential.
Several of these variables have been identified in the
WIO and elsewhere as influential predictors of coral
bleaching and cover (Ateweberhan & McClanahan, 2010;
McClanahan & Azali, 2021; Safaie et al., 2018; Shlesinger &
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F I GURE 3 Scatterplots of the predicted changes (2050–2020 relative to zero change) in coral cover and numbers of taxa in 7039 reef

cells of the western Indian Ocean province distinguishing cells by their national jurisdiction delineations. (a, b) The changes in each cell

relative to itself and (c, d) changes in cells relative to the provincial average coral cover and numbers of taxa in each year. Thus, plots

represent a local and provincial resilience metric mapped in Figure 4. The predictions are based on the Coupled Model Intercomparison

Project 5.0 (CMIP5.0) temperature predictions under the extreme Relative Concentrations Pathways 8.5 (RCP8.5) on the left and the

moderate RCP2.6 scenario on the right. The five variables shared by CMIP5.0, and our boosted regression tree model were the median sea

surface temperature, skewness, kurtosis, bimodality, and cumulative excess heat (degree-heating weeks). No human influenced variables

were included in the scenarios.
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van Woesik, 2023; Vercammen et al., 2019). Nevertheless,
our results suggest temperature metrics are among other
several important influential variables including human
impacts.

Coral cover and numbers of coral taxa have been
shown to be influenced by similar temperature variables
(McClanahan & Azali, 2021). However, the patterns of

response often differed between number of taxa and coral
cover. For example, similar modeling procedures found
coral cover peaked in the WIO at 30–35 cumDHW, while
numbers of taxa peaked at lower values of 15–25 cumDHW
or excess heat. Moreover, numbers of taxa were high but
cover low at median temperatures of ~27–28�C. Coral cover
declined with increasing warm-water temperature skewness

F I GURE 4 Maps of the distribution of changes in local and provincial resilience or coral cover and numbers of taxa over 30 years

(2050–2020) predicted by the Coupled Model Intercomparison Project 5.0 model Relative Concentration Pathways 8.5 (RCP8.5) and RCP2.6

scenarios. The two resilience metrics are the percentage difference relative to the 2020 predicted values for each cell (local resilience) or

relative to the average 2020 prediction for all Western Indian Ocean countries (provincial resilience).
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and kurtosis, while numbers of taxa increased as tempera-
ture distributions were more centralized and tolerated
some cool-water skewness. Consequently, numbers of
coral taxa were not as tolerant of chronic heat stress as
cover. We suggest these differences reflect niches, coex-
istence, and dominance relationships among coral
taxa. Stable and optimal conditions promote higher
numbers of taxa. In contrast, increases in chronic and
acute climate disturbances impact cover and domi-
nance by reducing the sensitive taxa that contribute to
high cover (i.e., Acroporidae) (Darling et al., 2013).
Numbers of taxa and cover may be high in historically
stable environments, but these metrics are also most
influenced by acute climate disturbances in recent
times (McClanahan, 2020a, 2020b). Specifically, these
studies show that high cover taxa, such as acroporids,
generally lack tolerance to acute warm temperatures.
Therefore, coral status is better evaluated by including
changes in both cover and numbers of taxa as reflected
in our resilience metric.

Consequences of modeling decisions

Selecting variables is likely to be dependent on the disci-
plinary focus and impact concerns of investigators. For
example, temperature and ocean acidity are core con-
cerns among climate change scientists (Steffen et al.,
2015). However, our full analysis found that several
non-temperature variables ranked higher than these vari-
ables for predictions of numbers of taxa. These included
wave energy, dissolved oxygen and calcite concentrations,
salinity, chlorophyll, sunlight, and net primary productivity.
Several of these variables have been infrequently evaluated
or chosen by coral-climate change investigators despite
their potential to be influenced by climate change
(McClanahan & Azali, 2021; Porter et al., 2017;
Vercammen et al., 2019). When evaluating numbers of
taxa on large scales, distance from centers of evolution,
habitat extent, thermal energy, and stress have been
more commonly selected (Ateweberhan et al., 2018;
Bellwood et al., 2005; Bellwood & Hughes, 2001). Here,
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F I GURE 5 Scatterplots showing the relationship between local and provincial resilience for (a,b) national jurisdictions and (c,d)

ecoregions for the two Coupled Model Intercomparison Project (CMIP) climate scenarios changes between 2020 and 2050. Resilience is the

average of the change in coral cover and numbers of taxa presented as normalized z score. RCP, Relative Concentration Pathways.
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we included fewer biogeographic variables and assum-
ptions apart from including ecoregion, which was a
weak predictor, and reef clustering in the full model.
Rather, we utilized many available spatially complete
data layers in the full model, which resulted in stron-
ger predictions than for the investigator or discipline
selected variable models. This full variable approach is
recommended for making applied predictions where
causative relationships are speculative (Kuhn &
Johnson, 2013).

Studies of coral bleaching and cover, including those
used in the IPCC report, have relied on similar excess
heat metrics but seldom include the contextual tem-
perature variations (i.e., kurtosis and skewness) and
non-temperature variables (Asner et al., 2022; Donovan
et al., 2021; Hoegh-Guldberg et al., 2018). Therefore, the
stated influences of excess heat may be overestimated
(De Carlo, 2020; McClanahan et al., 2019). For example,
we found selecting fewer or eight variables raised the
cumulative excess heat (cumDHW) influence from 6.9%
to 14.4%, making it the highest ranked variable, after
observer and depth, in the selected climate influenced
model. Empirical studies have shown that depth is a
strong unimodal predictor of numbers of taxa (Cornell &
Karlson, 2000). Most coral climate change impact models
rely heavily on similar and autocorrelated excess heat
variables (Beyer et al., 2018; Dixon et al., 2022).

Comparing the four models uncovered some of the
challenges faced by environmental modeling investiga-
tors that have specific views on causation, optimality,
and impacts (Thompson & Smith, 2019). Investigator
selection of a limited number of variables may overes-
timate the influence of chosen variables. For example,
nutrients and management had 9.0% and 5.7% influence
in the human influence model but only ~1.6% in the
ensemble model. Country was also the strongest variable
in the human influence model (18.5%) compared to <4%
in the ensemble model. Furthermore, the rate of SST rise
was the second strongest variable (16.3%) after skewness
in the climate-only model but had <4% relative influence
in the ensemble model. Rate of SST rise is correlated with
other temperature variables, and therefore, interactive
influences are difficult to disarticulate. These types of
between-model choices and deviations suggest some cau-
tion when inferring forces of causation and predictive
strengths, especially when investigators select just a few
variables (Arif et al., 2022). Given the complexity and
challenges of understanding causation in tropical ecosys-
tems, some complexity, redundancy, and comparison of
models should improve understanding and strengthen
forecasts (McClanahan & Sola, 2024). The problem for
coral reefs and the IPCC predictions is that they are
largely based on a single or a few autocorrelated variables

(McClanahan, 2022, 2024). Models based on simple proxy
metrics may do reasonably well when data are sparse
but are expected to underperform when diverse and
ubiquitous data are available.

A second concern is the influences and efficacy of
model structures and specific algorithms. Underlying
assumptions and subsequent calculations can shape eval-
uation processes and predictions. Model capacity and
complexity have increased over time through increased
data quantity, time and spatial resolution, and machine
learning algorithms. However, previous taxa-distribution
models interpolated distributions over large and poten-
tially uninhabitable areas. This procedure will inevitably
reflect a poor connection between species’ distributions
and their environmental and habitat requirements.

Niche modeling is a popular development that has
addressed several large-scale coral biodiversity distribu-
tion and climate impact problems (Molinos et al., 2016).
Some recent coral distribution models have included sev-
eral variables, such as SST, aragonite saturation, salinity,
nutrients, PAR levels, and light penetration. Using these
variables, Couce et al. (2023) predicted a net 80% losses of
coral species in the WIO region by 2080–2090 in their
625 km2 grid under the Paris Agreement high emission
scenario (8.5 watts m−2). This prediction is considerably
more extreme than our more spatially resolved model
(6.25 km2) and suggests that the model assumptions and
spatial scale of predictions affected results more then the
variable choices. We suggest that coarse spatial cell predic-
tions will poorly reflect local conditions important for deter-
mining species occupations. Coarse resolutions and realized
rather than fundamental niche estimates should produce
interpolation and extrapolation errors. These may be among
several reasons that niche modeling is poor at predicting
many population attributes (Lee-Yaw et al., 2022). The high
spatial heterogeneity of numbers of coral reef taxa recorded
at small latitudinal scales suggests that coarse geographic
grid models (>0.1�) will fail to make accurate predictions
(McClanahan, 2023a, 2023b). Coral species have been
shown to persist in small refuges even in some of
the most degraded reefs of the WIO (Andrefouet
et al., 2013). We acknowledge significant spatial hetero-
geneity below our 6.25 km2 cell size that will limit our
own model’s accuracy.

Comparing climate impact models

Common future coral reef prediction models (i.e., until
2022) have been based largely on excess heat and rate of
temperature rise metrics. Specifically, bleaching uses a
1�C threshold above summer temperatures for 4–8 weeks
and IPCC predictions are based on the accumulation of
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excess heat over time (Lee et al., 2023). Yet, there are sev-
eral poorly understood linkages between excess heat and
the biological responses of coral bleaching, mortality,
cover, dominance, and taxonomic changes (McClanahan,
2022). Excess heat alone has infrequently predicted
both coral bleaching and cover well (DeCarlo, 2020;
Gonzalez-Espinosa & Donner, 2021; McClanahan et al.,
2019; van Hooidonk & Huber, 2009; Whitaker & DeCarlo,
2024). Rather, the combination of several heat and other
interacting environmental measures produces stronger and
less dire predictions (McClanahan, Maina, et al., 2015,
2019; Santana et al., 2023; Vercammen et al., 2019). When
few interacting variables are considered, excess heat as a
single proxy is likely to overestimate impacts. Moreover,
predictions of community attributes are sensitive to variable
selection, model complexity, and other model-building
assumptions.

Our multivariate model found greater resilience of coral
cover and numbers of taxa than past threshold models. For
example, our multivariate models predicted a provincial
8.1% decline in coral taxa and a 34.0% decline in cover with
the Paris target of ~1.5�C SST increase. Moreover, the spa-
tial variability of our models’ predictions is considerably
higher than previous models (Cornwall et al., 2021; Couce
et al., 2023; Dixon et al., 2022). Our model suggests that the
predicted “disappearance of reefs” (Lee et al., 2023) is not
supported by models with higher spatial resolution and
complex environmental interactions. Future efforts need to
reconsider the outcomes of scale and variable choices on
the confidence of future reef assessments (Klein
et al., 2024). Specifically, improved evaluations of the caus-
ative links connecting heat stress to coral community vari-
ables, particularly those that provide key reef functions and
ecological services (Chan et al., 2023; Darling et al., 2019;
Vercammen et al., 2019). Nevertheless, the state of data res-
olution and predictive modeling has improved to where a
new models and associated coral reef predictions and poli-
cies are needed (McClanahan, 2024).

We acknowledge the weakness of our and other
models built on historical relationships as future condi-
tions are expected to exceed the current environmental
data envelope. For example, the increase in ocean tem-
peratures after 2022 to the time of this writing saw global
temperature rising ~1.5�C above baseline, or many years
ahead of the IPCC 2050 predictions (https://www.ncei.
noaa.gov/). Spatial variability and extreme events of the
ocean’s El Niño Southern oscillations is another example
where IPCC makes weak predictions (Cai et al., 2023;
McManus et al., 2020). Extreme events are expected to be
more common in the future (Jentsch et al., 2007). The
metric of SST skewness reflects these extreme events and
shown here to be among the most predictive and
non-linear variables.

Conservation prioritization

Numbers of taxa and their persistence can assist prioritizing
locations for reef conservation (McClanahan, Friedlander,
Wickel, et al., 2024). Prioritization decisions are influenced
by the spatial scale, boundaries of delineation, and persis-
tence relative to benchmarks. For example, high numbers
of taxa were predicted in the East Africa Coral Coast
Ecoregion, but several reefs were predicted to lose more
taxa than locations with fewer taxa. This outcome has
already been observed in Kenyan reefs where the high
diversity fully protected marine parks were shown, after
severe climate disturbances, to be losing taxa faster than
low diversity reefs (McClanahan, 2020a). Nevertheless,
scatterplots at the provincial scale indicate that the per-
sistence of taxa is likely to occur in scattered locations
with high numbers of taxa. Finding and better managing
resilient locations will help to maintain provincial diver-
sity as climate change impacts increase and erode diver-
sity on large scales.

Priority locations for conservation were visibly differ-
ent among geographies and climate change scenarios.
For a geographic example, northern Kenya was predicted
to have high local resilience with rapid increases in SST,
but this was associated with low numbers of taxa and
cover relative to the WIO province. Therefore, the
Northeast Monsoon Coast Ecoregion of northern Kenya
is a local or national but not a provincial priority from a
climate resilience perspective. Mascarene reefs are
another example of high local but lower provincial resil-
ience attributable to their geographic remoteness and
reduced numbers of taxa. The two climate emission sce-
narios also influenced taxa richness-based prioritizations.
For example, many East African Coral Coast Ecoregion
reefs were predicted to have high provincial resilience for
RCP2.6, but to lose local resilience under the extreme
RCP8.5 scenario. Therefore, the scenarios and classifica-
tion of sites as either local or provincial priorities will
affect conservation choices. Mayotte (France) and some
reefs in northern section of southeast Madagascar were
among the few jurisdictions predicted to have both high
local and provincial resilience for both scenarios.

Recommendations

Future predictions were based on only five variables com-
mon to both the CMIP5.0 projections and our full vari-
able model. To further improve climate projection
models, we recommend the inclusion of more and finer
spatial resolution of environmental and human influ-
enced variables. For example, models that forecast vari-
ables, such as dissolved oxygen and calcite concentration,
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and chlorophyll are possible and, if spatially resolved and
included in models, should improve estimates of climate
impacts. Inclusion of some of these variables will change
predictions to both reduce and increase the losses of coral
resilience. Nevertheless, the net direction of change with
introduced oceanographic variables is difficult to predict
until the models are built and tested. For example, dissolved
oxygen is expected to decline with climate change and
potentially increase stress to coral (Hughes et al., 2020).
However, greater coral cover and numbers of taxa models
have been found at modest dissolved oxygen values
(i.e., 4.4 mL/L) (Vercammen et al., 2019; McClanahan &
Azali, 2021). Experimental findings have shown that lower
oxygen values in tropical waters create cotolerance to heat
stress (Alderdice et al., 2021). Thus, we should expect other
complex responses to contribute to the high spatial variabil-
ity observed in our model outputs.

Current excess heat models were developed prior to
the advent of high-resolution environmental proxies and
the common usage of applied predictive modeling
(Hoegh-Guldberg, 1999). Subsequently, increased avail-
ability of the numerous environmental variables and
their complex influence on coral community responses
has been revealed (McClanahan, 2022; McClanahan &
Azali, 2021). Therefore, we suggest updating future itera-
tions of biodiversity mapping and climate predictions
with more environmental proxies and field data (Kuhn &
Johnson, 2013; Pilowsky et al., 2022). It is not simply the
coarse resolution of model predictions but also the selec-
tion of variables, model assumptions, structure, and algo-
rithmic capacity that needs reconsideration, modification,
and updating. Future predictive models can improve if
based on an increasingly rich investigative, variable, and
modeling context. Given that corals are adapting and
communities’ reorganizing to climate stresses (DeCarlo &
Harrison, 2019; McClanahan, Darling, et al., 2020;
McClanahan, Maina, et al., 2020; Shlesinger & van
Woesik, 2023), even current complex predictive models
should eventually be outcompeted by more informed,
resolved, and intelligent models. Additionally, prioritiza-
tion policies and management responses will need to rec-
ognize the changing science and uncertainty of the
predictions. Nevertheless, the findings here provide the
context to build a portfolio of ecologically rich and resil-
ient locations to secure reef biodiversity.
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