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Integrative and spatialized tools for studying the effects of a wide variety of ecosystem drivers are needed to implement ecosystem-based
management and marine spatial planning. We developed a tool for analyzing the direct and indirect effects of anthropic activities on the structure
and functioning of coastal and marine ecosystems. Using innovative modelling techniques, we ran a spatially explicit model to carry out an
ecological network analysis (ENA) of the effects of climate change (CC), of an offshore wind farm (OWF) and of multiple fishing scenarios on the
Bay of Seine (eastern part of the English Channel) ecosystem. ENA indices described the effects of those different drivers in a holistic and spatial
way. The spatial analysis of ecosystem properties revealed local and global patterns of modifications attributed to CC, while the OWF resulted in
localized changes in the ecosystem. This ability of ENA indicators to detect human-induced changes in ecosystem functioning at various spatial
scales allows for a more integrative view of the effects of human activities on ecosystems. ENA indices could be used to link both local and
global ecosystem changes, for a more cross-scale approach to ecosystem management.

Keywords: climate change, ENA, ecological network analysis, Ecospace, ecosystem functioning, fishing effects, offshore wind farm, species distribution, trophic
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Highlights
� Ecological network analysis describes the spatial effects

of multiple environmental drivers on the functioning of
the extended Bay of Seine ecosystem.

� Climate change effect on species distribution had strong
structuring effects on the ecosystem.

� A total of two fishing scenarios linked to Brexit (in-
creased and decreased fishing) were tested; they had lim-
ited effects on ecosystem functioning compared to the
effects of climate change on species distribution.

� Ecological network analysis distinguished vulnerable ar-
eas that might require special attention in terms of eco-
logical management.

Introduction

Marine ecosystems are crucial for human societies because
they provide many services such as food provisioning, nutrient
regulation, habitat maintenance, and climate mitigation (Pe-
terson and Lubchenco, 1997). Marine ecosystems are subject
to pressures from human activities (Halpern et al., 2008) and
their subsequent detrimental impacts. Anthropogenic pressure
is predicted to keep on increasing in the next decades due to
the growing human needs (MEA et al., 2005). This is reflected
in the expanding number of offshore wind farms (OWFs) to
meet the need for greener energy. The environmental impacts
of OWFs occur in three phases: (i) during the construction
phase impacts may be considered temporary, the same can
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be said of the (ii) decommission phase while (iii) during the
operational phase impacts are longer lasting (Petersen and
Malm, 2006). The most significant long-lasting impacts of the
operational phase on the whole ecosystem functioning include
the reef effect caused by the turbine structures and the reserve
effect resulting from fishing closure (Raoux et al., 2019; De-
graer et al., 2020). Direct anthropogenic activities are not the
only driver of ecosystems: climate change (CC) may also have
many hard to predict effects (Hoegh-Guldberg and Bruno,
2010; Winder and Sommer, 2012; Poloczanska et al., 2016a).
These effects include (among others) drifts in species distribu-
tion (Cheung et al., 2009) and changing physiological rates
(Brierley and Kingsford, 2009). Ecosystems are complex and
interconnected. Unpredictable effects on several of their com-
ponents could cascade through trophic chains and interac-
tions, limit their resilience, and thus facilitate regime shifts and
ecosystem collapses (Levin and Lubchenco, 2008). In this sit-
uation, there is a growing need for integrative approaches to
understand the sensitivity of such ecosystems to a wide variety
of drivers.

The scientific community and the decision-makers encour-
age the use of integrative approaches that can address an in-
creasing complexity (Rombouts et al., 2013) and number of
anthropogenic pressures (de Jonge, 2007; Rodriguez, 2017;
Fath et al., 2019). Integrative approaches are holistic methods
employed to understand the functioning of whole ecosystems.
Integrative or ecosystem-based approaches are considered es-
sential for adequate ecosystem-based management (Borja et
al., 2010; Agardy et al., 2011; Buhl-Mortensen et al., 2017)
and have been highly advocated for sustainable management
of marine and coastal environments (Langlet and Rayfuse,
2018).

Ecological network analysis (ENA) is promising because it
is compatible with ecosystem-based management and offers
a quantitative assessment of marine ecosystem functioning
(Niquil et al., 2014a; Safi et al., 2019; Heymans et al., 2020).
ENAs depict the ecosystem as a network of interactions, where
information can cascade from one part of the network to the
other. Derived from different sciences including economics
and thermodynamics (Wulff et al., 1989), ENA indices can
quantify emerging properties of ecosystems and monitor their
evolution (Ulanowicz, 1986; Heymans and Tomczak, 2016;
Borrett and Scharler, 2019). Using ENA to spatialize ecosys-
tem models would make them more operational and help ma-
rine spatial planning (Le Tissier, 2020).

Ecospace is a well-known spatio-temporal trophic model
derived from the Ecopath with Ecosim framework (Walters et
al., 1999; Christensen and Walters, 2004). It can help marine
spatial planning initiatives by simulating the effects of envi-
ronmental changes on food webs (e.g. Alexander et al., 2016;
Liquete et al., 2016). However, to our knowledge, no study
has tested ENA in an Ecospace model. Combining ENA with
Ecospace could give us a holistic view of the ecosystem under
multiple schemes of environmental changes in order to link
ecosystem-based management to marine spatial planning.

In this study, we propose to investigate the spatial effects
of multiple drivers on the Bay of Seine (eastern part of the
English Channel) ecosystem, using ENA indices. This work is
based on the Ecospace model of Halouani et al. (2020) mod-
ified by Bourdaud et al. (2021). It represents the food web of
the extended Bay of Seine (eBoS), and initially modelled the
potential reserve effect of the future OWF of Courseulles-sur-
Mer (Halouani et al., 2020). It was also used to explore the

potential effects of CC on species distribution (Bourdaud et
al., 2021) by combining it with niche models (Lasram et al.,
2020).

Following these works, we integrated new approaches
aimed at better forecasting the possible evolution of the Bay of
Seine ecosystem. First, we added the reef effect to the potential
impacts of the future OWF of Courseulles-sur-Mer. Second,
we used the spatial–temporal framework module of Ecopath
with Ecosim (Steenbeek et al., 2013) to better model the likely
effect of CC on species distribution in the Bay of Seine. Finally,
we integrated fishing scenarios following the plausible effects
of Brexit into the eBoS model. The spatial explanatory power
of ENA indices was tested, both at a local scale inside the
eBoS (OWF) and at a global scale across eBoS (CC and fish-
ing scenarios), using these scenarios. We explored the spatial
variability of the ecosystem properties and determined three
functional regions with similar properties in the eBoS. We also
discussed the sensitivity of the ecosystem properties to the dif-
ferent drivers within each functional region. By doing so, we
determined the potential risk that such changes in ecosystem
properties occur. We also highlighted the sensitive areas of the
ecosystems that may require special attention from decision-
makers in the future, especially in the implementation of new
OWFs in the English Channel. Finally, we investigated ENA
sensitivity and explanatory power as a spatial planning tool.

Material and methods

Study area

The eBoS Ecospace model covers the sea space from the
Cotentin peninsula to Le Havre all the way up to the
French–British delimitation of the Exclusive Economic Zones
(Figure 1). It is a shallow coastal ecosystem open onto the
English Channel, with a mean depth of 35 m varying from
5 to around 70 m in the paleo-valley north-west of the eBoS.
The eBoS covers 13 500 km2; the main sediment types include
gravels, coarse sand, fine sand, and muddy fine sand (Sup-
plementary Figure S1; Dauvin, 2015). Oceanographic fea-
tures include the Seine estuary (south-east of the eBoS), and
the Seine paleo valley (south-east to north-west of the eBoS;
Figure 1). The Bay of Seine and the English Channel in gen-
eral are a highly anthropized ecosystem, with numerous ac-
tivities including fishing, aggregate extraction, marine renew-
able energy, tourism, sea freight, and more (Dauvin, 2015).
Fishing is very important in the bay, and more particularly
king scallop (Pecten maximus) dredging, but many other fish-
ing techniques are also used. Fishing gears include trawls and
nets targeting demersal fish, trawls targeting small pelagic
fish, demersal fish and cephalopods, as well as other fish-
ing gears (Supplementary Table S1). The most harvested fish
species include sole (Solea solea) and cod (Gadus morhua).
The bay is also of great interest for renewable marine energy.
The OWF of Courseulles-sur-Mer is under construction and
should start operating in 2024 (∼ 50 km2, 64 turbines). Other
OWF projects of various sizes are also under consideration in
the bay.

Food web modelling

The eBoS model was built from Ecopath with Ecosim (EwE
6) software. EwE can model marine food webs through a
static average representation (Ecopath), with a time dynam-
ics (Ecosim) and spatio-temporally (Ecospace).
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Figure 1. Map of the eastern English Channel, including the boundaries of the eBoS Ecospace model and the localization of the OWF of
Courseulles-sur-Mer.

The basic Ecopath model is a balanced model where the
production of a trophic group is considered equal to its con-
sumption by the system (Polovina, 1984; Pauly et al., 2000).
The production of each group of Ecopath follows the equa-
tion:

Bi. (P/B)i =
∑

Bj.(Q/B) j.DCi j + Yi + Ei

+ BAi + Bi.(P/B)i. (1 − EEi) , (1)

where B is the biomass of prey i or predator j, (P/B)i is the
production of i per unit of biomass, (Q/B) j is the consumption
of j per unit of biomass, DCi j is the fraction of i in the diet of j,
Yi is the total fishery catch rate of i, Ei is the net migration rate
of i, BAi is the biomass accumulation rate of i, and EEi is the
ecotrophic efficiency of i or the proportion of i’s production
utilized in the system.

The eBoS Ecopath model is composed of 40 living groups
including a wide range of marine species—fish, invertebrates,
birds, and marine mammals—and two non-living groups—
detritus and fishing discards. Living groups include mono-
specific groups as well as multi-specific groups (Supplemen-
tary Table S2). Multiple fishing techniques were modelled
(trawling, nets, angling, traps, and other minor gears). A full
description of the eBos model is available in Halouani et al.
(2020).

Ecosim is a time–dynamic version of Ecopath and considers
biomass variation over time (Walters et al., 1997; Christensen
and Walters, 2004). Ecosim represents the biomass dynamics
as

dBj/dt = g j.ai j.vi j.Bj.Bi

2.vi j + ai j.Bj
− Zj.Bj, (2)

where Bj is predator j biomass, i the prey of j, g j is the growth
efficiency of j, vi j is the prey vulnerability exchange rate, ai j

is the predator search rate, and Zj is the total instantaneous
mortality of j.

The eBoS Ecosim model was set to run from 2000 to
2015 and used 29 annual time series, including 21 time se-
ries of catches from the IFREMER database SACROIX (Sys-
tème d’Information Halieutique, 2017) and eight time series
of biomass from multiple stock assessment campaigns. See
Halouani et al. (2020) for more details.

Finally, Ecospace is a spatially explicit time–dynamic model
based on Ecopath and Ecosim. In Ecospace, the spatial extent
of the ecosystem is represented by a grid of cells and each cell
is a time–dynamic trophic model based on Ecosim, with inter-
connections between cells (Walters et al., 1999; Christensen

et al., 2014). The base map of the eBoS Ecospace model was
made of 4907 cells, with a resolution of 0.015◦ × 0.015◦ each,
identified depending on their row r and their column c (r and
c). Input maps included a bathymetric map to define the model
area, extracted from GEBCO (General Bathymetric Chart of
the Oceans: https://www.gebco.net/) and a map of primary
production from SeaWifs representing the relative chlorophyll
a concentration in the bay in 2000 (https://podaac.jpl.nasa.go
v/). A habitat map was used to define species distributions in
the initial model of Halouani et al. (2020), but it was replaced
with niche model suitability index maps in Bourdaud et al.
(2021; Supplementary Table S3). These suitability index maps
were computed using multi-algorithm niche models (Lasram
et al., 2020, Supplementary Figures S2–S28). Niche model al-
gorithms are correlative approaches aimed at identifying the
potential niches of species by correlating species occurrences
with environmental variables. The niche models developed by
Lasram et al. (2020) used presence-only data correlated with
climatic variables (temperature and salinity) as well as habi-
tat variables (type of substrate, depth, slope, and orientation).
Eight models from BIOMOD were used. Model fit was deter-
mined using a threefold cross-validation procedure and model
performance was assessed using both the Continuous Boyce
Index or CBI and the True Skill Statistic or TSS. Only the
models with an averaged CBI superior to 0.5 were kept (Sup-
plementary Tables S4 and S5). All the modelling choices can
be found in Lasram et al. (2020). Averaged suitability index
maps were then built from the fitted species distribution mod-
els, using climatic and habitat-based species distribution mod-
els, and were validated using expert knowledge.

Averaged suitability index maps were computed for 72
species of the eBoS and were employed as environmental
driver maps for most of the groups of the Ecospace model
(Coll et al., 2019). Some groups considered poorly mod-
elled by the niche models were driven by other parameters,
e.g. depth (Supplementary Table S3). Mono-specific niche
model outputs were directly applied for mono-specific trophic
groups and merged according to the biomass of each species in
multi-specific groups. The multi-specific trophic groups lack-
ing data to model the distribution of all the species of the
group were driven by the suitability index map of the dom-
inant species of the group (Bourdaud et al., 2021).

Environmental drivers (h) were used to compute the habi-
tat capacity (Crc j) of each trophic group j in each cell (r, c) of
the eBoS Ecospace model and define suitable habitats for each
group of the model (Christensen et al., 2014). The habitat
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Figure 2. Modelling framework. eBoS, extended Bay of Seine; ENA, ecological network analysis; OWF, offshore wind farm; and CC, climate change.

capacity drove the vulnerable prey densities (Vi j) as well as
the vulnerability exchange rate (vi j), the search rate (ai j), and
the predation rate (z j) to set suitable environments for all the
groups of the model according to their environmental pref-
erences. Predators fed themselves according to their habitat
capacity and based on prey availability. The prey pool avail-
able for each predator is fixed and defined in the Ecopath diet
matrix. The habitat capacity Crc j ranged between 0 and 1 and
was calculated for each cell as a function of a vector of habitat
attributes (environmental drivers):

Crc j = f j
(
hr,c

)
, (3)

Vi j = vi j.Bj

2.vi j + ai j.
Bj

Crc j

, (4)

where Bj is the biomass of predator j, vi j is the vulnerability
exchange rate, and ai j the search rate.

Multiple types of environmental drivers can define the habi-
tat capacity of a species (water depth, temperature, or suitabil-
ity index maps from niche models, Supplementary Table S3),
and each environmental driver is associated with a specific re-
sponse curve. In the eBoS model, a linear response curve was
associated to the niche model results to compute the habitat
capacity of each species (see De Mutsert et al., 2017). The
suitability index of the niche models varied between 0 (not
suitable) and 1 (suitable), like the habitat capacity (Bourdaud
et al., 2021). Other response curves were built for the other
groups (Supplementary Figures S29–S34).

The eBoS model simulated multiple scenarios and each
scenario modelled one driver. In the first scenario, we mod-
elled the potential long-term effects of the future OWF of
Courseulles-sur-Mer. The second and third scenarios modelled
the likely effects of CC on species distribution in the Bay of
Seine under the RCP8.5 forcing scenario of the IPCC (Inter-
governmental Panel on Climate Change) that appears to be
the most realistic one (Schwalm et al., 2020). Finally, we built

two fishing scenarios linked to the potential effects of Brexit:
a “reduced fishing activities” scenario—F_red—and an “in-
creasing fishing activities” scenario—F_inc (Figure 2).

ENA required working with a mass-balanced model. As
such, we did not work in a temporal way and we only needed
“snapshot” of trophic flows. Ecospace was used to create
end maps of indices for each scenario (Figure 2) at a mass-
balanced state.

Effect of climate change on species distribution

In Bourdaud et al. (2021), a first set of suitability index maps
was computed using niche models with climate parameters
over the 2005–2012 period (Lasram et al., 2020). It was de-
fined as the initial environmental driver for 27 of the 40 living
groups, from benthic invertebrates to piscivorous fish (Supple-
mentary Table S2). Groups were chosen based on data avail-
ability and distribution models results. To model the effect
of CC on the distribution and dynamics of eBoS species, two
new sets of suitability index maps were computed with niche
models, using climate projections under the IPPC “business as
usual” scenario RCP 8.5 (Lasram et al., 2020), but at differ-
ent time intervals: one in 2050 (2041–2050) and one in 2100
(2091–2100). Using these new niche models, we determined
the evolution of the suitability index under the effects of CC
for the 27 living groups using environmental driver. This al-
lowed us, to model the potential effect of CC on a large part
of the food web, from benthic invertebrates to piscivorous fish
but not in its entirety.

The suitability index defined the theoretical niche of the
species, between the realized niche and the fundamental one
(Soberón and Nakamura, 2009; Jiménez et al., 2019). Con-
sidering the fundamental niche as the extent of geoclimatic
parameters where species have a positive production rate
(Hutchinson, 1957), we hypothesized that the production of
the species would be lower close to the limit of the theoretical
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niche (lower suitability index), and higher in the center of the
theoretical niche (higher suitability index). The niche models
simulated how suitable the geoclimatic parameters were and
their evolution by 2050 and 2100, following the IPPC “busi-
ness as usual” scenario RCP 8.5.

Like the Ecospace model outputs, the niche model outputs
used to model the effects of CC were all validated by experts
(J.-C. Dauvin, J.-P. Robin, and É. Foucher, pers. comm.), and
the results were similar to those of other works on similar
species in the English Channel (Rombouts et al., 2013).

Averaged suitability index maps for each of the 27 groups
were computed for the two CC projections (2050 and 2100),
and were introduced in Ecospace using the spatial–temporal
framework of EwE (Steenbeek et al., 2013) to model the
effects of CC. The spatial–temporal framework was used
with the following protocol: all Ecospace scenarios were first
started with the initial suitability index maps as environmen-
tal drivers computed from 2005 to 2012 climate parameters.
After 20 years of spin-up used to reach stable biomass for each
group, the suitability index maps of the CC niche models were
introduced to replace the initial suitability index maps and
to model the effect of CC on species distribution in the two
CC scenarios. Subsequently, Ecospace scenarios were run un-
til group biomass values were considered stable and reached a
balanced state, as required by ENA. The models were run for
55 years after the spin-up in each CC scenario. The results re-
trieved after stabilization were used to compute ENA indices.

By replacing the initial suitability index computed from
2005 to 012 climate parameters with suitability index sets
computed from the effects of CC on climate parameters, we
modified the environmental driver for each of the 27 groups,
to reflect the effects of CC in 2050 and in 2100. The aim was
to reflect the impact of CC on the biogeoclimatic niches of the
trophic groups: as CC modifies the environment, geoclimatic
parameters become more or less suitable for the species of the
trophic groups and modify habitat suitability (see Coll et al.,
2019). Following the foraging arena theory, if the habitat be-
comes more or less suitable for a group (according to niche
models), then the habitat capacity changes accordingly and
modifies the group dynamic in Ecospace (Walters et al., 1999;
Christensen et al., 2014). If the suitability index of a group de-
creases between the reference niche model—computed from
the 2005 to 2012 climatic parameters—and one of the CC
niche models—IPPC “business as usual” scenario RCP 8.5—
, the habitat capacity of the group is reduced (Crc j). Conse-
quently, the habitat is less suitable for the group j, consump-
tion of I by j decreases (Christensen et al., 2014; Coll et al.,
2019), and so does the production of j [Equation (4)]. There-
fore, the evolution of biomass distribution in the Ecospace
model due to CC depends both on the suitability index of the
species (evolution of abiotic parameters) and on prey avail-
ability (biotic relationship between species), allowing for a
more realistic simulation of the effects of CC (see Bourdaud
et al., 2021).

Using the spatial–temporal framework of EwE (Steenbeek
et al., 2013), we produced end model results for the two CC
time intervals rather than modelling the “continuous” impact
of CC from the current period to the 2050 or 2100 horizon.

Fishing scenarios

To evaluate the significance of the effects of fishing on
the ecosystem, we designed multiple fishing effort functions

(Supplementary Tables S6–S8), to model the potential effects
of Brexit on fishing effort in the eBoS (Walters et al., 1999). A
total of two new scenarios were built: one with a decreased
fishing pressure (F_dec) and one with an increased fishing
pressure (F_inc) compared to the reference scenario.

� F_dec considered a decrease of the fishing activities in
the area. Such a decrease would be the result of the clos-
ing of British fishing areas to French fishermen. Those
areas are considered very rich in fish resources (https://
atlas-transmanche.certic.unicaen.fr/en/), so it was spec-
ulated that fishermen would lose part of their income
and could decide to stop or shift their activity. As France
provides strong support to European fishing, French fish-
ermen could be helped find other jobs, and this would
limit French fishing in the area. By looking at the “fish-
ing vessel activity” report of Caen by the Ifremer (Ifre-
mer SIH, 2017), we supposed that medium-sized to small
ships (< 12 m) would be more impacted. Such vessels
mainly performed three fishing activities in the eBoS
model (“pelagic and bottom trawls,” “bottom trawls,”
and “pelagic trawls”), as well as “other fishing gears.”
To model the potential effects of this scenario, we ap-
proximated a 20% reduction of the “trawl” activities
and a 5% reduction of “other fishing gears.” Moreover,
British fishermen would not be able to catch king scal-
lops in French waters anymore, and in the absence of
potential modifications of quotas, this would result in a
lower fishing pressure in the area. The “dredge” gear ac-
tivity would thus be reduced by 20% based on British
quotas on king scallops.

� F_inc considered an increase of fishing in the area re-
sulting from the relocation of European fisheries from
France, Belgium, The Netherlands, or even Denmark in-
side the eBoS. As European fishermen would not have
access to the United Kingdom waters, they would have
to fish in other places, e.g. in the eBoS. King scallop fish-
ing would still be reduced, as no new quotas are likely to
be set to let other countries take up the UK’s vacant place,
even though some French fishermen could benefit from
it. In our scenario, this resulted in a 20% increase of the
“pelagic and bottom trawls,” the “bottom trawls,” and
the “pelagic trawls” activities, as well as a 5% increase
of “other fishing gears” activities based on the previous
Brexit scenario.

Following the December 2020 negotiations between the Eu-
ropean Union and the United Kingdom government, decisions
on fishing have been postponed till 2026, making our scenar-
ios still plausible to this day.

New fishing effort grids were built from the initial model
of Halouani et al. (2020) and modified according to the de-
sired scenario (Supplementary Tables S6–S8). Fishing effort
in each fishing scenario was considered constant, because we
only looked at the “end picture” of each scenario.

Offshore wind farm

Recently there has been an increasing interest to understand
potential effects of OWFs on marine ecosystems (Shields and
Payne, 2014). They have been split into three main cate-
gories depending on the phase of life of the OWF: (1) con-
struction; (2) routine operation; and (3) decommission (Gill,
2005; Shields and Payne, 2014). While the construction and

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsac026/6535870 by Bibliothèque U

niversité de C
aen user on 28 February 2022

https://atlas-transmanche.certic.unicaen.fr/en/


6 Q. Nogues et al.

Table 1. ENA indices computed with enaR from Ecospace SCOR files.

Name Objective Calculation References

Relative
redundancy of
the flow (RDC)

The relative redundancy is the
“reserve” of the system
information and refers to the
extent of parallel flows in the
system relative to the total
capacity of the system.

�i = −
n∑

i, j = 1
Ti jlog

[
T2

i j

TiT
′
j

]
, where �i is the internal

relative redundancy, Ti jthe flow between i and j, Ti the
sum of all the flows leaving i, and T ′

j the sum of all the
flows leaving j.
RDC = �i

DC
where DC is the development capacity of the system.

Ulanowicz and
Norden (1990),
Christensen
(1995), and
Ulanowicz et al.
(2009)

Total flow diversity
(H)

Flow diversity quantifies the
diversity of flows passing
through all the groups of the
model.

H = ∑
i

∑
j

fi jlog( fi jQi )

where fi j is the fraction of the total flow from j that
passes through I, and Qi is the probability that a unit
of energy passes through i.

Christensen (1995)

Mean trophic
efficiency/mean
transfer efficiency
(TE)

The mean trophic efficiency
describes the mean percentage
of production of one trophic
level converted to production by
the next trophic level. It is
averaged for the entire trophic
network.

Using Lindeman spine, the trophic efficiency for a
trophic level tl was computed as:
TEtl = T.tl+1

T.tl
×100

where T.tl is the total outflow for trophic level tl, and
T.tl+1 is the total outflow for the next trophic level.
The “mean trophic efficiency” of the system is then
derived from the geometric mean of the efficiencies of
all trophic levels.

Lindeman (1942)
and Niquil et al.
(2014b)

System omnivory
index (SOI)

The system omnivory index
quantifies the distribution of
trophic interactions among
different trophic levels. It is the
mean omnivory index of all the
groups.

OIi =
n∑

j = 1
[TLj − (TLi − 1)]2 × DCi j

SOI =
∑n

i = 1[OIi×log(Qi )]∑n
i = 1 log(Qi )

where TL is the trophic level of i or j.

Libralato (2013)

Recycling index or
Finn Cycling
Index (FCI)

The recycling index is the fraction
of energy recycled in the system.

FCI = TSTc
TST

where TST is the total system throughflow, and TSTc
the cycled total system throughflow.

Finn (1980)

Mean trophic level
(MTL2)

The MTL2 is the mean trophic
level of the network’s groups,
taking all level-2 consumers into
account.

MTL =
∑

i TLi × Bi∑
i Bi

where B is the biomass of i or j.
(Latham, 2006)

decommission phases are characterized by a strong and abrupt
impact on the ecosystem, the operating phase is characterized
by a long and structuring effect lasting as long as the park is
operating (Gill, 2005; Petersen and Malm, 2006; Wilhelms-
son et al., 2006; Wilhelmsson and Malm, 2008). This study
targets the two main structuring effects of the operating phase
on the whole ecosystem: the reef effect and the reserve effect
(Petersen and Malm, 2006; Raoux et al., 2019; Degraer et
al., 2020). To model these impacts, we used tools available
in Ecospace and data from a previous Ecopath model of the
Courseulles-sur-Mer OWF (Raoux et al., 2017).

Spatial restrictions are likely to be implemented around
OWF installations for navigation safety, which could lead to
a limitation of fishing activities: this is the above-mentioned
reserve effect. Modelling the reserve effect induced by the
OWF was straightforward and had previously been achieved
by Halouani et al. (2020) using the MPA tool of Ecospace.
To do so, multiple cells of the Ecospace model inside the fu-
ture OWF were closed to fishing. Only 15% of the OWF sur-
face was blocked to all fishing activities so as to represent the
OWF owners’ proposal during the environmental impact as-
sessment, to “optimize” the fishing area by leaving a sufficient
space between turbines and connecting cables (Raoux et al.,
2018).

Due to the small footprint of the OWF foundation com-
pared to the Ecospace cell resolution (5% of a single cell),
modelling the reef effect was not possible by simply changing
the habitats in the cells. We had to look at a previous model of

the reef effect of the Courseulles-sur-Mer OWF (Raoux et al.,
2017). The observations on this Ecopath model were linked
to the 70 km2 farm in Ecospace (37 cells). In Raoux et al.
(2017), the reef effect was modelled by forcing the biomass
of 10 trophic groups and the replacement of soft sediment
by hard substrates was, thus considered insignificant. We did
the same by creating new environmental maps for the same
groups in the eBoS Ecospace model to represent the biomass
variations caused by the reef effect (Supplementary Table S9).
The increased habitat suitability due to the reef effect would
thus lead to a higher foraging capacity based on the forag-
ing arenas theory (Walters et al., 1997; Ahrens et al., 2012).
The new environmental maps were added using the spatial–
temporal framework of Ecospace at the 2015 time step, before
the CC simulations. Similar structural sub-regions were used
to characterize the effects of the OWF on the eBoS ecosystem
(Halouani et al., 2020): the OWF area itself, the first two rows
of cells surrounding the farm (spillover 1), the next two rows
of cells surrounding the farm (spillover 2), and the rest of the
eBoS model (Bay; Supplementary Figure S35).

Ecological network analysis

ENA indices are holistic indices describing the functioning and
organization of the food web. They are computed from flow
matrices of the food web. ENA indices were computed for
each cell of the Ecospace model with a beta Ecospace plugin:
“EnaR”(Table 1). This plugin allows Ecospace to build SCOR
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Spatialized ecological network analysis for ecosystem-based management 7

Figure 3. Maps of ENA indices for the reference scenario.

files for each cell of the model at every time step. Based on the
SCOR file, the ENA indices were calculated with the““ena””
R package (Borrett and Lau, 2014). ENA indices were calcu-
lated for the 4907 cells of the Ecospace model in the eBoS.
They were computed for the initial reference current scenario,
for the two CC scenarios, for the two fishing scenarios, and
for the OWF scenario.

Statistical analysis

In order to better understand the effects of each scenario spa-
tially, a K-means clustering analysis was carried out (Mac-
Queen, 1967) on the ENA results of the current reference sce-
nario. The “Elbow” method was used to determine the opti-
mal value of the cluster based on multiple K values and their
effects on the averaged distance between points (sum of the
square).

A Cliff delta was used to test the significance of the dif-
ferences between the ENA values of the reference scenario
and those of the different scenarios modelling the effects of a
driver. In previous works, the Cliff Delta (Cliff, 1993) proved
useful to compare ENA results when large sample sizes and
heteroscedasticity precluded the application of parametric sta-
tistical tests (Tecchio et al., 2016; V. Girardin and J. Lequesne,
pers. comm.). We employed the non-parametric Cliff Delta
with the same threshold as Romano et al. (2006), who consid-
ered differences between datasets negligible if the Cliff Delta (|
∂Cliff |) was < 0.147, low if 0.147 < | ∂Cliff | < 0.33, medium
if 0.33 < | ∂Cliff | < 0.474, or strong if | ∂Cliff | > 0.474.

Results

Regionalization of the model

The ENA values of the reference scenario were higher near
the coastline and especially near the Seine estuary south east
of the eBoS model, for the six indices; they were lower in the
deepest, most offshore part of the eBoS, north west of the
eBoS model (Figure 3). While most of the indices followed
this trend, the FCI obviously differed, with a pattern closer to
the primary production pattern (Supplementary Figure S36).
Overall, this indicates that the flow diversity, the relative over-
head, the mean trophic level, and to a lesser extent recycling
seemed to follow a coastline/open sea gradient.

The K-means clustering analysis associated to the “elbow”
method determined three to four clusters. In order to simplify
the analysis and because three clusters provided better spatial
delimitation, we set it at three. The three clusters revealed a
gradient from the coastline to the open sea (Figure 4). The
clusters were named accordingly, with the most coastal cluster
called “Coastal Bay of Seine,” the following one “Offshore
Bay of Seine,” and the last one “Central English Channel.”

Effects of climate change and fishing on the
functioning and organization of the system

CC scenarios displayed much larger variation in their ENA
indices than fishing scenarios did. The CC 2100 scenario was
the one with the highest number of strong variations with the
reference scenario (| ∂Cliff | > 0.474, Figure 5). While fishing
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8 Q. Nogues et al.

Figure 4. Regions with similar ecosystem properties and functioning determined using a K-means clustering analysis based on the ENA index values in
the reference scenario.

Figure 5. Variations between the reference scenario and the different CC scenarios (left columns) and Brexit scenarios (right columns). Positive
variations are in red boxes, and negative variations in blue boxes. (a), variation in the Central English Channel region; (b), variation in the Offshore Bay of
Seine region; and (c), variation in the Coastal Bay of Seine region. Cliff Delta results: ∗∗∗ strong variation (| ∂Cliff | > 0.474); ∗∗ medium variation (0.33 < |
∂Cliff | < 0.474); ∗ small variation (0.147 < | ∂Cliff | < 0.33); and no ∗, negligible variation (| ∂Cliff | < 0.147).

scenarios had logical effects on ENA indices, with opposite
responses to the increased or decreased fishing pressure, CC
scenarios had surprising effects. For example, the 2050 CC
scenario increased the SOI of the Coastal Bay of Seine region,
while the 2100 CC scenario greatly decreased it (Figure 5).
This is linked to the different effects of CC on the groups of
the Ecospace model (Supplementary Tables S37–S52).

All but two indices displayed medium to strong variation
in the 2100 CC scenario. Flow diversity (H) in the Central
English Channel region and recycling (FCI) in the Offshore
Bay of Seine region were the only indices displaying negligible
variation compared to the reference scenario (Figure 5). In the
2050 CC scenario, six indices displayed negligible variation
compared to the reference scenario, especially in the Offshore
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Spatialized ecological network analysis for ecosystem-based management 9

Figure 6. Variations between the reference and OWF scenarios for the OWF sub-region. Regions include the spillover 1 region (first two rows of cells
around the OWF), the spillover 2 region (next two rows of cells around the OWF), and the rest of the bay. All sub-regions are exclusive, with no
overlapping. Red bars, positive variations and blue bars, negative variations. Cliff Delta variation: ∗∗∗ strong (| ∂Cliff | > 0.474); ∗∗ medium (0.33 < | ∂Cliff
| < 0.474); ∗ small (0.147 < | ∂Cliff | < 0.33); and no ∗, negligible (| ∂Cliff | < 0.147).

Bay of Seine (three indices) and the Central English Channel
(two indices; Figure 5). Variations due to the 2050 CC sce-
nario were small or negligible. This difference between the
2050 and 2100 scenarios is linked to the greater effect of CC
on the trophic group’s habitat suitability in the 2100 scenario
than in the 2050 scenario (Supplementary Figure S41).

In general, the Coastal Bay of Seine region was the most
sensitive area to CC (in both the 2050 and 2100 scenarios),
with negligible variation of only one of its ecological indices,
followed by the Central English Channel (three indices), and
finally the Offshore Bay of Seine (four indices).

Effect of the offshore wind farm on the system

The effect of the OWF was the most visible one on the
SOI of the eBoS model, followed by the mean trophic level,
trophic efficiency, flow diversity, the relative redundancy of
the flows, and recycling. Spatially speaking, the effects were
mainly localized within the OWF perimeter, where all the
above-mentioned indices increased, except recycling that was
slightly reduced compared to the reference scenario (0.147 <

| ∂Cliff | < 0.33; Figure 6). While recycling did not appear to
be impacted by the OWF in the spillover regions, flow diver-
sity, omnivory, trophic efficiency, and the mean trophic level
decreased. The spillover regions always resulted in a decreased
metric, regardless of ENA indices, in diverse proportions. The
rest of the Bay of Seine did not show any significant variation
between the OWF and reference scenarios, indicating that the
OWF had a localized effect on the Bay of Seine ecosystem.

Discussion

The modelling approach implemented in the present study im-
proved the simulation of multiple drivers, using whole ecosys-
tem approaches based on a single reference model. We did
not represent the entire effect of CC, but rather tried to

progressively improve the forecasting previously achieved in
the Bay of Seine (Raoux et al., 2019; Halouani et al., 2020;
Nogues et al., 2020; Bourdaud et al., 2021). Despite improve-
ments such as modelling the reef effect of the OWF, modelling
the effects of CC on species physiology (through the habitat
capacity), adding variability in the fishing regimes, there still
remains limitations related to the great complexity of CC and
of its impacts on ecosystems (Hoegh-Guldberg and Bruno,
2010; Ainsworth et al., 2011). Such limitations include the
failure to account for the arrival of tropical non-indigenous
species (NIS) in the eBoS (Cheung et al., 2009; Weatherdon et
al., 2016). Modelling the inflow of NIS due to CC in an open
system like the Bay of Seine is a very hard task. The results are
often hypothetical and subject to many modelling hypotheses
(Morin and Thuiller, 2009; Beaugrand et al., 2018; Le Marc-
hand et al., 2020). Moreover, the arrival of NIS is often mod-
elled with new trophic groups (Libralato et al., 2015; Corrales
et al., 2018), which change the system aggregation. Compar-
ing the system before and after the arrival of NIS using ENA
becomes tricky, as some ENA indices are highly sensitive to
the system aggregation (Johnson et al., 2009). That is why we
chose not to integrate such arrivals for the time being, even
though NIS might have several effects on the food web struc-
ture (Libralato et al., 2015; Kotta et al., 2018).

Another important effect of CC on marine and coastal
ecosystems is its potential impact on phytoplankton primary
production (Winder and Sommer, 2012). So far, primary
production models have not foreseen a clear trend of primary
production in the Bay of Seine related to CC (Holt et al.,
2016). Moreover, turbidity is expected to be the main limiting
factor of primary production in the Bay of Seine (P. Claquin,
pers. comm., UMR Borea), but the responses of current tur-
bidity models are not consistent enough for us to predict po-
tential primary production changes in the eBoS (Fettweis et al.,
2012; Capuzzo et al., 2015; Wilson and Heath, 2019). There-
fore, data availability did not enable us to model the effect of
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10 Q. Nogues et al.

CC on all the groups of the model, we thus focused on the
effect of CC on the distribution and dynamics of local macro-
organisms and its effects on the ecosystem functioning (Harley
et al., 2006).

This study also aimed to build a framework for future stud-
ies on cumulative impacts using ENA indices. The method-
ology had to be simple in order to be compatible with
complex cumulative assessment methods. Taking into ac-
count the uncertainty of the Ecospace model—through Monte
Carlo analysis of the Ecopath pedigree—and the niche model
results—through a sensitivity analysis of the niche model
results—requires a large number of simulations. The long time
needed to compute ENA maps and the large number of scenar-
ios necessary for cumulative effect assessment (CEA) would
make a study of uncertainty incompatible with CEA based
on ENA indices. However, taking the uncertainty around the
niche model results into account could represent a significant
improvement for future works (Payne et al., 2016), but will
first require significant work to optimize the computation time
of ENA indices.

Climate change and species distribution:
consequences on food web functioning

The potential effects of CC on species distribution appear to
have a strong structuring effect on the eBoS community in
the different functional regions of the eBoS. These structural
changes are clearly visible in the reduced trophic efficiency of
nearly all the regions of the eBoS under both CC scenarios,
except for the Coastal Bay of Seine region in the 2050 CC
scenario. This implies that CC would reduce the efficiency of
the ecosystem in the processing of energy through its trophic
levels (Lindeman, 1942). Trophic efficiency is widely used to
tackle the effects of multiple stressors, with a broad range
of responses (Coll et al., 2009; Niquil et al., 2014b). Lower
trophic efficiency can be linked to a possible ecosystem shift
caused by invasive species (Baird et al., 2012). Trophic effi-
ciency in the present study seems to indicate a similar major
modification of the ecosystem, regardless of the region, lead-
ing to lower efficiency and requiring a higher energy input
to maintain medium to top trophic level species. This lower
trophic efficiency is likely caused by the shift toward a more
fish-based system (Supplementary Figure S41), as fish allocate
more energy to maintenance and thus have a lower trophic
efficiency than smaller invertebrates (Gillooly et al., 2001).
Such a structuring effect of CC due to community shifts has
already been observed and is expected to play a major role
in the future evolution of marine ecosystems (Walther et al.,
2002; Parmesan, 2006).

The structuring effect of CC in the 2100 RCP8.5 scenario
seems to result from important community changes that lead
to a lower resistance of the system to disturbances. Commu-
nity changes are visible through the increased mean trophic
level of the system and coincide with decreased benthic in-
vertebrate biomass as well as modified fish biomass (Supple-
mentary Figure S41). This is the result of the high sensitiv-
ity of multiple benthic invertebrates species to CC (Rombouts
et al., 2012), as well as the high vulnerability of low-trophic-
level fish to changing climate conditions (McLean et al., 2018),
making them potentially highly sensitive to CC. Taken to-
gether, the decreased biomass of low trophic level groups like
invertebrates and small fish will reduce the mean trophic level
and result in a loss of redundant trophic pathways, leading to

a lower relative redundancy of the flow in the system. Such
changes have been related to losses in the ability of the sys-
tem to adequately respond to external pressure by reconfig-
uring itself (Odum, 1985; Ulanowicz, 1986). Losing this abil-
ity makes a system less resilient to stressors, as described by
Heymans and Tomczak (2016). It is well-known that inverte-
brates are going to be highly impacted by CC (Kendall et al.,
2004; Byrne, 2011). However, few studies have investigated
the overall effect of community changes on ecosystem func-
tioning. Our results support the idea that benthic communities
could play a major role in the resilience of the eBoS ecosystem
(Raoux et al., 2019; Nogues et al., 2020).

We predict that the effects of CC at the 2100 horizon could
result in important local variations of the system omnivory
and recycling indices between the Coastal Bay of Seine and
the Central English Channel regions. These variations could
be attributed to the local shift of the ecological community
within the eBoS. The increased system omnivory index in the
Central English Channel region can be explained by the north-
ward movement of omnivorous fish groups like benthos feed-
ers’ Gurnards (Supplementary Figures S41 and S48) rather
than by the changing omnivory of the groups between the re-
gions (Supplementary Table S11). In an opposite trend to fish,
the biomass of invertebrates decreased in the Central English
Channel region and increased slightly in the Coastal Bay of
Seine region (Supplementary Figure S41). This is reflected on
the system through an increased recycling in the Coastal Bay
of Seine region and a reduced one in the Central English Chan-
nel region, as invertebrates play a key role in recycling. Some
studies have already pointed out the overall effect of chang-
ing species distribution on ecosystem functioning (Libralato et
al., 2015; Corrales et al., 2018). The present study shows that
effects on the ecosystem can also be local, leading to variable
ecosystem properties at a regional scale.

Modifications of the ecosystem are smaller in the 2050 CC
scenario than in the 2100 scenario. They are also different for
many indices in each functional region of the model. Out of
the six ENA indices for the three functional regions, only five
out of 18 cases had similar responses in the two CC scenarios.
The limited number of proportional responses between the
2050 and 2100 scenarios is a potential sign of the non-linear
effect of CC on ecosystems. While this is partly linked to the
niche model themselves and to their predictions of species suit-
ability experiencing a range drift related to the loss of suitable
climatic conditions between 2050 and 2100, as observed in
other studies (Lasram et al., 2010; Albouy et al., 2013; Hat-
tab et al., 2014), this might also be caused by the cascading
effects on the system (Carpenter et al., 1985).

Although CC effects in the 2050 scenario are less visible
than in the 2100 scenario, local trends can still be outlined.
While the model forecasts a decrease of the mean trophic
level in the Coastal Bay of Seine region, an increased mean
trophic level is expected in the Central English Channel re-
gion. This gradient can be explained by the increase of inver-
tebrate biomass values in the most coastal region, increasing
flow redundancy and recycling (Supplementary Figure S42). In
the more offshore Central English Channel region, a loss of in-
vertebrate biomass results in a decreased invertebrate/fish ra-
tio (Supplementary Figure S42). This modification of the eco-
logical communities is noticeable at the ecosystem level via a
higher mean trophic level and a lower trophic efficiency. While
the 2100 scenario appears to be impacted both globally (at the
entire eBoS scale) and locally (inside the eBoS), the impact of
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CC seems more local in the 2050 scenario with no homoge-
neous effects at the entire eBoS scale. This is why it is crucial
to take the effects of CC into account both globally and lo-
cally. Detecting such effects at the community level might be
an issue for many local development actors as they prefer to
use “tailor-made” solutions, specific to their case study, that
may fail to detect holistic ecosystem changes (Hendriksen et
al., 2014). ENA showed that by using a spatialized model,
they could characterize and understand the effects of CC on
the ecosystem between functional regions (local effects) and
across the whole eBoS (global effects). This represents a soci-
etal priority for us to be able to predict the evolution of marine
ecosystems (Claudet et al., 2020). Information about the local
effect of CC could prompt local stakeholders to set up actions
in the field of vulnerability and adaptation of the societal sys-
tem (Charles, 2012) and to raise awareness at a local scale
(Ireland and Clausen, 2019).

ENA indices in fishing scenarios

While the effects of CC on the ecosystem are not propor-
tional between the 2050 and 2100 scenarios, with strong but
sometimes completely different effects on some indices, fish-
ing has negligible but proportional effects, opposite in the two
Brexit scenarios (fishing increase/decrease). The trophic effi-
ciency and the mean trophic level have already been used in
many studies to describe the effect of fishing on the ecosys-
tems (Libralato et al., 2004, 2010; Coll et al., 2009). On the
other hand, the mean trophic level was popularized by Pauly
et al. (1998) and his “Fishing down the marine food web”
theory that depicts the mean trophic level as sensitive to the
effect of fishing, i.e. decreasing with the fishing pressure due
to the decreased predator biomass. The omnivory index was
also promoted as a robust index to detect the effect of fishing
(Fulton et al., 2005). Despite the many items of evidence of
their operational ability to describe the effects of fishing, ENA
variations due to fishing were consistently considered negligi-
ble by the Cliff Delta. The little sensitivity of ENA indices to
fishing scenarios might, thus result from the little impact of
the Brexit scenario on ecosystem functioning. The eBoS is a
heavily anthropized ecosystem, with a strong fishing industry
(Buléon and Shurmer-Smith, 2021). Protecting the ecosystem
from the effects of fishing might require ambitious manage-
ment plans to truly help ecosystems recover (Dunford et al.,
2004).

Effect of the offshore wind farm on the extended
bay of Seine

As observed by Halouani et al. (2020) who simulated the pos-
sible reserve effect in the case of fishery closing in the entire
OWF area, it appears that the OWF could play the role of a
“fish aggregating device.” The aggregating role of the OWF
appears to have an important structuring effect on the ecosys-
tem. The structuring role of the OWF is particularly promi-
nent with the increased mean trophic level, trophic efficiency,
omnivory, and redundancy of the flows. The aggregating ef-
fect is also noticeable outside the OWF perimeter. Biomass
outside the OWF appears lower in the OWF eBoS scenario
than in the reference scenario. This decreased fish biomass is
likely due to the agglomeration of the mobile fish groups in-
side the OWF area due to the higher suitability of the cells and
to the higher prey density for fish groups inside the OWF. Ag-
glomeration is well-known and has been extensively studied

(Bohnsack, 1989; Pickering and Whitmarsh, 1997; Smith et
al., 2015) and was also observed by Halouani et al. (2020) to
be caused by the reserve effect only (Colléter et al., 2014).

Inside the OWF perimeter, Ecospace predicted a similar
structuring effect to the one forecasted in Nogues et al. (2020).
This structuring effect is visible through the many important
modifications of the ecosystem, which appears to shift toward
a more demersal/benthic system (Supplementary Figure S45).
Similarly to the results of Raoux et al. (2019), the OWF could
increase the relative redundancy of the flow. The OWF of the
eBoS model may also increase the omnivory index of the sys-
tem, as observed by Nogues et al. (2020). However, unlike
previous studies, recycling is reduced by the OWF in our sim-
ulations. All these modifications—along with the increased
trophic efficiency and the increased flow diversity—seem to be
linked to an increased resistance of the system to disturbance.
With the higher flow redundancy, the system has more in store
against disturbances (Levin and Lubchenco, 2008), improv-
ing its ability to adapt and overcome stresses. The higher om-
nivory index also suggests that the system would be more re-
silient, as it makes it more flexible (Fagan, 1997; Libralato,
2013). The heterogeneity brought by the hard substrate of the
wind turbine structure to the sandy habitat surrounding the
OWF seems to increase the flow diversity. Flow diversity can
be interpreted as species diversity (Christensen, 1995). There-
fore, an increase in habitat heterogeneity should also increase
local diversity (Munguia et al., 2011). These changes are all
linked to the increase in benthic and demersal biomass (Sup-
plementary Figure S45), which tends to have an overall posi-
tive impact on the ecosystem of Courseulles-sur-Mer by mak-
ing it more complex, efficient, diverse, and resilient (Nogues
et al., 2020).

Changes in the eBoS system are also visible outside the
OWF area. Through the agglomeration of fish species in the
OWF area, fish biomass may decrease in the vicinity of the
OWF. Even though these biomass changes are small, they still
have an effect on ENA indices and on the ecosystem. De-
creased fish biomass and increased invertebrate biomass lead
to a lower mean trophic level as well as a lower omnivory
index of the system around the OWF (Supplementary Figure
S45). As trophic efficiency and flow diversity also appear to
decrease, these results tend to indicate a simplification of the
ecosystem around the OWF toward a less resilient state. How-
ever, because fishing could increase inside the OWF due to the
reef effect (see above, Grossman et al., 1997), fishing may also
increase in the surrounding areas of the OWF, potentially af-
fecting an already weakened system. This emphasizes the need
for careful planning of fishing around and inside the OWF
area and may require mitigation, even in such a limited space.
With these new insights into the spatial footprint of multi-
ple drivers on the ecosystem, ENA indices demonstrate their
usefulness to locate areas in need of careful ecological man-
agement (Safi et al., 2019). ENA indices could be used to (i)
plan spatial management projects based on the responses of
the ecosystem to drivers and (ii) better maintain ecosystem
sustainability (Curtin and Prellezo, 2010).

Conclusion

For the first time in ENA, the mapping of ENA indices pro-
vides insights into spatial ecosystem functioning. ENA indices
further prove their usefulness and potential as tools for ecosys-
tem management by helping us understand human-induced
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ecosystem changes. Therefore, they could be used to sup-
port marine spatial planning by highlighting areas of concern
where the ecosystem could be more sensitive to perturbations.
Their ability to detect the effects of localized and more global
ecosystem drivers on ecosystem functioning could be used to
link local and global ecosystem management initiatives. It is
also important to note that these scenarios were built to test
the ability of ENA indices to assess cumulative effects (Nogues
et al., in press). There is an increasing demand for studying the
combined effects of CC and other drivers at the whole ecosys-
tem scale in order to predict ecosystem changes and elabo-
rate management scenarios. This study sets the basis for such
work: it provides tools for simulating the effects of multiple
drivers, which then need to be combined, to determine the po-
tential cumulative effects resulting from interactions between
the different anthropogenic drivers.

Funding

This work was funded by the Normandy Region (RIN Trophi-
Services project) and the APPEAL project, which benefited
from ’France Energies Marines’ and State financing managed
by the ’Agence nationale de la recherche’ under the Invest-
ments for the Future program (reference ANR-10-IED-0006–
25).

Data availability statement

The data underlying this article will be shared on reasonable
request to the corresponding author.

Supplementary data

Supplementary material is available at the ICESJMS online
version of the manuscript.

Author contribution

All authors developed the ideas, conceptualized, and revised
the manuscript. QN was the lead author and the main con-
tributor. EA, GH, PB, and QN. built the model. EF, FLT, NN,
and QN built the scenarios.

Competing interest statement

The authors have no conflict of interest to declare.

Acknowledgements

We also thank for their help in compiling the datasets or
for giving expert advice. Jeroen Steenbeeck, Pascal Claquin,
Maud Thermes, Valérie Girardin, Justine Lequesn, Tar-
rek Hattab, and all the partners and collaborators of the
TROPHIK and WINDSERV projects. We thank Annie Buch-
walter for the English corrections.

References

Agardy, T., Davis, J., Sherwood, K., and Vestergaard, O. 2011. Taking
Steps Toward Marine and Coastal Ecosystem-Based Management
- An Introductory Guide. United Nations Environment Programme
(UNEP), Nairobi.

Ahrens, R. N. M., Walters, C. J., and Christensen, V. 2012. Foraging
arena theory. Fish and Fisheries, 13: 41–59.

Ainsworth, C. H., Samhouri, J. F., Busch, D. S., Cheung, W. W. L., Dunne,
J., and Okey, T. A. 2011. Potential impacts of climate change on
Northeast Pacific marine foodwebs and fisheries. ICES Journal of
Marine Science, 68: 1217–1229.

Albouy, C., Guilhaumon, F., Leprieur, F., Lasram, F. B. R., Somot, S.,
Aznar, R., Velez, L. et al. 2013. Projected climate change and the
changing biogeography of coastal mediterranean fishes. Journal of
Biogeography, 40: 534–547.

Alexander, K. A., Meyjes, S. A., and Heymans, J. J. 2016. Spatial ecosys-
tem modelling of marine renewable energy installations : gauging
the utility of ecospace. Ecological Modelling, 331: 115–128. El-
sevier B.V. http://dx.doi.org/10.1016/j.ecolmodel.2016.01.016 (last
accessed 4 December 2020).

Baird, D., Asmus, H., and Asmus, R. 2012. Effect of invasive species
on the structure and function of the Sylt-R??M?? Bight ecosys-
tem, northern Wadden Sea, over three time periods. Marine Ecology
Progress Series, 462: 143–161.

Beaugrand, G., Luczak, C., Goberville, E., and Kirby, R. R. 2018.
Marine biodiversity and the chessboard of life. Plos ONE, 13:
1–27.

Bohnsack, J. A. 1989. Are high densities of fishes at artificial reefs the
result of habitat limitation or behavioral preference? Bulletin of Ma-
rine Sciencen of Marine Science, 44: 631–645.

Borja, Á., Elliott, M., Carstensen, J., Heiskanen, A.-S., and van de Bund,
W. 2010. Marine management – towards an integrated implemen-
tation of the European marine strategy framework and the water
framework directives. Marine Pollution Bulletin, 60: 2175–2186.
(last accessed 23 September 2019).

Borrett, S. R., and Lau, M. K. 2014. enaR : an R package for
ecosystem network analysis. Methods in Ecology and Evolution, 5:
1206–1213. http://doi.wiley.com/10.1111/2041-210X.12282 (last
accessed 4 December 2020).

Borrett, S. R., and Scharler, U. M. 2019. Walk partitions of flow
in ecological network analysis: review and synthesis of methods
and indicators. Ecological Indicators, 106: 105451. Elsevier. https:
//doi.org/10.1016/j.ecolind.2019.105451 (last accessed 3 October
2019).

Bourdaud, P., Lasram, F.B.R., Araignous, E., Champagnat, J., Grusd, S.,
Halouani, G., Hattab, T. et al. 2021. Impacts of climate change on
the Bay of Seine ecosystem: forcing a spatio-temporal trophic model
with predictions from an ecological niche model. Fisheries Oceanog-
raphy, 12: 1–19.

Brierley, A. S., and Kingsford, M. J. 2009. Impacts of climate change
on marine organisms and ecosystems. Current Biology, 19: R602–
R614. Elsevier Ltd. http://dx.doi.org/10.1016/j.cub.2009.05.046
(last accessed 6 April 2021).

Buhl-Mortensen, L., Galparsoro, I., Vega Fernández, T., Johnson, K.,
D’Anna, G., Badalamenti, F., Garofalo, G. et al. 2017. Maritime
ecosystem-based management in practice: lessons learned from the
application of a generic spatial planning framework in Europe. Ma-
rine Policy, 75: 174–186. http://www.sciencedirect.com/science/arti
cle/pii/S0308597×16000373 (last accessed 4 December 2020).

Buléon, P., and Shurmer-Smith, L. 2021. Cross channel atlas. University
of Caen Normandie, Caen, https://atlas-transmanche.certic.unicaen
.fr/en/ (last accessed 21 July 2021).

Byrne, M. 2011. Impact of ocean warming and ocean acidification on
marine invertebrate life history stages: vulnerabilities and potential
for persistence in a changing ocean. Oceanography and Marine Bi-
ology: An Annual Review, 49: 1–42.

Capuzzo, E., Stephens, D., Silva, T., Barry, J., and Forster, R. M. 2015.
Decrease in water clarity of the southern and central North Sea dur-
ing the 20th century. Global Change Biology, 21: 2206–2214.

Carpenter, S. R., Kitchell, J. F., and Hodgson, J. R. 1985. Cas-
cading trophic interactions and lake productivity. Bioscience, 35:
634–639.

Charles, A. 2012. People, oceans and scale: governance, livelihoods and
climate change adaptation in marine social-ecological systems. Cur-
rent Opinion in Environmental Sustainability, 4: 351–357. Elsevier
B.V. http://dx.doi.org/10.1016/j.cosust.2012.05.011.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsac026/6535870 by Bibliothèque U

niversité de C
aen user on 28 February 2022

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsac026#supplementary-data
http://dx.doi.org/10.1016/j.ecolmodel.2016.01.016
http://doi.wiley.com/10.1111/2041-210X.12282
https://doi.org/10.1016/j.ecolind.2019.105451
http://dx.doi.org/10.1016/j.cub.2009.05.046
http://www.sciencedirect.com/science/article/pii/S0308597\protect $\relax \times $16000373
https://atlas-transmanche.certic.unicaen.fr/en/
http://dx.doi.org/10.1016/j.cosust.2012.05.011


Spatialized ecological network analysis for ecosystem-based management 13

Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., Kearney, K., Wat-
son, R., and Pauly, D. 2009. Projecting global marine biodiver-
sity impacts under climate change scenarios. Fish and Fisheries, 10:
235–251.

Christensen, V. 1995. Ecosystem maturity—towards quantification.
Ecological Modelling, 77: 3–32. https://linkinghub.elsevier.com/retr
ieve/pii/0304380093E0073C (last accessed 12 June 2018).

Christensen, V., Coll, M., Steenbeek, J., Buszowski, J., Chagaris, D., and
Walters, C. J. 2014. Representing variable habitat quality in a spatial
food web model. Ecosystems, 17:1397–1412.

Christensen, V., and Walters, C. J. 2004. Ecopath with ecosim:
methods, capabilities and limitations. Ecological Modelling, 172:
109–139. Elsevier. https://www.sciencedirect.com/science/article/pi
i/0304380093E0073C (last accessed 6 September 2019).

Claudet, J., Bopp, L., Cheung, W. W. L., Devillers, R., Escobar-Briones,
E., Haugan, P., Heymans, J. J. et al. 2020. A roadmap for using the
UN decade of ocean science for sustainable development in support
of science, One Earth, 2: 34–42.

Cliff, N. 1993. Dominance statistics: ordinal analyses to answer ordinal
questions. Psychological Bulletin, 114: 494–509. American Psycho-
logical Association Inc.

Coll, M., Palomera, I., and Tudela, S. 2009. Decadal changes in a NW
Mediterranean Sea food web in relation to fishing exploitation. Eco-
logical Modelling, 220: 2088–2102.

Coll, M., Pennino, M. G., Steenbeek, J., Sole, J., and Bellido, J. M. 2019.
Predicting marine species distributions : complementarity of food-
web and Bayesian hierarchical modelling approaches. Ecological
Modelling, 405: 86–101. Elsevier.

Colléter, M., Gascuel, D., Albouy, C., Francour, P., Tito, L., Morais, D.,
Valls, A. et al. 2014. Fishing inside or outside ? A case studies anal-
ysis of potential spillover effect from marine protected areas, using
food web models. Journal of Marine Systems, 139: 383–395. Else-
vier B.V. http://dx.doi.org/10.1016/j.jmarsys.2014.07.023 (last ac-
cessed 12 January 2021).

Corrales, X., Coll, M., Ofir, E., Heymans, J. J., Steenbeek, J., Goren, M.,
Edelist, D. et al. 2018. Future scenarios of marine resources and
ecosystem conditions in the eastern Mediterranean under the im-
pacts of fishing, alien species and sea warming. Scientific Reports, 8:
1–16. Springer US. http://dx.doi.org/10.1038/s41598-018-32666-x
(last accessed 5 March 2021).

Curtin, R., and Prellezo, R. 2010. Understanding marine ecosystem
based management: a literature review. Marine Policy, 34: 821–
830. https://linkinghub.elsevier.com/retrieve/pii/S0308597×100000
47 (last accessed 11 March 2021).

Dauvin, J. C. 2015. History of benthic research in the English Channel:
from general patterns of communities to habitat mosaic description.
Journal of Sea Research, 100: 32–45. Elsevier B.V. http://dx.doi.org
/10.1016/j.seares.2014.11.005 (last accessed 4 October 2019).

de Jonge, V. N. 2007. Toward the application of ecological concepts in
EU coastal water management. Marine Pollution Bulletin, 55: 407–
414.

De Mutsert, K., Lewis, K., Milroy, S., Buszowski, J., and Steenbeek, J.
2017. Using ecosystem modeling to evaluate trade-offs in coastal
management: effects of large-scale river diversions on fish and fish-
eries. Ecological Modelling, 360: 14–26. Elsevier B.V. http://dx.d
oi.org/10.1016/j.ecolmodel.2017.06.029 (last accessed 20 October
2021).

Degraer, S., Carey, D. A., Coolen, J. W. P., Hutchison, Z. L., Kerckhof,
F., Rumes, B., and Vanaverbeke, J. 2020. Offshore wind farm arti-
ficial reefs affect ecosystem structure and functioning: a synthesis.
Oceanography, 33: 48–57.

Dunford, R. W., Ginn, T. C., and Desvousges, W. H. 2004. The use
of habitat equivalency analysis in natural resource damage assess-
ments. Ecological Economics, 48: 49–70.

Fagan, W. F. 1997. Omnivory as a stabilizing feature of natural com-
munities. The American Naturalist, 150: 554–567. http://www.ncbi
.nlm.nih.gov/pubmed/18811300 (last accessed 13 June 2018).

Fath, B. D., Asmus, H., Asmus, R., Baird, D., Borrett, S. R., de Jonge, V.
N., Ludovisi, A. et al. 2019. Ecological network analysis metrics: the

need for an entire ecosystem approach in management and policy.
Ocean and Coastal Management, 174: 1–14.

Fettweis, M., Monbaliu, J., Baeye, M., Nechad, B., and Van den Eynde,
D., 2012. Weather and climate induced spatial variability of surface
suspended particulate matter concentration in the North Sea and the
English Channel. Methods in Oceanography, 3-4: 25–39. Elsevier
B.V. http://dx.doi.org/10.1016/j.mio.2012.11.001 (last accessed 15
March 2021).

Finn, J. T. 1980. Flow analysis of models of the Hubbard Brook Ecosys-
tem. Ecology, 61: 562–571.

Fulton, E. A., Smith, A. D. M., and Punt, A. E. 2005. Which ecologi-
cal indicators can robustly detect effects of fishing? ICES Journal of
Marine Science, 62: 540–551.

Gill, A. B. 2005. Offshore renewable energy: ecological implications of
generating electricity in the coastal zone. Journal of Applied Ecol-
ogy, 42: 605–615. http://doi.wiley.com/10.1111/j.1365-2664.2005
.01060.x (last accessed 4 December 2020).

Gillooly, J., Brown, J., West, G., Savage, V., and Charnov, E. 2001.
Effects of size and temperature on metabolic rate. Science, 293:
2248–2251.

Grossman, G. D., Jones, G. P., and Seaman, W. j. 1997. Do artificial
reefs increase regional fish production ? A review of existing data.
Artificial Reef Management, 22: 18–23.

Halouani, G., Villanueva, C.-M., Raoux, A., Dauvin, J., Lasram, F.,
Foucher, E., Le Loc’h, F. et al. 2020. A spatial food web model to
investigate potential spillover effects of a fishery closure in an off-
shore wind farm. Journal of Marine Systems, 212: 103434.

Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F.,
D’Agrosa, C., Bruno, J. F. et al. 2008. A global map of human impact
on marine ecosystems. Science, 319: 948–952. http://www.ncbi.nlm
.nih.gov/pubmed/18276889 (last accessed 5 June 2018).

Harley, C. D. G., Hughes, A. R., Hultgren, K. M., Miner, B. G., Sorte,
C. J. B., Thornber, C. S., Rodriguez, L. F. et al. 2006. The impacts of
climate change in coastal marine systems. Ecology Letters, 9: 228–
241.

Hattab, T., Albouy, C., Ben Rais Lasram, F., Somot, S., Le, F., and Le-
prieur, F. 2014. Towards a better understanding of potential im-
pacts of climate change on marine species distribution : a multi-
scale modelling approach. Global Ecology and Biogeography, 23:
1417–1429.

Hendriksen, A., Jouanneau, C., Koss, R., and Raakjaer, J. 2014. Fishing
for opinions : stakeholder views on MSFD implementation in Euro-
pean seas. Marine Policy, 50: 353–363. Elsevier. http://dx.doi.org/1
0.1016/j.marpol.2014.03.009 (last accessed 11 March 2021).

Heymans, J. J., Bundy, A., Christensen, V., Coll, M., de Mutsert, K., Ful-
ton, E. A., Piroddi, C. et al. 2020. The ocean decade: a true ecosystem
modeling challenge. Frontiers in Marine Science, 7: 1–5.

Heymans, J. J., and Tomczak, M. T. 2016. Regime shifts in the Northern
Benguela ecosystem: challenges for management. Ecological Mod-
elling, 331: 151–159. Elsevier B.V. http://dx.doi.org/10.1016/j.eco
lmodel.2015.10.027 (last accessed 8 June 2018).

Hoegh-Guldberg, O., and Bruno, J. F. 2010. The impact of climate
change on the world’s marine ecosystems. Science, 328: 1523–1528.

Holt, J., Schrum, C., Cannaby, H., Daewel, U., Allen, I., Artioli, Y., Bopp,
L. et al. 2016. Potential impacts of climate change on the primary
production of regional seas: a comparative analysis of five European
seas. Progress in Oceanography, 140: 91–115. Elsevier Ltd.

Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor
Symposia on Quantitative Biology, 22: 415–427. http://symposium.
cshlp.org/cgi/doi/10.1101/SQB.1957.022.01.039 (last accessed 14
September 2021).

Ifremer SIH. 2017. Activité des navires de pêche. Caen, France.
IFREMER SIH. 2017. Système d’Information Halieutique, Données de

production et d’effort de pêche (SACROIS).
Ireland, P., and Clausen, D. 2019. Local Action that Changes the World:

Fresh Perspectives on Climate Change Mitigation and Adaptation
from Australia. Elsevier Inc, London. 769–782pp. http://dx.doi.o
rg/10.1016/B978-0-12-814104-5.00027-2 (last accessed 15 March
2021).

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsac026/6535870 by Bibliothèque U

niversité de C
aen user on 28 February 2022

https://linkinghub.elsevier.com/retrieve/pii/0304380093E0073C
https://www.sciencedirect.com/science/article/pii/0304380093E0073C
http://dx.doi.org/10.1016/j.jmarsys.2014.07.023
http://dx.doi.org/10.1038/s41598-018-32666-x
https://linkinghub.elsevier.com/retrieve/pii/S0308597\protect $\relax \times $10000047
http://dx.doi.org/10.1016/j.seares.2014.11.005
http://dx.doi.org/10.1016/j.ecolmodel.2017.06.029
http://www.ncbi.nlm.nih.gov/pubmed/18811300
http://dx.doi.org/10.1016/j.mio.2012.11.001
http://doi.wiley.com/10.1111/j.1365-2664.2005.01060.x
http://www.ncbi.nlm.nih.gov/pubmed/18276889
http://dx.doi.org/10.1016/j.marpol.2014.03.009
http://dx.doi.org/10.1016/j.ecolmodel.2015.10.027
http://symposium.cshlp.org/cgi/doi/10.1101/SQB.1957.022.01.039
http://dx.doi.org/10.1016/B978-0-12-814104-5.00027-2


14 Q. Nogues et al.

Jiménez, L., Soberón, J., Christen, J. A., and Soto, D. 2019. On the prob-
lem of modeling a fundamental niche from occurrence data. Ecolog-
ical Modelling, 397: 74–83. Elsevier. https://doi.org/10.1016/j.ecol
model.2019.01.020 (last accessed 27 August 2021).

Johnson, G. A., Niquil, N., Asmus, H., Bacher, C., Asmus, R., and Baird,
d, 2009. The effects of aggregation on the performance of the inverse
method and indicators of network analysis. Ecological Modelling,
220: 3448–3464.

Kendall, M. A., Burrows, M. T., Southward, A. J., and Hawkins,
S. J. 2004. Predicting the effects of marine climate change on
the invertebrate prey of the birds of rocky shores. Ibis, 146:
40–47.

Kotta, J., Wernberg, T., Jänes, H., Kotta, I., Nõomaa, K., Rätsep, M., and
Orav-Kotta, H. 2018. Novel crab predator causes marine ecosystem
regime shift. Scientific Reports, 8:4956.

Langlet, D., and Rayfuse, R. 2018. The Ecosystem Approach in Ocean
Planning and Governance. Brill | Nijhoff, Leiden, Netherlands. https:
//brill.com/view/title/54021 (last accessed 4 December 2020).

Lasram, F.B.R., Guilhaumon, F., Albouy, C., Somot, S., Thuiller, W.,
and Mouillot, D. 2010. The Mediterranean Sea as a ‘cul-de-sac’ for
endemic fishes facing climate change. Global Change Biology, 16:
3233–3245.

Lasram, F.B.R., Hattab, T., Noguès, Q., Beaugrand, G., Dauvin, J.,
Halouani, G., Le Loc’h, F. et al. 2020. An open-source framework to
model present and future marine species distributions at local scale.
Ecological Informatics, 59:101130.

Latham, L. G. 2006. Network flow analysis algorithms. Ecological
Modelling, 192: 586–600.

Le Marchand, M., Hattab, T., Niquil, N., Albouy, C., Le Loc’h, F.,
and Lasram, Ben Rais, 2020. Climate change in the Bay of Biscay:
changes in spatial biodiversity patterns could be driven by the ar-
rivals of southern species. Marine Ecology Progress Series, 647: 17–
31.

Le Tissier, M. 2020. Unravelling the Relationship between Ecosystem-
Based Management, Integrated Coastal Zone Management and Ma-
rine Spatial Planning BT - Ecosystem-Based Management, Ecosys-
tem Services and Aquatic Biodiversity: Theory, Tools and Applica-
tions. pp. 403–413. Ed. by T. G. O’Higgins, M. Lago, and T. H. De-
Witt. Springer International Publishing, Cham.

Levin, S. A., and Lubchenco, J. 2008. Resilience, robustness, and marine
ecosystem-based management. Bioscience, 58: 27–32.

Libralato, S. 2013. System omnivory index. In Encyclopedia of Ecol-
ogy, pp. 481–486. Elsevier, Amsterdam https://linkinghub.elsevie
r.com/retrieve/pii/B9780124095489006059 (last accessed 12 June
2018).

Libralato, S., Caccin, A., and Pranovi, F. 2015. Modeling species in-
vasions using thermal and trophic niche dynamics under climate
change. Frontiers in Marine Science, 2:29.

Libralato, S., Coll, M., Tempesta, M., Santojanni, A., Spoto, M., Palom-
era, I., Arneri, E. et al. 2010. Food-web traits of protected and
exploited areas of the Adriatic Sea. Biological Conservation, 143:
2182–2194. Elsevier Ltd.

Libralato, S., Pranovi, F., Raicevich, S., Da Ponte, F., Giovanardi, O.,
Pastres, R., Torricelli, P. et al. 2004. Ecological stages of the Venice
Lagoon analysed using landing time series data. Journal of Marine
Systems, 51: 331–344.

Lindeman, R. 1942. The trophic dynamic of ecology. Ecology, 23: 399–
417.

Liquete, C., Piroddi, C., Macías, D., Druon, J., and Zulian, G. 2016.
Ecosystem Services Sustainability in the Mediterranean Sea: Assess-
ment of Status and Trends Using Multiple Modelling Approaches.
Nature Publishing Group, London. 1–14. http://dx.doi.org/10.1038
/srep34162.

McLean, M., Mouillot, D., and Auber, A. 2018. Ecological and
life history traits explain a climate-induced shift in a temper-
ate marine fish community. Marine Ecology Progress Series, 606:
175–186.

MacQueen, J. 1967. Some methods for classification and analysis
of multivariate observations. Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, 1: 281–
297. http://books.google.de/books?hl=de&lr=&id=IC4Ku_7dBFU
C&oi=fnd&pg=PA281&dq=MacQueen+some+methods+for+clas
sification&ots=nNTcK1IdoQ&sig=fHzdVcbvmYJ-lTNHu1Hnc
mOFOkM#v=onepage&q=MacQueen some methods for classific
ation&f = false (last accessed 2 March 2021).

MEA, Reid, W.V., Mooney, H.A., Cropper, A., Capistrano, D., Carpen-
ter, S., Chopra, K. et al. 2005. Millenium Ecosystem Assessment Syn-
thesis Report. MEA.

Morin, X., and Thuiller, W. 2009. Comparing niche- and process-based
models to reduce prediction uncertainty in species range shifts under
climate change. Ecology, 90: 1301–1313.

Munguia, P., Osman, R. W., Hamilton, J., Whitlatch, R., and Zajac, R.
2011. Changes in habitat heterogeneity alter marine sessile benthic
communities. Ecological Applications, 21: 925–935.

Niquil, N., Baeta, A., Marques, J. C., Chaalali, A., Lobry, J., and
Patrício, J. 2014b. Reaction of an estuarine food web to distur-
bance: Lindeman’s perspective. Marine Ecology Progress Series, 512:
141–154.

Niquil, N., Le Loc’h, F., Tecchio, S., Chaalali, A., Vouriot, P., Mialet,
B., Fizzala, X. et al. 2014a. Ongoing research on ecosystem health
indicators for food webs in the MSFD context. In Proceedings of the
Trans-Channel forum proceedings: Science and Governance of the
Channel Marine Ecosystem, pp. 4–7. Caen, France.

Nogues, Q., Raoux, A., Araignous, E., Hattab, T., Leroy, B., Ben Rais
Lasram, F., Le Loc’h, F. et al. 2020. Cumulative effects of ma-
rine renewable energy and climate change on ecosystem proper-
ties : sensitivity of ecological network analysis. Ecological Indica-
tors, 121:107128.

Odum, E. P. 1985. Trends expected in stressed ecosystems. Bioscience,
35: 419–422. https://academic.oup.com/bioscience/article-lookup/d
oi/10.2307/1310021 (last accessed 8 June 20218).

Parmesan, C. 2006. Ecological and evolutionary responses to recent cli-
mate change. Annual Review of Ecology, Evolution, and Systematics,
37: 637–669.

Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., and Torres, F. 1998.
Fishing down marine food webs. Science, 279: 860–863. American
Association for the Advancement of Science. http://www.ncbi.nlm.n
ih.gov/pubmed/9452385 (last accessed 12 June 2018).

Pauly, D., Christensen, V., and Walters, C. 2000. Ecopath, ecosim,
and ecospace as tools for evaluating ecosystem impact of fish-
eries. ICES Journal of Marine Science, 57: 697–706. Oxford Uni-
versity Press. https://academic.oup.com/icesjms/article-lookup/doi/
10.1006/jmsc.2000.0726 (last accessed 11 June 2018).

Payne, M. R., Barange, M., Cheung, W. W. L., MacKenzie, B. R.,
Batchelder, H. P., Cormon, X., Eddy, T. D. et al. 2016. Uncertainties in
projecting climate-change impacts in marine ecosystems. ICES Jour-
nal of Marine Science, 73: 1272–1282. https://academic.oup.com/i
cesjms/article/73/5/1272/2240686 (last accessed 25 October 2021).

Petersen, J. K., and Malm, T. 2006. Offshore windmill farms: threats to
or possibilities for the marine environment. AMBIO: A Journal of
the Human Environment, 35: 75–80. http://www.ncbi.nlm.nih.gov
/pubmed/17256642 (last accessed 30 September 2019).

Peterson, C. H., and Lubchenco, J. 1997. Marine ecosystem services. In
Nature’s Services: Societal Dependence On Natural Ecosystems, pp.
117–194. Island Press, Washington, DC.

Pickering, H., and Whitmarsh, D. 1997. Artificial reefs and fisheries ex-
ploitation: a review of the ‘ attraction versus production ’ debate, the
influence of design and its significance for policy. Fisheries Research,
31: 39–59.

Poloczanska, E. S., Burrows, M. T., Brown, C. J., Molinos, J. G., Halpern,
B. S., Hoegh-Guldberg, O., Kappel, C. V. et al. 2016. Responses of
marine organisms to climate change across oceans. Frontiers in Ma-
rine Science, 3: 1–21.

Polovina, J. J. 1984. Model of a coral reef ecosystem: the ECOPATH
model and its application to french frigate shoals. Coral Reefs, 3:
1–11.

Raoux, A., Dambacher, J. M., Pezy, J. P., Mazé, C., Dauvin, J. C., and
Niquil, N. 2018. Assessing cumulative socio-ecological impacts of

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsac026/6535870 by Bibliothèque U

niversité de C
aen user on 28 February 2022

https://doi.org/10.1016/j.ecolmodel.2019.01.020
https://brill.com/view/title/54021
https://linkinghub.elsevier.com/retrieve/pii/B9780124095489006059
http://dx.doi.org/10.1038/srep34162
http://books.google.de/books?hl=de&lr=&id=IC4Ku_7dBFUC&oi=fnd&pg=PA281&dq=MacQueen+some+methods+for+classification&ots=nNTcK1IdoQ&sig=fHzdVcbvmYJ-lTNHu1HncmOFOkM#v=onepage&q=MacQueen some methods for classification&f = false
https://academic.oup.com/bioscience/article-lookup/doi/10.2307/1310021
http://www.ncbi.nlm.nih.gov/pubmed/9452385
https://academic.oup.com/icesjms/article-lookup/doi/10.1006/jmsc.2000.0726
https://academic.oup.com/icesjms/article/73/5/1272/2240686
http://www.ncbi.nlm.nih.gov/pubmed/17256642


Spatialized ecological network analysis for ecosystem-based management 15

offshore wind farm development in the Bay of Seine (English Chan-
nel). Marine Policy, 89: 11–20.

Raoux, A., Lassalle, G., Pezy, J. P., Tecchio, S., Safi, G., Ernande, B., Mazé,
C. et al. 2019. Measuring sensitivity of two OSPAR indicators for
a coastal food web model under offshore wind farm construction.
Ecological Indicators, 96: 728–738.

Raoux, A., Tecchio, S., Pezy, J. P., Lassalle, G., Degraer, S., Wilhelmsson,
D., Cachera, M. et al. 2017. Benthic and fish aggregation inside an
offshore wind farm: which effects on the trophic web functioning?
Ecological Indicators, 72: 33–46.

Rodriguez, N. J. I. 2017. A comparative analysis of holistic ma-
rine management regimes and ecosystem approach in marine spa-
tial planning in developed countries. Ocean and Coastal Manage-
ment, 137: 185–197. Elsevier. https://www.sciencedirect.com/scie
nce/article/pii/S0964569116304677 (last accessed 23 September
2019).

Romano, J., Kromrey, J. D., Coraggio, J., Skowronek, J., and Devine,
L. 2006. Exploring methods for evaluating group differences on the
NSSE and other surveys: are the t-test and Cohen’s d indices the most
appropriate choices? In Paper Presented at the Annual meeting of the
Southern Association for Institutional Research. 14–17. Arlington,
Virginia.

Rombouts, I., Beaugrand, G., and Dauvin, J. C. 2012. Potential changes
in benthic macrofaunal distributions from the English Channel sim-
ulated under climate change scenarios. Estuarine, Coastal and Shelf
Science 99: 153–161. Elsevier Ltd. http://dx.doi.org/10.1016/j.ecss.
2011.12.026 (last accessed 25 May 2021).

Rombouts, I., Beaugrand, G., Fizzala, X., Gaill, F., Greenstreet, S. P. R.
R., Lamare, S., Le Loc ’h, F. et al. 2013. Food web indicators un-
der the marine strategy framework directive: from complexity to
simplicity? Ecological Indicators, 29: 246–254. Elsevier Ltd. http:
//dx.doi.org/10.1016/j.ecolind.2012.12.021 (last accessed 12 June
2018).

Safi, G., Giebels, D., Arroyo, N. L., Heymans, J. J., Preciado, I., Raoux,
A., Schückel, U. et al. 2019. Vitamine ENA: a framework for the
development of ecosystem-based indicators for decision makers.
Ocean and Coastal Management, 174: 116–130. Elsevier. https:
//doi.org/10.1016/j.ocecoaman.2019.03.005 (last accessed 1 Octo-
ber 2019).

Schwalm, C. R., Glendon, S., and Duffy, P. B. 2020. RCP8.5 tracks cu-
mulative CO2 emissions. Proceedings of the National Academy of
Sciences, 117: 19656 LP –19657. http://www.pnas.org/content/117
/33/19656.abstract (last accessed 26 May 2021).

Shields, M., and Payne, A. 2014. Marine Renewable Energy Technology
and Environmental Interactions. Springer, Netherlands.

Smith, J. A., Lowry, M. B., and Suthers, I. M. 2015. Fish attraction to
artificial reefs not always harmful : a simulation study. Ecology and
Evolution, 5: 4590–4602.

Soberón, J., and Nakamura, M. 2009. Niches and distributional areas:
concepts, methods, and assumptions. Proceedings of the National
Academy of Sciences, 106: 19644–19650.

Steenbeek, J., Coll, M., Gurney, L., Mélin, F., Hoepffner, N., Buszowski,
J., and Christensen, V. 2013. Bridging the gap between ecosystem
modeling tools and geographic information systems : driving a food
web model with external spatial – temporal data. Ecological Mod-
elling, 263: 139–151. Elsevier B.V. http://dx.doi.org/10.1016/j.eco
lmodel.2013.04.027 (last accessed 4 December 2020).

Tecchio, S., Chaalali, A., Raoux, A., Tous Rius, A., Lequesne, J., Gi-
rardin, V., Lassalle, G. et al. 2016. Evaluating ecosystem-level an-
thropogenic impacts in a stressed transitional environment: the case
of the Seine estuary. Ecological Indicators, 61: 833–845. Elsevier
Ltd.

Ulanowicz, R. E. 1986. Growth and Development : Ecosystems Phe-
nomenology. Springer, New York, NY.

Ulanowicz, R. E., Goerner, S. J., Lietaer, B., and Gomez, R. 2009. Quan-
tifying sustainability: resilience, efficiency and the return of informa-
tion theory. Ecological Complexity, 6: 27–36.

Ulanowicz, R., and Norden, J. 1990. Symmetrical overhead in flow net-
works. International Journal of Systems Science, 21: 429–437. Tay-
lor & Francis (last accessed 1 May 2020).

Walters, C., Christensen, V., and Pauly, D. 1997. Structuring dynamic
models of exploited ecosystems from trophic mass-balance assess-
ments. Reviews in Fish Biology and Fisheries, 7: 139–172.

Walters, C., Pauly, D., and Christensen, V. 1999. Ecospace : prediction
of mesoscale spatial patterns in trophic relationships of exploited
ecosystems, with emphasis on the impacts of marine protected areas.
Ecosystems, 2:539–554.

Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee,
T. J. C., Fromentin, J.-M. et al. 2002. Ecological responses to recent
climate change. Nature, 416: 389–395. http://www.nature.com/art
icles/416389a (last accessed 25 May 2021).

Weatherdon, L. V., Ota, Y., Jones, M. C., Close, D. A., and Cheung, W.
W. L. 2016. Projected scenarios for coastal first nations’ fisheries
catch potential under climate change: management challenges and
opportunities. Plos ONE, 11:e0145285.

Wilhelmsson, D., and Malm, T. 2008. Fouling assemblages on offshore
wind power plants and adjacent substrata. Estuarine, Coastal and
Shelf Science 79: 459–466. https://linkinghub.elsevier.com/retrieve
/pii/S0272771408001911 (last accessed 5 June 2020).

Wilhelmsson, D., Malm, T., and Öhman, M. 2006. The influence of off-
shore windpower on demersal fish. ICES Journal of Marine Science,
63: 775–784. https://academic.oup.com/icesjms/article-lookup/doi/
10.1016/j.icesjms.2006.02.001 (last accessed 12 March 2020).

Wilson, R. J., and Heath, M. R. 2019. Increasing turbidity in the North
Sea during the 20th century due to changing wave climate. Ocean
Science, 15: 1615–1625.

Winder, M., and Sommer, U. 2012. Phytoplankton response to a chang-
ing climate. Hydrobiologia, 698: 5–16.

Wulff, F., Field, J. G., and Mann, K. H. 1989. Network Analysis in Ma-
rine Ecology: Methods and Applications. Springer, Berlin, Heidel-
berg.

Handling Editor: Silvana Birchenough and Lucia Lopez

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsac026/6535870 by Bibliothèque U

niversité de C
aen user on 28 February 2022

https://www.sciencedirect.com/science/article/pii/S0964569116304677
http://dx.doi.org/10.1016/j.ecss.2011.12.026
http://dx.doi.org/10.1016/j.ecolind.2012.12.021
https://doi.org/10.1016/j.ocecoaman.2019.03.005
http://www.pnas.org/content/117/33/19656.abstract
http://dx.doi.org/10.1016/j.ecolmodel.2013.04.027
http://www.nature.com/articles/416389a
https://linkinghub.elsevier.com/retrieve/pii/S0272771408001911
https://academic.oup.com/icesjms/article-lookup/doi/10.1016/j.icesjms.2006.02.001

