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Abstract
Recruitment dynamics including what determines the success or failure of Arctic benthic invertebrates are poorly known 
despite their important role for population dynamics. The main objective of this study was to assess the potential influence 
of extreme physical constraints related to freshwater discharge on the recruitment of a dominant bivalve Hiatella arctica 
within a High Arctic fjord (Young Sound, NE Greenland). We collected young recruits over several sampling periods from 
2016 to 2018 at two contrasting sites (inner vs. middle fjord) for 5-weeks to 12-months and measured their abundance, size 
at metamorphosis and lipid class composition. Young stages of H. arctica settled from June to the end of October, when 
trophic conditions are optimal. We hypothesize that growth stops during winter due to poor trophic conditions. Data suggest 
that abundance of recruits, their total lipid concentration and composition of lipid classes are similar at both sites. How-
ever, size classes were different with six separate cohorts detected at one station and one at the inner station, which may be 
attributed to discrete spawning events and possible secondary migration. Based on an assessment of their potential age, we 
hypothesize that spat batches recruiting earlier in the summer exhibit better growth performance probably related to better 
food quality and quantity.
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Introduction

The structure of communities and dynamics of populations 
are strongly influenced by the supply of recruits and their 
settlement and post-settlement success (Butman 1987; Ólaf-
sson et al. 1994), but these processes are poorly known in 
polar regions. In the Arctic, bivalves often spawn directly 
after the phytoplankton bloom (Kuklinski et al. 2013), but 
data on recruitment are limited to a few species (Stanwell-
Smith and Barnes 1997).

Global warming induces major modifications in the Arc-
tic marine environment, e.g., a decrease in sea-ice cover 
(extent and thickness) and an increase in freshwater dis-
charge (Kwok and Rothrock 2009; McPhee et al. 2009) 
leading to the intensification of the stratification (Bridier 
et al. 2021). In Greenland, warming drives increasing melt 
of the Greenland ice sheet and results in increased discharge 
of ice and meltwater (Howat et al. 2007; Kjeldsen et al. 
2015). Released icebergs increase the risk of ice scouring 
(Sejr et al. 2021) while meltwater is likely to impact fjord 
circulation, surface-water temperature, salinity, and tur-
bidity (Mortensen et al. 2013); low salinity also increases 
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the susceptibility of marine organisms to other stressors 
(Nielsen et al. 2021). These physical parameters are often 
suggested to be important drivers of benthic recruitment in 
coastal areas (Yakovis et al. 2013), which can influence ben-
thic productivity (Bashevkin et al. 2020; Leal et al. 2022). 
Increased temperature and turbidity or decreased salinity 
could lower survival rates of larvae as already documented 
in the White Sea (Ushakova and Saranchova 2003) or in the 
Kongsfjorden fjord (Svalbard Archipelago, Zajaczkowski 
and Legezynska 2001).

Because of its high abundance, colonizing various hard-
bottom and soft-sediment habitats, Hiatella arctica (up to 
57 ind  m−2, Sejr et al. 2002) is a promising marine bivalve 
model to study recruitment. This species has a variable 
duration of larval occurrence depending on the latitude 
(8 months at higher latitude and 1–2 months at lower lati-
tude) (Brandner et al. 2017). It is a widespread and common 
circumpolar bivalve exhibiting substantial morphological/
physiological plasticity and inhabiting coastal at depths 
down to 175 m (Ockelmann 1958) in temperate to polar 
areas (Gordillo 2001). The main objective of this study was 
to compare the seasonal recruitment success of H. arctica 
at two sites within a high Arctic fjord, i.e., the number of 
new recruits. We compare a site in the inner fjord (near the 
Zackenberg River called Pass Hytten) more influenced by 
low salinity and high turbidity due to freshwater run-off 
compared to a site in the outer fjord (middle fjord, Basalt 
Island). Sejr et al. (2022) observed a distinct surface fresh-
water lens throughout the fjord system, strongest in the inner 
fjord. We expected that recruitment of H. arctica would be 
lower in the inner fjord compared to a more marine area. The 
specific objectives were therefore (1) to measure the spatial 
(2 sites) and temporal variability of recruitment (a sampling 
scheme spanning 12 months) of a dominant marine polar 
bivalve, (2) to identify the presence of cohorts of recruits 
and assess their age, (3) to estimate the size at metamorpho-
sis of each cohort, and finally (4) to obtain initial results on 
the physiological condition of young recruits by their lipid 
class composition.

Materials and methods

Study site and sampling strategy

The study was conducted in a ~ 90 km long and 2–7 km wide 
sill fjord where the maximum depth is 330 m and the sill at 
the entrance of the fjord is at 45 m depth (Young Sound, 
74°18ʹN, 20°18ʹW, NE Greenland, Fig. 1). The shallow sill 
reduces exchanges with the open sea (Bendtsen et al. 2007). 
The fjord system is influenced by freshwater inputs from 
snow and ice melting, especially during summer (Bendtsen 
et al. 2007), and is covered by sea ice from late October 

through June. Whereas water temperature and salinity at 
60 m depth remain relatively stable around − 1.8 °C and 
32 psu respectively, they are much more variable at shal-
lower depths with variations around two units for each 
parameter (~ 30 m) (Fig. 1, but also see De Cesare et al. 
2017; Sejr et al. 2017; Bridier et al. 2019 for details). This 
trend is, however, higher in lower depth as observed by Sejr 
et al. (2022) at 17 m with salinity decrease from 31.5 to 
27. These data agree with the model developed by Bendt-
sen et al. (2007) using averaged temperature and salinity in 
Young Sound confirming the desalination on upper water 
layers. Our sampling strategy included several deploy-
ment periods of either 5 weeks (August–September 2016), 
9 months (August 2016–May 2017) and 12 months (May 
2017–May 2018) at two contrasting sites (Fig. 1). Basalt 
Island (BI) (depth = 21.5 m, 74.33°N, 20.36°W) is located in 
the most marine part of the fjord whereas Pass Hytten (PH) 
(depth = 16.5 m, 74.41°N, 20.33°W) is in a more upstream 
section at the outlet of a river on silted and more turbid bot-
toms (Bridier et al. 2019; Holding et al. 2019). Both sites are 
influenced by an inflow of nutrient-depleted freshwater, with 
 CO2-desaturated, lower salinity and higher turbidity meas-
urements (Fig. 1). Settling larvae and subsequent juveniles 
were collected with ‘Tuffy’ traps, extensively used in recruit-
ment studies of invertebrate species (Menge et al. 1994). At 
each site mooring lines with subsurface buoys located at 5 m 
from the bottom were deployed by divers (Fig. 1). At each 
site, 9 to 15 replicate traps were collected. The biological 
material found on the traps were directly frozen and pre-
served at − 80 °C until laboratory analyses.

Sample analyses

For each trap, recruits were retrieved by sieving it gently 
on a 200-micron square mesh with filtered seawater. Each 
batch of recruits was examined and counted under a binocu-
lar microscope to assess abundance per trap and subsequent 
recruitment rate (see below). Morphometric analysis of ~ 30 
randomly selected individuals per trap were performed using 
the methods described in Martel et al. (1995) under a bin-
ocular stereomicroscope. For the examination of Prodisso-
conch PII (PII), the longest distance was measured along 
the anteroposterior axis (Fig. 2). Following the settlement 
and metamorphosis, when the veliger resorbs the velum to 
develop gills and transforms into a juvenile, the mantle initi-
ates the secretion of a new dissoconch (D) shell resulting in 
the formation of a distinct demarcation line, the PII (between 
the veliger and juvenile shell, Martel et al. 1995). All meas-
urements were made using Keyence VHX-2000 Series digi-
tal microscope with VH-Z100UR objectives (Osaka, Japan, 
1 µm and HDR resolution). Lipids were extracted in dichlo-
romethane-methanol as described in Parrish et al. (1999) 
using a modified Folch et al. (1957) procedure. Extracts were 
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separated and analyzed by thin-layer chromatography using 
flame ionization detection with an Iatroscan MK-6 (Shell 
USA, Fredericksburg, VA, USA). This method separates ali-
phatic hydrocarbons (HCs), ketones (KETs), triglycerides 

(TAGs), free fatty acids (FFAs), free fatty alcohol (ALCs), 
free sterols (STs), diglycerides (DGs), acetone mobile polar 
lipids (AMPLs), and phospholipids (PL). Lipid classes were 
identified and quantified with the use of standard calibration 

Fig. 1  a Location of studied sites, Pass Hytten and Basalt Island, in 
the fjord of Young Sound (YS), NE Greenland. b Picture of a long-
period mooring deployed in each sampling station with 15 spat traps. 

c Typical temperature and salinity (CTD) annual cycle (August 2016–
August 2017) in YS close to the Basalt Island station
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curves obtained for each lipid class. Lipid classes were quan-
tified in mg.individual−1, summed up and expressed as a 
percentage of total lipids. Lipids were analyzed only on 
9 months samples due to their higher biomass availability, 
as these analyses required at least 50 µg of tissues.

Data analyses

In Hiatella arctica, little is known about larval growth in 
the Arctic, and we estimated post-larval growth by firstly 
quantifying the difference between total shell length and 
PII size. Then, to assess days since metamorphosis, i.e. the 
distinct line where the prodissoconch II stage ends and a 
new shell begins known as the dissoconch (D), we used a 
growth estimate of 8 µm.day−1 from the study of Flyachins-
kaya (1999) focusing on the larval development of Hiatella 
arctica L. in one other Arctic area, the White Sea. Differ-
ences in the abundances of recruits were investigated by 
performing permutational univariate analyses of variance 
(PERMANOVA, 9999 permutations) and matrix of similar-
ity based on the Euclidean Distance using PRIMER 7/PER-
MANOVA + . Two sources of variation were tested among 
treatments including ‘Sites’ (BI or PH) and ‘Period’ (2016: 
5 weeks; 2017: 9 months and 2018: 12 months). The number 
of replicates was determined by the number of traps used 
and varied between 9 and 11. Owing to logistical limitations 
of divers’ availability in this Arctic environment, mooring 
line was limited per site and not fully replicated. Therefore, 
the unit of replication used in these analyses was the trap. In 

theory, our approach could be perceived to violate the fun-
damental assumption of independence between replicates. 
However, the independence of data among samples is a bio-
logical issue (Underwood 1997, Sect. 7.14, p. 159) and we 
considered that each standardized trap was an appropriate 
replicate to measure the recruitment success. To investigate 
cohort composition and age structure, we performed a length 
frequency analysis and estimated the proportion of individu-
als in each cohort. We used a Gaussian mixture model to 
account for the length distribution and identify the number 
of cohorts in each sample. The number of components of 
the finite mixture model was assessed using an information 
criterion. More specifically, we used the Singular Bayesian 
Information Criterion (sBIC) (Drton and Plummer 2013). 
This information criterion is robust in situations where mod-
els are irregular, which can be the case for Gaussian mix-
ture models. This criterion allows determining the model 
(i.e., the number of components) that best accounts for the 
data-generating process. The R (R Core Team 2013) pack-
age ‘sBIC’ (Weihs and Plummer 2016) uses the Expecta-
tion–Maximization (EM) algorithm to approximate maxi-
mum likelihood estimates of model parameters, estimate 
the posterior probabilities of cluster membership for each 
data point, and model posterior probabilities. We consid-
ered a maximum of 10 components and the sBIC allowed 
ranking models including a different number of components 
and selecting the model that best accounts for the process 
that generated the data. Once the number of components 
has been determined, the R package ‘mclust’ (Scrucca et al. 

Fig. 2  Picture of a recruit of H. 
arctica using a Keyence VHX-
2000 Series digital microscope 
showing the various measure-
ments acquired
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2016) was used to produce a density estimate for each data 
point and estimate the mean and standard deviation of each 
Gaussian component of the mixture model. The analysis 
associated to one year’s data was performed on either 171 
and 255 length measurements corresponding to PH or BI 
respectively. The 5-week period data included 14 (PH) and 
80 (BI) length measurements. Lipid classes of young recruits 
were analyzed on the 9-month period data via 1-way PER-
MANOVAs (9999 permutations) with 2 fixed levels (BI and 
PH) and 10 replicates. One-way ANOVA was used to com-
pare mean PII sizes between the 2 ‘Period’ (2016: 5 weeks 
and 2018: 12 months). Shapiro test and Bartlett test were 
tested to validate normality and homoscedasticity assump-
tions. For all statistical tests, a level was set to 0.05 and 
statistical analyses were performed using R software (R Core 
Team 2013).

Results

Abundance pattern

Hiatella arctica was the dominant species recruiting on 
traps, its relative abundance exceeding 92% for long sam-
pling periods in both stations (Online Resource 1, Table A1). 
For the 9- and 12-month periods 937 and 909 recruits or 
2909 and 3286 recruits were collected in PH and BI, respec-
tively. By contrast, the proportion of H. arctica collected 
over 5 weeks during the fall season was quite low, with 9 
and 25% of the total abundance of recruits at PH and BI, 

respectively (581 and 1156 individuals). However, this is 
mostly due to the high proportion of unidentified post-larvae 
during this period (64% at BI, 70% at PH). Abundances of H. 
arctica were similar between both stations (P-perm = 0.1833, 
Pseudo-F = 1.8681, Df = 1 and Df residuals = 64), but differ-
ences appeared between sampling periods (P-perm = 0.0001, 
Pseudo-F = 142.7, Df = 2 and Df residuals = 64), without 
interaction between ‘Site’ and ‘Period’ (P-perm = 0.5875, 
Pseudo-F = 0.5288, Df = 2 and Df residuals = 64) (Fig. 3). 
The increase in the number of recruits as the duration of the 
sampling period increases reveals a cumulative recruitment 
starting with fewer than 19 ± 3.0 recruits (± SE) collected 
during 5-week periods in PH and 3 ± 1.0 recruits in BI, and 
mean abundance per trap increasing up to 84 ± 7 (PH) and 
88 ± 10 (BI) during the 9-month period, and to 288 ± 32 
individuals for 12-month periods in PH and 347 ± 42 in BI 
(Online Resource 1, Table A1).

Size‑class distribution and growth

For the 12-month sampling period, shell length of H. arctica 
recruits collected in PH varied from 485.7 to 976.0 µm (mean 
value of 721.3 ± 8.1 µm; ± SE, n = 171) and from 495.6 to 
971.7 µm (mean value of 687.2 ± 6.3 µm; ± SE, n = 255) 
in BI (Fig. 4) (Table 1). In BI, five independent cohorts 
were detected (Fig. 4) (posterior model probability = 0.79, 
log(likelihood) = −  1514.62, Df = 14, Online Resource 
1, Fig. A1) whose mean shell length was equal to 523.1, 
607.4, 678.6, 765.3 and 884.4 µm (Table 1), contrasting with 
one sole cohort in PH (posterior model probability = 0.61, 

Fig. 3  Mean abundance per 
spat trap (± Standard Error) of 
recruits of H. arctica collected 
at both studied sites over either 
5 weeks, 9, or 12 months. 
*** Indicates a significant dif-
ference at 0.0001
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Fig. 4  Size-class of recruits of H. arctica collected in 12 months’ 
spat traps (immersed from mid-May 2017 to mid-May 2018) at either 
a Basalt Island or b Pass Hytten and in 5-week samples (immersed 
from August 2016 to September 2016) at c Basalt Island and d Pass 

Hytten. Lines represent the estimated Gaussian densities (probability 
density) corresponding to the different cohorts (Gaussian finite mix-
ture model), one-line type by cohorts

Table 1  Size distributions for post-larvae of H. arctica observed in samples collected during different sampling periods on both sampling sites

Site Size classes n Mean full 
length (μm)

SE Mean PII 
size (μm)

SE ∆ (full 
length − PII size 
(μm)

Approxi-
mate age 
(days)

Basalt Island 12 months 1 [495; 555] 19 523.1 3.4 287.3 3.2 235.7 ~ 29.5
2 ]555; 648] 78 607.4 2.8 291.2 1.4 316.2 ~ 39.5
3 ]648; 712] 69 678.6 2.0 291.9 1.9 386.7 ~ 48.3
4 ]712; 834] 64 765.3 3.8 291.8 2.9 473.5 ~ 59.2
5 ]834; 972] 25 884.4 6.3 291.3 4.4 593.1 ~ 74.1

Pass Hytten 12 months 1 [485; 980] 171 721.3 8.1 282.6 1.4 438.7 ~ 54.8
Basalt Island 5 weeks 1 ]310; 385] 2 326.7 15.1 326.4 10.3 0.3 ~ 0

2 ]385; 423] 19 409.5 2.4 301.4 2.7 108.0 ~ 13.5
3 ]423;445] 13 433.6 1.6 311.4 3.3 122.1 ~15.3
4 ]445; 500] 24 468.4 14.0 314.8 2.8 153.6 ~19.2
5 ]500; 560] 18 528.6 3.4 313.8 2.7 214.8 ~ 26.9
6 ]560; 618] 4 591.1 10.6 316.1 1.3 275.0 ~ 34.4

Pass Hytten 5 weeks 1 [347; 950] 14 502.6 39.4 306.1 6.5 196.5 ~ 24.6

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



1281Polar Biology (2023) 46:1275–1286 

1 3

log(likelihood) = − 1038.79, Df = 2, Online Resource 1, 
Figs. A1 and 4). Based on 5-week sampling period, size 
classes of recruits varied from 311.6 to 617.4 µm (mean 
value of 464.9 ± 6.4  µm; ± SE, n = 80) in BI and from 
347.8 to 949.2 µm (mean value of 502.6 ± 39.4 µm; ± SE, 
n = 14) in PH (Table 1, Fig. 4). Whereas no cohorts could be 
detected in PH (log(likelihood) = − 89.25, Df = 2), six were 
observed in BI (Fig. 4) (posterior model probability = 0.33, 
log(likelihood) = − 425.94, Df = 17, Online Resource 1, 
Fig A1) with corresponding mean lengths of 326.7, 409.5, 
433.6, 468.4, 528.6 and 591.1 µm (Table 1). In fact, size-
class distributions were similar for 5-week and 12-month 
data in BI, but with a larger size range in the 12-month 
sample (Fig. 4). Moreover, at BI the mean PII size of each 
cohort was very close to the same sampling duration, but not 
for different duration, with a mean value of 314.0 µm over 
5 weeks and 290.7 µm over 12 months (F-value = 39.23, 
P-value = 0.000147, Df = 1, Df residuals = 9, Anova) 
(Table 1). At PH, the mean PII size for the two periods were 
similar as in BI, with a mean value of 306.1 µm over 5 weeks 
and 282.6 µm over 12 months (Table 1). Assuming a means 
post-larval growth of 8 µm per day, approximated ages of 
H. arctica recruits in BI ranged from ~ 29 to 74 days in the 
12-month period, and from ~ 0 to 34 days in the 5-week sam-
pling period, respectively (Table 1).

Lipid classes

The total concentration of lipids in recruits collected over the 
9-month sampling period was similar in both sites (Pseudo-
F = 0.0209, P-perm = 0.8755, Df = 1, Df residuals = 18), with 
a mean value of 0.61 ± 0.15 mg.individual−1. Seven lipid 
classes were detected with the highest contributions of phos-
pholipid (PL), representing near 90% of the total lipids, and 
low values of 1% for triglycerides (TAG) (Online Resource 
1, Table A2).

Discussion

Spatial bivalve recruitment patterns in the Young 
Sound fjord

H. arctica was the dominant species recruiting on the spat 
traps throughout the surveys at both sampling sites (PH, 
BI). No difference was observed between sites for the abun-
dance of Hiatella recruits with an increasing number of 
recruits found in samples collected over 5 weeks, 9 months 
and 12 months, respectively. No spatial differences were 
observed in 9-month samples for the total lipid concentra-
tion and the lipid class composition. Such results are quite 
surprising because PH and BI sites are submitted to con-
trasting freshwater inputs (Bridier et al. 2019, 2021) that 

could have influenced the survival and growth of the young 
bivalve recruits (Bashevkin et al. 2020). In the White Sea, 
Saranchova et al. (2006) showed that pediveliger larvae of 
H. arctica display a higher resistance to low salinity than 
those of Heteranomia ovata. The larval stage of H. arctica 
can endure reduced salinity for 2 weeks, with survival rates 
of 25% at a salinity of 12‰ (Saranchova et al. 2006). Such 
data could explain the dominance of H. arctica in the assem-
blages of recruits observed in spat traps, especially if, during 
their pelagic dispersal with the currents, bivalve larvae enter 
the surface layers of the fjord that exhibit the most variable 
salinity, temperature, and turbidity during summer (Bendt-
sen et al. 2007).

The size-class distributions displayed both spatial and 
temporal differences. At the BI site, we detected 6 cohorts 
but only one at PH. The single cohort at PH could result 
from too much overlap of cohort-specific size distribu-
tions (i.e., failure to identify cohorts), although a similar 
500–1000 µm size’s range was observed at both sites and we 
did find evidence of cohorts in BI. In addition, we hypoth-
esize that the shift between the size ranges of the two sam-
pling periods from 300 to 650 µm over 5 weeks and from 
500 to 1000 µm over 12 months reveals secondary settle-
ment stimulated by trophic conditions, as observed by Forêt 
et al. (2018, 2020). In YS, we suggest that recruits drifting 
with the currents from the middle to the inner fjord could be 
bigger in PH due to the trophic conditions. As pointed out 
by Forêt et al. (2018, 2020) secondary dispersal temporal 
patterns depend on both the physiology of bivalve recruits 
and the pelagic trophic environment, a phenomenon called 
“trophic migration trigger”, analogous to “trophic settlement 
trigger” (Toupoint et al. 2012; Androuin et al. 2022).

Trophic constraints on larvae of filter‑feeding 
bivalves

To survive within Arctic Fjords, planktotrophic larvae, feed-
ing on phytoplankton, must be able to respond to short peri-
ods of high food availability and prolonged periods of low 
resources during the polar night (Weslawski et al. 1991). In 
the present study, we determined that the concentration of 
total lipids found in H. arctica recruits was about 0.6 mg.
individual−1 and associated with a low energetic lipid (TAG) 
accumulation of 1% at the end of the winter 2017. Gallager 
et al. (1986) studied the lipid class composition of healthy 
and starved larvae of Crassostrea virginica and Mercenaria 
mercenaria and showed that energetic (TAG) and structural 
(PL) lipids were roughly in equal proportion throughout the 
development of healthy larvae. TAG content is an indicator 
of larval quality and is directly affected by exogenous food 
intake and also influenced by environmental stress increas-
ing metabolic activity and reducing food intake (Fraser 
1989). In our study, no data on larvae are available, but the 
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very weak TAG accumulation in the recruits sampled seems 
to indicate starvation in May and potentially poor physi-
ological condition at the end of winter. Another explanation 
could be the complete use of energy obtained from food to 
direct transfers to growth without energetic reserve accu-
mulation. However, in optimal laboratory condition, bivalve 
post-larvae fed ad libitum without environmental stressful 
conditions showed important TAG accumulation concomi-
tant with substantial shell growth (Gagné et al. 2010).

Temporal pattern of bivalve recruitment 
within the YS fjord

The mean PII sizes of H. arctica recruits in the YS fjord 
of 290 µm (12-month period) and 314 µm (5-week period) 
are significantly lower than previous values of 380–400 µm 
observed for the same species in the White Sea by Flyachin-
skaya and Lezin (2008). Such values of 290–314 µm can be 
compared to PII sizes of post-larvae and juveniles of other 
bivalves of subarctic areas, which can reach up to 422 µm 
for the blue mussel Mytilus edulis (Martel et al. 2014; South 
2016). Food supply during the planktonic phase, as well as 
seawater temperature, are among the most important factors 
determining the size of veliger larvae at metamorphosis, that 
is, at the end of the planktonic life (Pechenik 1990; Emlet 
and Sadro 2006). As hypothesized by Pechenik and Levine 
(2007) and Martel et al. (2014), a short larval phase associ-
ated to small PII size at the settlement could decrease larval 
mortality within the water column due to reduced exposure 
to predation or dispersal to unsuitable habitats. It is also 
suggested that a longer larval phase associated to large PII 
size at the settlement could decrease the probability of early 
mortality of juveniles because of a larger size and a larger 
pump for more filter-feeding activity (Pechenik et al. 1996). 
However, data obtained with oysters Crassostrea gigas in a 
Mediterranean lagoon were not consistent with this hypoth-
esis: an inverse relationship between PII size and survival 
after metamorphosis was observed, showing that recruitment 
success was associated with smaller PII sizes (Lagarde et al. 
2018). The relatively small and uniform size at metamor-
phosis (PII size < 310 µm) observed in this study is probably 
related to a trade-off between growth and the necessity for 
pediveliger larvae to undergo metamorphosis rapidly and 
access to the more rapid post-larval growth thanks to the 
development of gills (Gagné et al. 2010). Because of low 
seawater temperatures throughout the year, metabolism and 
growth of marine invertebrates are classically slowed down 
in the polar environment (Clarke 1992). However, Sejr et al. 
(2004), working on the resource limitations to growth and 
production of YS H. arctica populations, suggested that 
despite low rates of assimilation and growth at low tem-
perature, H. arctica adults were able to grow much faster in 
laboratory experiments than observed in YS when provided 

with food. Thus, low food availability seems to be the major 
factor of growth regulation.

In this study, data collection was constrained by difficul-
ties accessing the marine station of the YS fjord. The sam-
pling scheme covers various recruitment periods over several 
years from 2016 to 2018. While the 5-week period provides 
a state in late summer/early fall 2016, the 9-month period 
extends to the end of winter 2016–2017, and the 12-month 
period includes the summer of 2017 and lasts up to the end 
of winter 2017–2018. The size-class distributions of recruits 
collected during 1 year at both sampling sites reveal the 
occurrence of several successive cohorts with small PII size 
differences, which suggests several spawning events in H. 
arctica, and a similar size at metamorphosis. As emphasized 
by Martel et al. (2014), in Mytilus edulis recruits mean PII 
size can be highly variable, which reflects metamorphosis 
delays later in the recruitment season. Here, with relatively 
small and constant PII size (< 310 µm), we suggest that there 
is no metamorphosis delay, and that primary settlement is 
probably controlled by a similar triggering cue. Many stud-
ies have focused on such settlement cues, including trophic 
signals linked to phytoplankton blooms (Trophic Settlement 
Trigger TST, Toupoint et al. 2012; Lagarde et al. 2018; Leal 
et al. 2018), to water temperature (mussels: Bayne 1964, 
clams: Lutz and Jablonski 1978; Bayne and Newell 1983) 
or to chemical cues (Hadfield and Paul 2001). The synchro-
nization between the larval cycle and primary production 
is related to the 'match/mismatch' theory (Cushing 1990). 
Thus, an earlier break up of sea ice in spring followed by an 
early phytoplankton bloom, could in turn lead to a temporal 
desynchronization between this peak of primary production 
and that of pelagic secondary consumers such as zooplank-
ton, including meroplankton (Søreide et al. 2010; Leu et al. 
2011).

Spawning and larval presence of H. arctica in Arctic 
waters

Based on previous larval growth studies on H. arctica 
(Flyachinskaya 1999) and on the size of the five different 
cohorts identified at BI (12-months), we estimated that the 
age of oldest recruits, around 884.4 µm (i.e., those that have 
settled at the earliest), could reach 74 days or more. Such 
an age would indicate the beginning of spawning in Feb-
ruary 2018 which seems unlikely given the conditions, a 
period with ice cover, without light or primary production. 
Nevertheless, a study of the occurrence and abundance of 
pelagic bivalve larvae within a high Arctic fjord (Adventf-
jorden, Svalbard) identified a strong seasonality in the occur-
rence of bivalve larvae, largely coinciding with periods of 
primary productivity (Brandner et al. 2017). The seasonal 
occurrence of bivalve larvae shows variation in duration 
across the biogeographic range of H. arctica, with longer 
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duration at higher latitudes (8 months at 56°N and 78°N) and 
shorter duration at lower latitude populations (1–2 months 
at 42°–46°N) (Brandner et al. 2017). Such results contradict 
those of Ockelmann (1958) who observed only 2 months of 
H. arctica larval presence at a latitude of 78°N. According to 
Kulikova et al. (2013) larvae of H. arctica drift in the water 
column between May and December at all latitudes whereas 
the period of presence shifts to Autumn (September–Octo-
ber) at lower latitudes. The spawning season of H. arctica 
has been determined in the White Sea, lasting from June 
to November in a study conducted at a lower latitude (Fly-
achinskaya and Lezin 2006, 2008). For the data of 5-weeks 
at BI, we estimated that the age of oldest recruits (i.e., those 
that have settled at the earliest) could reach 34 days or more. 
Thus, we suggest that the spawning of H. arctica in YS starts 
potentially in June until the end of October in relation to 
the phytoplankton blooms related to the break up of ice 
cover around mid-July (Rysgaard et al. 1999) for a period 
of around 80 days. This hypothesis could agree with the age 
estimate integrating a slower growth during the unfavorable 
winter conditions.

Perspectives

Climate change with declining sea-ice cover and accelerated 
melting of glacial ice should increase freshwater input and 
turbidity in the water column (Sejr et al. 2022). Whereas 
the high phenotypic plasticity of H. arctica to freshwater 
input is well detailed (Saranchova et al. 2006), the primary 
production in Young Sound should be more structuring on 
such a species. Indeed, as sea-ice cover (extent and thick-
ness) will decline under warming, this will have an impact 
on the production of sympagic algae which will also impact 
pelagic and benthic communities through loss of ice algal 
production (Søreide et al. 2013). However, the magnitude 
and direction of these effects on the various fjord ecosystems 
around Greenland are still largely unclear. The desynchroni-
zation between an earlier phytoplankton bloom during the 
season due to advanced ice retreat and peaks of zooplankton 
(Søreide et al. 2010; Leu et al. 2011; Gaillard et al. 2017) 
could be important for the recruitment success of H. arctica 
(growth, size at the settlement, physiological state of lar-
vae and post-larvae). Starvation due to poor trophic condi-
tions, depleting the nutritional reserves, could lead larvae 
of H. arctica to settle with low energetic contents, which 
would be consistent with the ‘Desperate larvae Hypothesis’ 
(Knight-Jones 1953; Toonen and Pawlik 2001; Elkin and 
Marshall 2007). Under climate change, modifications in the 
composition or dynamics of the phytoplankton community 
could lead to asynchronies between different trophic lev-
els such as an increase in the proportion of dinoflagellates 
upon diatoms (Hernández-Fariñas et al. 2014). The trophic 
regimes and their dynamics that control the functioning of 

benthic marine invertebrate communities, including their 
dominant component such as H. arctica in the Arctic, would 
be deeply modified. As an example, phytoplankton com-
munities should be dominated by smaller cells such as pico-
phytoplankton (Holding et al. 2019) that are known to syn-
chronize the primary settlement of mussel larvae (Toupoint 
et al. 2012; Androuin et al. 2022), and thus potential risks 
of mismatches. Because H. arctica is one of the preferred 
preys of walrus and eider ducks, a reduction in population 
sizes as well as energy reserves of adults could impact the 
benthic-pelagic coupling in polar areas, with cascading 
effects on higher trophic levels (Kędra et al. 2015; Jézéquel 
et al. 2022).
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