

Contents lists available at ScienceDirect

Molecular Phylogenetics and Evolution

journal homepage: www.elsevier.com/locate/ympev

Short Communication

Molecular phylogeny of the genus *Pseudoplatystoma* (Bleeker, 1862): Biogeographic and evolutionary implications

J.P. Torrico ^{a,d,*}, N. Hubert ^{a,1}, E. Desmarais ^d, F. Duponchelle ^{b,1}, J. Nuñez Rodriguez ^{a,1}, J. Montoya-Burgos ^e, C. Garcia Davila ^c, F.M. Carvajal-Vallejos ^{b,g}, A.A. Grajales ^f, F. Bonhomme ^d, J.-F. Renno ^{a,1}

^a IRD UR 175/IBMB, Universidad Mayor San Andrés, Facultad de Ciencias Puras y Naturales, Campus Universitario Cota Cota, La Paz, Murillo, Bolivia

^c Instituto de Investigaciones de la Amazonía Peruana (IIAP), Laboratorio de Biología Molecular y Biotecnología (LBMB), Av. Abelardo Quiñónes km. 2.5, Iquitos, Peru

^d Département Biologie Intégrative, Institut des Sciences de l'Evolution, UMR 5554 Université de Montpellier 2 cc 63 Pl. E Bataillon F34095 Montpellier Cedex 5, France

^f Departamento de Sistemas de Produccion Agropecuaria, Programa de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad de Caldas.

Calle 65 No. 26-10 Manizales, Colombia

^g Asociación FAUNAGUA, final Av. Max Fernández, Zona Arocagua, Sacaba, Cochabamba, Bolivia

ARTICLE INFO

Article history: Received 14 June 2008 Revised 21 November 2008 Accepted 21 November 2008 Available online 6 December 2008

1. Introduction

In the last years molecular genetics approaches have allowed to assess cryptic patterns of diversity within and among remnant populations of threatened and endangered species. Along with inferred levels of current or historic gene flow, and demographic history, molecular data could help planning and executing conservation policies (Vrijenhoek, 1998). This is particularly true with groups of migratory freshwater fishes of high economic value such as some species of the family Pimelodidae, one of the most speciose groups of Neotropical Siluriformes (50-60 genera, 300 species; Reis et al., 2004). Largely distributed throughout South and Central America, this group of piscivorous and carnivorous species contains some of the largest and most important species for commercial and subsistence fisheries. The genus Pseudoplatystoma (Bleeker, 1862) is, in addition, a resource of growing importance for aquaculture (Nuñez et al., 2008). Pseudoplatystoma species are known to undertake complex lateral migrations between rivers, lakes and river floodplains as well as longitudinal movements (300-700 km) along river channels (Barthem and Goulding, 1997; Loubens and Panfili, 2000; Coronel et al., 2004). It is worth noting that some *Pseudoplatystoma* populations are already considered threatened due to overexploitation, hydroelectric

projects, mining, deforestation and contamination (Carolsfeld et al., 2003).

The large distribution ranges of the *Pseudoplatystoma* species, encompassing the main drainages of South America, has led to postulate that some level of cryptic diversity may exist beyond an apparent morphological homogeneity (Buitrago-Suarez and Burr, 2007). Large geomorphologic and physiographic processes have transformed South American river drainages through the entire Miocene and Pliocene providing opportunities for vicariance but also for secondary contact through headwater captures, as evidenced for several groups (Montoya-Burgos, 2003; Albert et al., 2006; Lovejoy and Araujo, 2000; Hubert and Renno, 2006; Hubert et al., 2007; Willis et al., 2007). This idea has fostered a comprehensive reassessment of morphological and anatomical characters within the genus Pseudoplatystoma (Buitrago-Suarez and Burr, 2007). It has been proposed that the inability to recognize cryptic or sibling species using traditional morphological characters may hinder the understanding of ecological and evolutionary processes with negative consequences such as the underestimation of species richness, the overestimation of potential for long-distance dispersal, the failure to recognize biological invasions and the misinterpretation of ecological and paleoecological data (Rocha-Olivares et al., 2001). Until very recently, three species were recognized within the genus Pseudoplatystoma (Fig. 1a-d): P. fasciatum (Linnaeus 1766), widely distributed in the Paraná, Amazon, Orinoco, Magdalena basins and Guyana shield's rivers; P. tigrinum (Valenciennes 1840) in Orinoco and Amazon basins and P. corruscans (Spix and Agassiz 1829) restricted to the Atlantic basins, Paraná and São Francisco. Buitrago-Suarez and Burr (2007) have then raised the number of recognized species to eight on the basis of morphological analyses: P. punctifer and P. tigrinum

^b IRD UR 175/ULRA, Universidad Mayor San Simón, Cochabamba, Bolivia

^e Département de Zoologie et Biologie Animale, Université de Genève, 30 quai Ernest Ansermet, 1211 Genève 4, Switzerland

^{*} Corresponding author. Address: IRD UR 175/IBMB, Universidad Mayor San Andrés, Facultad de Ciencias Puras y Naturales, Campus Universitario Cota Cota, La Paz, Murillo, Bolivia.

E-mail address: jptb_bioevol@yahoo.com (J.P. Torrico).

¹ Present address: IRD, UR 175, BP 5095, 361 rue J.F. Breton, 34196 Montpellier Cedex 05, France.

^{1055-7903/\$ -} see front matter \circledcirc 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2008.11.019

Fig. 1. Distribution areas for the eight recognized species of the Neotropical catfish genus *Pseudoplatystoma* according to Buitrago-Suarez and Burr, 2007 (a–d) and sampling localities (e). Major hydrological basins are illustrated. Each species is represented by a geometric object, while combined objects represent localities where species are found in sympatry.

sympatric in the Amazon Basin, *P. metaense* and *P. orinocense* sympatric in the Orinoco Basin, *P. corruscans* and *P. reticulatum* partially sympatric in the Paraná, *P. magdaleniatum* restricted to the Magdalena basin and *P. fasciatum* to the Guyana shield rivers (Fig 1). However, their sampling lacked the Upper Madera, an important part of the Amazon basin.

The aims of the present study were thus: (1) to define species boundaries within the genus *Pseudoplatystoma* using a molecular phylogenetic approach with new data from the Upper Madera to compare the results with the recent morphology-based revision and (2) to asses the biogeographic patterns within the genus.

2. Materials and methods

2.1. Sampling

A total of 212 *Pseudoplatystoma* were sampled between 2000 and 2005 in the Upper Madera basin in the Madre de Dios-Beni, Mamoré, Iténez Rivers and in the Ucayali-Upper Amazon basin. Outside the Amazon basin, sampling was performed in the upper portion of the Paraná basin (Laguna Cáceres), in the Corantijn and in the Ireng River (a tributary of the Amazon system from the Guyana shield) and in the Magdalena River from the Magdalena basin (Table 1). Individuals were identified in the field accord-

ing to previous identification key (Lauzanne and Loubens, 1985). The diagnostic characters taken into consideration were: (1) the head morphology, P. fasciatum is characterized by a robust head of homogeneous width; whereas P. tigrinum has a slimmer head, slightly compressed in the middle; (2) the coloration pattern, P. fasciatum presents a striped pattern where a white stripe is always observed beside each conspicuous black stripe; P. tigrinum color pattern consists of reticulated dark lines; (3) The middle frontal bone fontanel is larger and wider in *P. tigrinum* than in *P. fasciatum*. According to Buitrago-Suarez and Burr (2007)'s revision, those species correspond to the following: in the Guyana Shield P. fasciatum stays unchanged (P. fasciatum sensu stricto), in the Upper Madera and Ucayali-Upper Amazon Basins P. fasciatum becomes P. punctifer and P. tigrinum remains unchanged, in the Paraná-Paraguay Basin P. fasciatum becomes P. reticulatum. P. corruscans is unchanged. Finally in the Magdalena Basin P. fasciatum becomes P. magdaleniatum. Pseudoplatystoma specimens were not sampled in the Orinoco but five control region (CR) partial sequences for P. metaense (EU082463 and EU082462) and P. orinocoense (EU082461, EU082460, EU040286) were recovered from Genbank. Phylogenetic outgroups included three Brachyplatystoma rousseauxi (Pimelodidae) collected in the region of Iquitos (Upper Amazon) and B. vaillanti (DQ779047) for the CR, while the Cytochrome-b (Cyt-b) data set included also thirteen species (10 genera) of related Siluriformes (Sullivan and Lundberg, 2006). Vouchers were preserved

Table 1	
---------	--

Sampling point location and number of sequenced individuals for both molecular markers (Cyt-b and CR).

			Voucher ^a	Number of samples per species											
				P. punctifer		P. fasciatum		P. magdaleniatum		P. reticulatum		P. tigrinum		P. corruscans	
				Cyt-b	CR	Cyt-b	CR	Cyt-b	CR	Cyt-b	CR	Cyt-b	CR	Cyt-b	CR
Upper Madera															
Madre de Dios	Puerto Maldonado	12°35′14″S-69°10′13″W	PF30422 to PF30427 PT30418 to PT30422	0	9							2	7		
	Manuripi	11°16′44″S-67°40′07″ W	PF3799, PF3817, PF3878,PF3879, PF3880, PF3881, PT4062	7	11							1	4		
Beni	Puerto Salinas	14°20′00″S-67°32′00″W	PF3633, PF3634, PF3635, PF4943, PF4944, PT3631	7	13							2	7		
Mamoré	Securé	15°22′53″S-65°01′15″W		7	10							10	17		
	Ichilo	17°04′55″S-64°37′22″W		3	7							11	9		
	Yata	10°58′01″S-65°36′38″W	PF5094,PF5321,PF5323, PF5324, PF5326, PFPF5328,PF5331	3	7							3			
Iténez	San Martin	13°44′11″S-63°55′02″W	PF3303	7	13							7	6		
	Paraguay	13°31′19″S–61°40′28″W	PF5363, PF5406, PF5463, PF5464, PF5504, PF5549, PT5364, PT5551, PT5551, PT5838	11	17							11	5		
Paraná															
Paraguay	Laguna Caceres	19°03′05″S-57°49′19″W	Unregistered							5	4			5	5
Northern South A	merica														
Branco	Ireng	03°53′35″N-59°41′09″W	GUY04-218	1	1										
Corantijn	Wonotobo falls	04°38′05″S-54°24′14″ W	SU05-522			1§	1§								
Magdalena		07°44′22″S-76°20′39″W	MHN-UC 004 to 0044					7	5						
Ucavali-Upper Ar	nazon														
Ucayali	Pucallpa	08°23′18″S-74°30′16″W	IIAP-30360 to 30364 IIAP-455 IIAP-30283 to 30286 IIAP-30293	0	9							0	12		
Upper Amazon	Iquitos	03°45′19″S-73°12′35″W	IIAP-30185 to 30189 IIAP-30113 to 30117	1	10							2	10		

^a Vouchers from Bolivia, French Guyana, Colombia and Peru, are conserved in the Limnology Unit of the Instituto de Ecología (UL-IE-La Paz-Bolivia), in the Museum National d' Histoire Naturelle (MNHN, Genève – Switzerland), in the Muséo de Historia Natural at the Universidad de Caldas (MHN-UC, Caldas-Colombia), and the Instituto de Investigación de la Amazonía Peruana (IIAP, Iquitos – Peru), respectively.

for posterior study (Table 1) in the "Unidad de Limnología" from the "Instituto de Ecología" (UL - IE, La Paz - Bolivia), the "Museum National d'Histoire Naturelle" (MNHN, Genève – Suisse), "Museo de Historia Natural de la Universidad de Caldas" (MHN-UC, Colombia) and in the "Instituto de Investigacion de la Amazonia Peruna" (IIAP, Iquitos – Péru).

2.2. Molecular markers

Among Neotropical Siluriformes, the Cvt-b has been used recently to infer deep phylogenetic relationships (Perdices et al., 2002; Hardman and Lundberg, 2006). As the Cyt-b gene contains both slowly and rapidly evolving codon positions, as well as conservative and variable regions, it constitutes a suitable marker for phylogenetic purposes at various divergence levels (Farias et al., 2001). Alternatively, the mitochondrial *CR* is a non-coding stretch of DNA that usually exhibits higher rates of molecular evolution. The mtDNA has proved a reliable indicator of species boundaries and geographical population structure (Zink and Barrowclough, 2008), moreover, recent barcoding studies support the view that lineage sorting is challenging the interpretation of patterns of mtDNA variability in a limited number of cases in the wild, at least for fishes (Hubert et al., 2008). In consequence, we used concomitantly the Cyt-b and CR to assess species boundaries and phylogenetic relationships within the genus Pseudoplatystoma.

DNA was extracted using the DNeasy Tissue Kit (Qiagen). Primers for Cyt-b amplification were L15162: 5'-GCAAGCTTCTACCATG AGGACAA-3' (Taberlet et al., 1992) and H15915: 5'-AACTG CAGTCATCTCCGGTTTACAAGAC-3' (Irwin et al., 1991), and for CR, DL20F: 5'-ACCCCTAGCTCCCAAAGCTA-3'; and DL20R: 5'-CCTGAAG TAGGAACCAGATGA-3' (Agnèse et al., 2006). PCR reactions were run in a total volume of 50 μ l containing 1 \times PCR buffer, 1.5 mM MgCl₂, 0.3 mM of each dNTP, 20 pmol of each primer, 5 units of Tag DNA polymerase and 5 µl of the Qiagen extract. They were carried out following a touchdown procedure including a first 2 min denaturation step at 95 °C, then 10 standard cycles with an annealing temperature starting at 64 °C for Cvt-b or 66 for CR, with a 1 °C temperature decrement: finally 25 cycles with 1 min at 92 °C. 1 min at 54 °C for Cyt-b or 56 °C for CR and 1 min 30 s at 72 °C. Post-PCR extension was carried out for 5 min at 72 °C. PCR products were sequenced on both directions by automatic sequencing. Sequences alignment was optimized by eye using BIOEDIT (Hall, 1999). Sequences were deposited in GenBank (Accession Nos. F[889681 to F]889882 for CR and Nos. F]889883 to F]889986 for Cvt-b).

2.2.1. Phylogenetic construction

Both maximum likelihood (ML) and Bayesian methods were applied to the Cyt-b (708 bp) and CR (974 bp) data sets using the programs PhyML (Guindon and Gascuel, 2003) and BEAST v1.4.8 (Drummond and Rambaut, 2008), respectively. The best fit concerning nucleotide substitution model, existence of invariable sites (I) and rate heterogeneity across variable sites (Γ) was selected among 28 alternative evolutionary models according to the Akaike Information Criterion (AIC) using the R-based Package Ape (Paradis and Strimmer, 2004; Paradis, 2006). Confidence in the estimated relationships of the ML tree topologies was evaluated by a bootstrap analysis with 1000 replicates (Felsenstein, 1985). Multiple independent runs of BEAST were performed for each mtDNA region. Each run consisted of 10⁷ chains sampled at intervals of 1000 generations with a burn-in of 10^6 for the Cyt-b and 2×10^6 chains, sampled at 1000 generations intervals and a burn-in of 2×10^5 for the CR. Independent runs were merged with LogCombiner v1.4.8 (Drummond and Rambaut, 2008). Convergence of chains to the stationary distribution was checked by visual inspection of plotted posterior estimates using the program Tracer v1.4

(Rambaut and Drummond, 2007) and until the effective sample size for each parameter sampled from the Markov chain Monte Carlo (MCMC) analysis was found to exceed 200.

Using the estimated ML tree, molecular dating was performed using the penalized likelihood (PL) method (Sanderson, 2002). This method assumes that rates of substitution change smoothly along contiguous branches to result in the branch lengths estimated by ML. The trade-off established between a parametric component which assumes that the tree is clock-like, and a non-parametric component where rates vary according to the ML tree, is controlled by a smoothness parameter denoted λ . The optimal value of λ was selected by cross-validation according to Sanderson (2002) using λ values ranging from 0.1 to 10^6 . The geographic distribution of P. magdaleniatum and the remaining Pseudoplatystoma species seems to fit a vicariance event that is likely to illustrate the establishment of the Magdalena basin through an orogenic rise at 11.8 million vears ago-Mva-(Hoorn et al., 1995; Lundberg, 1998) thus, this event was used as a calibration point in agreement with previous studies (Sivasundar et al., 2001). This method was performed with the R-based Package Ape (Paradis and Strimmer, 2004; Paradis, 2006).

Haplotype diversity and mean nucleotide divergences (Nei, 1987) were calculated for each DNA region with Arlequin v.3.0 (Excoffier et al., 2005).

3. Results

Maximum likelihood and Bayesian trees were built for the *Cyt-b* and *CR* sequences, according to the selected GTR + *I* + Γ model (Log-Likelihood = -5020.1408; *I* = 0.404; γ = 0.889) and TN93 + Γ model (Log-Likelihood = -4177.4349; γ = 0.420), respectively. The combined information (ML and Bayesian) of the *Cyt-b* and the *CR* phylogenies was largely concordant (Fig. 2a and b). In further sections, the Bayesian method will not be considered given the uncertainty associated with posterior probabilities interpretation (Suzuki et al., 2002; Mossel and Vigoda, 2005; Steel and Matsen, 2007). The phylogenetic inference corroborates, partially, the classification of Buitrago-Suarez and Burr (2007): *P. tigrinum, P. reticulatum, P. corruscans* and *P. magdaleniatum* are indeed differentiated into monophyletic groups; while *P. fasciatum* and *P. punctifer* are found in admixture and so are *P. orinocoense* and *P. metaense*.

For both, *Cyt-b* and *CR* sequences, molecular divergence was partitioned in three discrete categories (Table 2). Higher levels of divergence were observed in comparisons involving either *P. magdaleniatum* or *P. corruscans* against all the remaining species (from 0.056 ± 0.014 to 0.076 ± 0.016 for *Cyt-b* and from 0.064 ± 0.016 to 0.082 ± 0.005 for *CR*), *P. magdaleniatum* being the most divergent. On the other hand, pairwise comparison involving *P. fasciatum*, *P. punctifer* and *P. reticulatum* yielded low divergence values ranging from 0.006 ± 0.001 to 0.011 ± 0.005 for *Cyt-b* and from 0.013 ± 0.001 to 0.023 ± 0.010 for *CR*. Finally, intermediate values (ranging from 0.029 ± 0.001 to 0.033 ± 0.002 for *Cyt-b* and from 0.047 ± 0.001 to 0.049 ± 0.005 for *CR*) were obtained whenever *P. tigrinum* sequences were confronted with any of the former three species (*P. fasciatum*, *P. punctifer* and *P. reticulatum*).

Molecular dating was performed by PL. The cross-validation analysis yielded a λ value of 1×10^7 for the *Cyt-b* and 10 for the *CR*. For increasing values of λ , the variations are smoother tending to a clock-like model. Accordingly, the estimated substitution rates (in expected number of substitution per million years—Myrs—and per site) was found to be nearly constant for the *Cyt-b* (mean = 2.5 - 10^{-3} , SD = 2.2 × 10^{-6}), while the estimated substitution rates for *CR* varied between 3.6 × 10^{-2} and 9.4 × 10^{-5} (mean = 6.2 × 10^{-3} , SD = 6.1 × 10^{-3}). The divergence between *P. magdaleniatum* and *P. corruscans* was found to be synchronous at around 11.8 million years ago (Mya). The ancestor of the Orinoco's species (*P. orinoco*-

Fig. 2. Maximum likelihood phylogenies for the genus *Pseudoplatystoma* and comparison with morphology-based systematics (Buitrago-Suarez and Burr, 2007): (a) *Cytochrome-b* (GTR + $I + \Gamma$, I = 0.404, $\gamma = 0.889$); (b) *CR* (TN93 + Γ , $\gamma = 0.420$); Bootstrap values above 51% and posterior probabilities above 0.5 are indicated in each node; (c) congruence between morphology and molecular data. Different geometric symbols correspond to different species; diamonds are bootstrap supported nodes (*Cyt-b/CR*); UMad stands for Upper Madera, UAmz for Ucayali-Upper Amazon, MAG for Magdalena basin, and SUR for Surinam.

Table 2

Divergence among Cyt-b and CR between six different Pseudoplatystoma species.

	P. magdaleniatum Divergence (TN93 +G)	magdaleniatum P. corruscans P. tigr vergence (TN93 +G)		P. punctifer	P. reticulatum	P. fasciatum
Cytochrome-b						
P. magdaleniatum	_					
P. corruscans	0.076 ± 0.016	_				
P. tigrinum	0.072 ± 0.006	0.070 ± 0.007	_			
P. punctifer	0.065 ± 0.005	0.056 ± 0.005	0.029 ± 0.001	-		
P. reticulatum	0.064 ± 0.014	0.055 ± 0.014	0.033 ± 0.002	0.006 ± 0.001	-	
P. fasciatum	0.065 ± 0.022	0.058 ± 0.023	0.031 ± 0.005	0.007 ± 0.001	0.011 ± 0.004	-
Control region						
P. magdaleniatum	_					
P. corruscans	0.064 ± 0.016	-				
P. tigrinum	0.083 ± 0.006	0.071 ± 0.005	_			
P. punctifer	0.074 ± 0.004	0.071 ± 0;004	0.047 ± 0.001	-		
P. reticulatum	0.077 ± 0.021	0.067 ± 0.002	0.048 ± 0.004	0.014 ± 0.001	_	
P. fasciatum	0.081 ± 0.032	0.073 ± 0.003	0.049 ± 0.006	0.013 ± 0.001	0.023 ± 0.009	-

ense and *P. metaense*) diverged from the remaining species at around 8.2 Mya. The divergence of *P. tigrinum* from the ancestor of *P. fasciatum*, *P. punctifer* and *P. reticulatum* yielded an interval ranging from 6 Mya for the *Cyt-b* and 10.4 Mya for the *CR*. The divergence between *P. reticulatum* and *P. punctifer* yielded an interval ranging from 1.5 Mya (*Cyt-b*) to 0.8 Mya (*CR*).

4. Discussion

4.1. Molecular systematic and biogeography

The analyses of molecular data support several aspects of the morphology-based classification proposed by Buitrago-Suarez and Burr (2007), but some other aspects remain contentious. First, morphology and molecular data support the monophyly of the genus *Pseudoplatystoma* and show a complex distribution array, encompassing also the Bolivian Amazon for *P. punctifer* and *P. tigrinum*, a region that was not sampled by Buitrago-Suarez and Burr (2007). The molecular data also show that *P. tigrinum*, *P. corruscans*, *P. reticulatum* and the novel *P. magdaleniatum* are highly supported clades, validating their taxonomic status. On the other hand, a major discrepancy exists concerning the relationships between the different species that has important repercussions for their biogeography. According to Buitrago-Suarez and Burr (2007), morphological characters suggested a two clade partition for the genus (Fig. 2c): a "*P. fasciatum* clade" including *P. fasciatum*, *P. punctifer*, *P. reticulatum*, *P. orinocoense*, *P. magdaleniatum* and *P. corruscans*; and a "*P. tigrinum* clade" grouping *P. tigrinum* and *P. metaense*. This

dichotomy is not consistent with the molecular data which instead support five main clades: P. mataense grouped with P. orinocoense (Bootstrap, 92% for the CR), P. reticulatum (Bootstrap value 95% and 78% for Cyt-b and CR, respectively), P. tigrinum (100% for both Cyt-b and CR), P. corruscans (100% for both Cyt-b and CR) and P. magdaleniatum (100% for both Cyt-b and CR). Strikingly CR sequences corresponding to P. metaense (formerly P. tigrinum) and P. orinocoense (formerly P. fasciatum) from the Orinoco basin resulted in a single supported clade with no differentiation between these two morphologically distinct species. This surprising result which suggests either a mtDNA introgression between the two species or a misidentification of the samples requires further investigation. Likewise, it was not possible to differentiate P. punctifer (Amazon) from *P. fasciatum* (Guyanas) at the molecular level. This could result from translocation of individuals or introgression events or inadequate species identification. However, as no haplotypes were shared between the Guianan and the Amazonian samples the translocation or introgression scenarios seem unlikely. On the other hand, inadequate external identification can not be invoked as no significant morphological difference were found between both species (Buitrago-Suarez and Burr, 2007) and as they can only be distinguished by their geographical location and minor osteological features. The absence of phylogenetic and clear morphological differentiation between P. fasciatum and P. punctifer suggests that Buitrago-Suarez and Burr, 2007 erroneously separated P. fasciatum into two distinct species and therefore invalidates the taxonomic status of P. punctifer.

Three main geographical groups were observed within the genus *Pseudoplatystoma*: Magdalena (*P. magdaleniatum*), Paraná (*P. corruscans*) and Amazon (*P. tigrinum*). Although the general features of South America's geological evolution are still under discussion (Garzione et al., 2008; Lundberg, 1998) our dating of the differentiation between the main Amazonian basins are consistent with Hoorn et al. (1995) and Lundberg (1998), who dated the establishment of the Magdalena, Paraná and Amazon basins during the Late Miocene between 11.8 and 10 Mya and the primary isolation of the Orinoco between 8.0 and 5.0 Mya.

The use of the early isolation of the Magdalena basin as a reference for establishing a molecular calibration (11.8 Mya, Lundberg, 1998) resulted in a low rate of molecular evolution for Pseudoplatystoma mitochondrial genome. In fact, the mean substitution rates for both mitochondrial regions (0.25% per Myrs for Cyt-b and 0.62% per Myrs for the CR) are probably among the lowest published so far for fishes. For instance, Bermingham et al. (1997) proposed a Cyt-b substitution rate for marine fishes of 1.0-1.3% per Myrs which has been frequently used for mitochondrial DNA evolution. More recently, Sivasundar et al. (2001) and Hubert et al. (2007) reported estimates ranging from 0.84% to 0.57% per site per Myrs for Characiformes CR, while Barluenga and Meyer (2004) proposed a substitution rate between 6% and 7% per Myrs, for Cichlids. On the other hand, Hardman and Lundberg (2006) found low rates of molecular substitution for the Cyt-b (0.38–0.53% per Myrs) and the nuclear rag2 genes (0.075-0.089% per Myrs) for the related 'phactocephalines' Pimelodidae, which suggests, along with the present results, that lower rates of molecular evolution may characterize Neotropical Siluriforms. However, as it has been clearly established recently in another group of Vertebrates, mitochondrial mutation rates are not expected to be uniform across groups of taxa (Nabholz et al., 2008).

According to the PL calibrated molecular clock, the estimated age for the differentiation of *P. corruscans* (11.8 Mya) is consistent with the split of the Paraná-Paraguay and Amazon basins at the low Miocene (Lundberg, 1998) as is the inferred date of vicariance of the Orinoco's species (*P. orinocoense* and *P. metaense*) at around 8.0 Mya (Hoorn et al., 1995). Before the final establishment of the Amazon, between 15 and 5 Mya, the last series of massive marine

incursions took place. Those events have been previously suggested to have promoted allopatric speciation in elevated regions such as Brazil and Guyana Shields and Andean foreland (Hubert and Renno, 2006). This vicariant event could be at the origin of the differentiation of *P. tigrinum* and its sister lineage (*P. fasiatum*, *P. punctifer*, *P. reticulatum*) since both distribution data and age estimates are concordant with this scenario. Subsequently, during the last 4 Myrs the marine regression followed by the establishment of the Amazon's main channel would have allowed further colonization of the central Amazon lowlands (Museum hypothesis; Haq et al., 1987; Hoorn, 1993). Nevertheless more data are needed in order to test this hypothesis.

Finally, the relatively young ages inferred for the divergence of P. reticulatum (found in the Paraná and the Amazon Basins) between 0.8 and 1.5 Mya was not consistent with the primary establishment of the Paraná at the Late Miocene (Hoorn et al., 1995: Lundberg, 1998). This likely results from recent speciation in relation with unknown vicariant events. Previous authors evidenced that headwater capture events and temporary connections between the headwaters of the Amazon and the Paraná promoted speciation by long-distance dispersal and further allopatric divergence (Lovejoy and Araujo, 2000; Montoya-Burgos, 2003; Hubert et al., 2007). The existence of dispersal routes between the Guyanas, Orinoco, Amazon and Paraná basins (Hydrogeology hypothesis; Montoya-Burgos, 2003; Hubert and Renno, 2006; Hubert et al., 2007) is consistent with the large geographical distributions of P. reticulatum in the Paraná and Amazon basins. An historical exchange zone between the Amazon and the Paraná basins has also been evidenced for several fish species (Hubert et al., 2007), and might also explain the extant distribution of *P. reticulatum*. The existence of dispersal routes is also consistent with the extant distribution of P. punctifer, differentiated neither morphologically (Buitrago-Suarez and Burr, 2007) nor genetically from P. fasciatum, in the Amazon and Guyanas basins. Indeed, a connection currently exists between the Guyana and Amazon basins through the inundated savannah of the Rupununi, which connects the Rio Branco (Amazon) to the Essequibo River (Lowe-McConnell, 1964). This connection was also evidenced through genetic analysis (Lovejov and Araujo, 2000; Willis et al., 2007), providing an explanation for the extant distribution of *P. fasciatum*. The role of the Rupununi savannah in the evolution of the genus Pseudoplatystoma was also recognized by Buitrago-Suarez and Burr (2007). Nevertheless, further complementary sampling and analysis are necessary to define the precise nature of the relationship between the Orinoco species.

Acknowledgments

This research was supported by the Institut de Recherche pour le Développement (IRD, France); Instituto de Biología Molecular y Biotechnología (IBMB, La Paz-Bolivia), Instituto de Investigaciones de la Amazonia Peruana, Iquitos (IIAP, Perú); Station Méditerranéenne de l'Environment Littoral (SMEL), Département Biologie Intégrative, Institut des Sciences de l'Evolution (ISEM), Université de Montpellier II. This research was carried out within the framework of the network RIIA (Red de Investigación de la Ictiofauna Amazónica): http://www.riiaamazonia.org/. A network assembling researchers from Bolivia, Peru, Brazil, Colombia, USA and France with the objective to improve the knowledge of the biology and biogeography of Amazonian fishes. We would like to thank B. Guinand, F. Leconte and P.-A. Crochet from the ISEM and E. Paradis from the IRD for valuable comments and suggestions; G. Rodrigo, V. Iñiguez from the IBMB for laboratory support and facilities; C. Hann from the DSPA and in particular Paul Van Damme and Cesar Navia from the FAUNAGUA association for P. corruscans and P. reticulatum sampling.

References

- Agnèse, J.-F., Zentz, F., Legros, O., Sellos, D., 2006. Phylogenetic relationships and phylogeography of the Killifish species of the subgenus *Chromaphyosemion* (Radda, 1971) in West Africa, inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 40, 332–346.
- Albert, J.S., Lovejoy, N.R., Crampton, W.G.R., 2006. Miocene tectonism and the separation of *cis*- and *trans*-andean river basins: evidence from Neotropical fishes. Journal of South American Earth Sciences 21, 14–27.
- Barluenga, M., Meyer, A., 2004. The Midas cichlid species complex: incipient sympatric speciation in Nicaraguan cichlid fishes? Molecular Ecology 13, 2061– 2076.
- Barthem, R., Goulding, M., 1997. The catfish connection: Ecology, migration and conservation of Amazon predators. Columbia University Press, New York.
- Bermingham, E., MacCajerty, S., Martin, A.P., 1997. Fish biogeography and molecular clocks: perspectives from the Panamanian Isthmus. In: Kocher, T.D., Stepien, C.A. (Eds.), Molecular Systematics of Fishes. CA Academic Press, San Diego, pp. 113–128.
- Bleeker, P.P., 1862. Atlas Ichthyologique des Indes Orientales Néêrlandais. Publié sous les Auspices du Gouvenement Colonial Néêrlandais. J. Smith and Gide, Amsterdam.
- Buitrago-Suarez, I.A., Burr, B.M., 2007. Taxonomy of the catfish genus *Pseudoplatystoma* Bleker (Siluriformes: Pimelodidae) with recognition of eight species. Zootaxa 1512, 1–38.
- Carolsfeld, J., Harvey, B., Ross, C., Baer, A., 2003. Migratory Fishes of South America: Biology, Fisheries and Conservation Status. World Fisheries Trust/World Bank/ IDRC, Victoria.
- Coronel, J.S., Maes, G.E., Clauss, S., Van Damme, P.A., Volckaert, F.A.M., 2004. Differential population history in the migratory catfishes *Brachyplatystoma flavicans* and *Pseudoplatystoma fasciatum* (Pimelodidae) from the Bolivian Amazon assessed with nuclear and mitochondrial DNA markers. Journal of Fish Biology 65, 859–868.
- Drummond, A.J., Rambaut, A., 2008. BEAST version 1.4.8. Available from: http://beast.bio.ed.ac.uk.
- Excoffier, L, Laval, G., Scheider, S., 2005. Arlequin ver 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics OnLine 1, 47–50.
- Farias, I.P., Ortí, G., Sampaio, I., Schneider, H., Meyer, A., 2001. The Cytochrome b gene as a phylogenetic marker: the limits of resolution for analyzing relationships among Cichlid fishes. Molecular Evolution 53, 89–103.
- Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
- Garzione, C.N., Hoke, G.D., Libarkin, J.C., Withers, S., MacFadden, B.C., Eiler, J., Ghosh, P., Mulch, A., 2008. Rise of the Andes. Science 320, 1304–1307.
- Guindon, S., Gascuel, O., 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696–704.
- Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
- Haq, B.U., Hardenbol, J., Vail, P.R., 1987. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–1167.
- Hardman, M., Lundberg, J.G., 2006. Molecular phylogeny and chronology of diversification for "phractocephaline" catfishes (Siluriformes: Pimelodidae) based on mitochondrial DNA and nuclear recombination activating gene 2 sequences. Molecular Phylogenetics and Evolution 40, 410–418.
- Hoorn, C., 1993. Marine incursions and the influence of Andean Tectonics on the Miocene depositional history of northwestern Amazonia: results of a palynostratigraphic study. Paleogeography, Paleoclimatology and Palaeoecology 105, 267–309.
- Hoorn, C., Guerreo, J., Sarmiento, G.A., Lorente, M.A., 1995. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23, 237–240.
- Hubert, N., Renno, J.-F., 2006. Historical biogeography of South American freshwater fishes. Journal of Biogeography 33, 1411–1436.
- Hubert, N., Duponchelle, F., Nuñez, J., Garcia-Davila, C., Paugy, D., Renno, J.-F., 2007. Phylogeography of the piranha genera Serrasalmus and Pygocentrus: implication for the diversification of the Neotropical ichthyofauna. Molecular Ecology 16, 2115–2136.
- Hubert, N., Hanner, R., Holm, H.R., Mandrak, N.E., Taylo, E., Burridgen, M., Watkinson, D., Dumont, P., Curry, A., Betzen, P., Zhang, J., April, J., Betnatchez,

L., . Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE 3 (6), e2490. doi:10.1371/journal.pone.0002490.

- Irwin, D.M., Kocher, T.D., Wilson, A.C., 1991. Evolution of *cytochrome b* gene in mammals. Journal of Molecular Biology and Evolution 2, 13–34.
- Lauzanne, L., Loubens, G., 1985. Peces del Rio Mamoré. ORSTOM, Paris.
- Loubens, G.P.J., Panfili, J., 2000. Biologie de *Pseudoplatystoma fasciatum* et *P. tigrinum* (Teleostei: Pimelodidae) dans le bassin du Mamoré (Amazonie Boliviene). Ichtyol Explor Freshwaters 11, 13–34.
- Lovejoy, N.R., Araujo, L.G.D., 2000. Molecular systematics, biogeography and population structure of Neotropical freshwater needlefishes of the genus *Potamorrhaphis*. Molecular Ecology 9, 259–268.
- Lowe-McConnell, R.H., 1964. The fishes of the Rupununi savannah districts of British Guiana. Part 1. Ecological groupings of fish species and effects of the seasonal cycle on the fish. Zoological Journal of the Linnaean Society 45, 103– 144.
- Lundberg, J.G., 1998. The temporal context for diversification of Neotropical fishes. In: Malabarba, L.R., Reis, R.E., Vari, R.P., Lucena, C.A.S., Lucena, Z.M.S. (Eds.), Phylogeny and Classification of Neotropical Fishes. Edipucrs, Porto Alegre, pp. 13–48.
- Montoya-Burgos, J.I., 2003. Historical biogeography of the catfish genus *Hypostomus* (Siluriforms: Loricariidae), with implications on the diversification of Neotropical ichthyofauna. Molecular Ecology 12, 1855–1867.
- Mossel, E., Vigoda, E., 2005. Phylogenetic MCMC algorithms are misleading on mixtures of trees. Science 309, 2207–2209.
- Nabholz, B., Glémin, S., Galtier, N., 2008. Strong variation of mitochondrial mutation rate across Mammals — the longevity hypothesis. Molecular Biology and Evolution 25 (1), 120–130.
- Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.
- Nuñez, J., Dugué, R., Corcuy, N., Duponchelle, F., Renno, JF., Raynaud, T., Hubert, N., Legendre, M., 2008. Induced breeding and larval rearing of Surubi, *Pseudoplatystoma fasciatum* (Linnaeus, 1766), from the Bolivian Amazon. Aquaculture Research 39, 764–776.
- Paradis, E.J.C., Strimmer, K., 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290.
- Paradis, E.J.C., 2006. Analysis of Phylogenetics and Evolution with R. Springer, New York. 211pp.
- Perdices, A., Bermingham, E., Montilla, A., Doadrio, I., 2002. Evolutionary history of the genus *Rhamdia* (Teleostei: Pimelodidae) in Central America. Molecular Phylogenetics and Evolution 25, 172–189.
- Rambaut, A., Drummond, A.J., 2007. Tracer v1.4. Available from: http://beast.bio.ed.ac.uk.
- Reis, R.E., Kullander, S.O., Ferraris, C.J., 2004. Check List of Freshwater Fishes of South and Central America. Ediprucs, Porto Alegre. 729pp.
- Rocha-Olivares, A., Fleeger, J.W., Foltz, D.W., 2001. Decoupling of molecular and morphological Evolution in deep lineages of Meiobenthic Harpacticoid Copepod. Molecular Biology and Evolution 18, 1088–1102.
- Sanderson, M.J., 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19, 101–109.
- Sivasundar, A., Bermingham, E., Orti, G., 2001. Population structure and biogeography of migratory freshwater fishes (*Prochilodus*: Characiformes) in major South American Rivers. Molecular Ecology 10, 407–417.
- Steel, M., Matsen, F.A., 2007. The Bayesian "star paradox" persists for long finite sequences. Molecular Biology and Evolution 24, 1075–1079.
- Sullivan, J.P., Lundberg, J.G., 2006. A phylogenetic analysis of major groups of catfishes (Teleostei: Siluriformes) using rag1 and rag2 nuclear gene sequences. Molecular Phylogenetics and Evolution 41, 636–662.
- Suzuki, Y., Glazko, G.V., Nei, M., 2002. Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proceedings of the National Academy of Sciences of the United States of America 99, 16138–16143.
- Taberlet, N., Meyer, A., Bouvet, J., 1992. Unusual mitochondrial DNA polymorphism in two local populations of blue tit (*Parus acerulens*). Molecular Ecology 1, 27–36.
- Vrijenhoek, R.C., 1998. Conservation genetics of freshwater fish. Journal of Fish Biology 53, 394–412.
- Willis, S.C., Nunez, M.S., Montaña, C.G., Farias, I.P., Lovejoy, N.R., 2007. Systematics, biogeography, and evolution of the Neotropican peacock basses *Cichla* (Perciformes: Cichlidae). Molecular Phylogenetics and Evolution 44, 291–307.
- Zink, R.M., Barrowclough, G.F., 2008. Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology 17, 2107–2121.