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Abstract

Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are impor-

tant, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component

analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the

1980s regime shift represented a major change in the Earth’s biophysical systems from the upper atmosphere to the

depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world.

Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and

statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global

warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chich�on
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volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cas-

cade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in

terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major

volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur.
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Introduction

Regime shifts are abrupt, substantial and persistent

changes in the state of natural systems. Such shifts have

been observed in the atmosphere (Lo & Hsu, 2010; Xiao

et al., 2012), ecosystems (Hastings & Wysham, 2010)

and human social systems (Campbell & Allen, 2001).

Three regime shifts (1970s, 1980s and 1990s), distin-

guished by marked increases in temperatures or by

abrupt temporal changes across different biophysical

systems, have been identified in the last few decades

(Hare & Mantua, 2000; Reid et al., 2001; Gong & Ho,

2002; Yasunaka & Hanawa, 2002; Peterson & Schwing,

2003; Beaugrand et al., 2013). Documented until now at

ocean basin or regional scales, the mechanisms behind

these events, their environmental interactions, and the

synchrony and scale of their effects around the globe

are poorly understood. There is thus a considerable

research gap with many disparate observations by dif-

ferent scientific disciplines, but no comprehensive over-

all assessment. Here, we address this gap by focusing

on the 1980s regime shift and show, using three inde-

pendent statistical methods that this shift took place on

a planetary scale and involved the carbon cycle (Beau-

lieu et al., 2012b); disease (Vezzulli et al., 2012); and bio-

tic, physical and chemical components of land (Myneni

et al., 1997; Brandt et al., 2013), freshwater (Hari et al.,

2006), precipitation (Tao et al., 2015), marine (M€ollmann

& Diekmann, 2012; Beaugrand et al., 2015) as well as

cryospheric (Brown & Robinson, 2011) and atmospheric

(Lo & Hsu, 2010; Xiao et al., 2012) Earth systems. A total

of 72 time series was processed and analysed statisti-

cally to represent as many natural systems as possible,

and to illustrate shiftlike abrupt changes in a ‘1980s per-

iod of interest’ (1983 to 1990) between the volcanic

eruptions of El Chich�on and Pinatubo (see Materials

and methods).

To explore possible mechanisms behind the 1980s

regime shift, we used historical climate model simula-

tions from the Coupled Model Intercomparison Project

Phase 5 (CMIP5) (Jones et al., 2013) together with statis-

tical modelling (Folland et al., 2013) of the main anthro-

pogenic radiative forcing and natural (volcanic and

solar) factors influencing global mean surface tempera-

ture. Using these approaches, we show that the rapid

cooling of the Earth’s surface (Robock, 2000), and

especially of the oceans (Church et al., 2005), initiated

by the El Chich�on volcanic eruption of 1982 was fol-

lowed by a recovery reinforced by anthropogenic

warming. It is the scale and speed of these combined

heating effects that we propose contributes to the syn-

chronization of the regime shift between different sys-

tems. Although temperature appears to be the main

forcing factor, volcanic and anthropogenic aerosols and

their interactions with clouds (IPCC Chap. 7, 2013) and

the brightening effect described by Wild (2009) may

also have contributed. The 1980s regime shift is an

example of unforeseen compounding effects that may

occur if unavoidable natural events such as major vol-

canic eruptions interact with anthropogenic warming.

Materials and methods

Data

Time series selection. Long time series of variables represent-

ing the various key components of the climate system

(drivers) and a wide range of environmental and ecological

indicators (responders) were used for our study. Half the 72

time series represent global and hemispheric (26) to local (10)

land, sea and freshwater temperatures, with the other half

covering, at global to local scales, the carbon cycle (3) and the

following natural systems: atmosphere (9), cryosphere (6),

marine hydrosphere (2), marine biosphere (3), terrestrial

hydrosphere (3) and terrestrial biosphere (10). We have used a

variety of different forms of measurements with one value per

year: for example, averaged over single months, seasons or

yearly, or in the case of phenology the timing date. Some of

the time series presented are averages of data sets where our

analyses showed the shift in most of the members, for exam-

ple 18 river water temperatures averaged for Switzerland or

many gridded temperature data sets; others are representa-

tives of vertical profiles in the atmosphere or ocean that show

similar shifts at other different heights or depths. The majority

of the time series are from the Northern Hemisphere. Few

unbroken long-term time series from the tropics exist that

have been produced using the same standard protocols over

time. Furthermore, time series data, other than for land sur-

face temperature (LST) and sea surface temperature (SST)

from ocean areas outside the North Atlantic and North Pacific,

are very sparse.

Considerable effort was put into the search for long-term

time series and included the following: submissions from rec-

ommendations by the authors, downloading from open-access

© 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., doi: 10.1111/gcb.13106

2 P. C. REID et al.



online databases, requesting data from original literature

sources after an extensive search for long-term time series and

a number of exploratory searches for time series to cover

perceived gaps by theme, for example natural system and geo-

graphical region. In addition, data sets were processed to

cover large geographical regions, for example continents and

ocean basins, independently of global and hemispheric data

that are often readily available. All acquired time series were

processed in the same way. The resulting compilation of data

was dependent on sampling, monitoring location and avail-

ability, and does not claim to be comprehensive or geographi-

cally representative of the whole world.

For inclusion in the analysed database, continuous data sets

needed to be within the period 1946 to 2012 and start by 1980

at the latest. The year 1946 was chosen, when possible, as the

start date to exclude the poor sampling during World War II.

There were two exceptions, one to allow satellite information

to be included using the Normalized Difference Vegetation

Index (NDVI), start 1982 (Myneni et al., 1997) and the other

mesopelagic fish eggs, start 1981 (Fujino et al., 2013).

Data sources. The 72 time series selected for more detailed

study were chosen to yield as wide a global geographical cov-

erage as possible; they include data from single sites, sets of

data, and data averaged at global, hemispheric, continental

and ocean scales. The data used in the study can be obtained

from Table S1 or from the corresponding author. Citations for

all the time series analysed are given in Table S2. The years

from 1983 to 1990, between the major volcanic eruptions of El

Chich�on (1982) and Pinatubo (1991), were focused on as a ‘pe-

riod of interest’ to study the 1980s regime shift.

Two data sources for temperature were used to derive

continental, oceanic, global and hemispheric means. First, pre-

calculated 5° grid annual mean anomalies with respect to

1961–1990 produced by the Hadley Centre of the UK Met

Office and the Climatic Research Unit, University of East

Anglia (http://www.metoffice.gov.uk/hadobs/index.html),

were downloaded: HadCRUT4.3.0.0 (combined LST and SST);

HadSST3.1.1.0 (SST); and CRUTEM4.3.0.0 (LST), the latter cal-

culated from ~5500 monthly meteorological station tempera-

tures. Second, monthly mean data were downloaded from the

NASA Global Historical Climatology Network (GHCN) data

set (ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/v3). While the

first set was prepared by the provider, with this data set we

were able to preprocess the data ourselves to take into account

gaps in sampling in time and space before calculating global,

hemispheric and continental means.

Processing the GHCN global temperature data set. We used

data from the GHCN data set to provide an independent

temperature time series that is based on real and not gridded

data. After preliminary investigations, the data set used for

further study was limited to land meteorological stations from

continental regions (6449 stations). The distribution of these

stations was not random and did not systematically cover all

regions of the world with a similar density, and many had

missing data. To address these issues, the sequence of

subsequent processing followed the order:

1 To reduce the number of stations with missing data, new

regional mean time series were calculated for areas where

adjacent weather stations were likely to show similar

temperatures. A sensitivity analysis was carried out to

check the similarity in data from stations enclosed within

circles of diameter 50, 100, 150 and 200 km. A circle with a

diameter of 100 km gave the best result, so ‘circle time ser-

ies’ were calculated by averaging the data from stations

within circles of this diameter.

2 To decide which stations to include within each circle time

series, a threshold test was applied to filter the station time

series for missing years. Seven options were tested: with 5,

10, 15, 20, 25 or 30 missing years, or with no filtering. A

threshold with a maximum of 10 years’ missing data was

selected, as using this threshold the signal was not altered

by missing values.

3 For the calculation of annual means, at least nine sampled

months were required, otherwise a missing value was

attributed.

4 A final set of time series was then generated for each

selected 100-km-diameter circle to give 302 circles in Eur-

ope, 624 in Asia, 228 in Australia, 97 in Africa, 1932 in North

America and 108 in South America, with 2977 for the North-

ern Hemisphere, 314 for the Southern Hemisphere and 3291

for the world. Of these 3291 time series, the maximum num-

ber of circles that overlap is 37.

5 All the GHCN time series were anomalized with respect to

their own mean over the period 1961–1990 for comparison

with the Hadley and CRU time series.

6 A control sensitivity analysis was applied to determine

whether any change in the number of circle time series per

year coincided with observed regime shifts in the data.

There were no major changes in the number of missing sta-

tions until 1989/1990 in some regions of the world and

more globally in 2000; the former reduction in stations coin-

cided with the break-up of the USSR. This result gives

increased confidence to the regime shifts identified in the

GHCN data prior to 1989.

Statistical analysis

Identifying regime shifts. Three different statistical methods

were used to identify regime shifts.

First, a standardized principal component analysis (PCA)

(Beaugrand et al., 2002) was applied to the whole data set. The

period 1968 to 2010 was selected for the analysis as at least 58

of the 72 time series (80%) had data throughout this interval.

PCA is not sensitive to temporal autocorrelation. Results of

the analysis are shown in Fig. 1 and Table 1.

Second, we used a change-point analysis (Taylor, 2000) to

identify the timing of the shift in the first principal component;

a technique that is simple, is not sensitive to outliers and takes

into account the effects of temporal autocorrelation when cal-

culating the probability of the shift. The cumulative sums of

the time series (i.e. the first principal component) were calcu-

lated (Iba~nez et al., 1993; Kirby et al., 2009); then, the first dif-

ference in the cumulative sums was estimated, followed by a

Monte Carlo test to determine the probability that a shift had

© 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., doi: 10.1111/gcb.13106
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occurred based on the number of times the simulated first dif-

ference exceeded the observed amplitude. About 100,000 runs

were performed, and the simulated time series were retained

if their order-1 autocorrelation was higher or equal to the one

observed in the original time series.

Third, for standardization and comparison of individual

time series, a ‘multiple’ sequential t-test analysis of regime

shifts (STARS) based on the Rodionov method (Rodionov,

2004; Rodionov & Overland, 2005) was applied. This method

was used individually on each time series; the results in the

period of interest are given in Figs 2–6 and Table 2.

Variant of the Rodionov method. Generally, a t-test examines

whether the means of two sample populations differ signifi-

cantly, based on the standard deviations and on the number

of values in each sample. The existence of a trend in one or

both samples is not excluded.

The STARS method (Rodionov, 2004; Rodionov & Over-

land, 2005) tests whether the end of one period (regime) of a

certain length is different from a subsequent period (new

regime). The cumulative sum of normalized deviations from

the hypothetical mean level of the new regime is calculated,

and then compared with the mean level of the preceding

regime. A shift year is detected if the difference in the mean

levels is statistically significant according to a Student’s t-test.

In his third paper, Rodionov (2006) shows how autocorrela-

tion can be accounted for. From each year of the time series

(except edge years), the rules are applied backwards and for-

wards to test that year as a potential shift year. The method is,

therefore, a running procedure applied on sequences of years

within the time series.

The multiple STARS method used here repeats the proce-

dure for 20 test-period lengths ranging from 6 to 25 years that

are, for simplicity (after testing many variations), of the same

length on either side of the regime shift. The last year of the
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Fig. 1 A standardized principal component analysis (PCA) of

long-term changes in 72 time series. (a) First principal compo-

nent (49% total variance) and (b) second principal component

(12% total variance). The red dashed line marks a significant

regime shift year in 1987 (P ≤ 0.05), identified by both principal

component and change-point analyses.

Table 1 Standardized principal component analysis. Results

of an analysis performed on the whole 72 time series as an

entity for the period 1968–2010 where 80% of the time series

had no gaps. The first two normalized eigenvectors show the

correlation between each variable and the first two principal

components. Colour code for eigenvector contribution: posi-

tive red 0.50–0.75, red bold 0.76–1; negative the same in green

(See also Fig. 1). See Table 2 legend for ’system’ acronyms

© 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., doi: 10.1111/gcb.13106

4 P. C. REID et al.



old regime is defined as the shift year, and all results shown

are for P ≤ 0.05. Our approach allows us to assess the strength

of a regime shift by the number of test-period lengths with sig-

nificant results, while Rodionov uses a regime shift index to

weight his results.

Not all 20 test-period lengths can be applied to all the

time series as the length of the time series, and the location

of the shift year in the time series can sometimes make this

impossible. For example, it would not be possible to apply

the longest test-period length of 25 years to a short time ser-

ies. For comparative purposes, we therefore determine the

number of significant results as a percentage of the maxi-

mum possible, and set a minimum threshold of 20% to

accept a significant shift year. This approach favours the

detection of changes between long regimes and discards

changes between short regimes, such as, for example, that in

the NAO from 1989 to 1995, which lasted only 7 years

(Fig. 2i).

Detection of a shift year depends very much on the test-pe-

riod used. Extreme values in a time series can create a barrier

for short test-periods and limit a shift year result to a small

part of the whole time series. On the other hand, long test-pe-

riods may integrate these values to give significant shift years

for longer periods. These observations emphasize the impor-

tance of varying the test-period length.

All acquired time series were analysed using the multiple

STARS method. In some cases, because we used various test-

period lengths, two adjacent regime shift years were identified.

Possible reasons for this duplication, other than the distribu-

tion of the values in the time series, include the following: that

the shift event takes time to evolve over more than 1 year; that

some examples of shifts occur in the last months of 1 year and

in the first months of the next; and that several different shift

years occur in a large area that has been averaged over.

A comparison of real data with artificial time series. To

demonstrate that the identification of regime shifts in our

Table 1 (Continued) Table 1 (Continued)
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analyses, based on the multiple STARS method, is not spuri-

ous, we compared the results obtained from the real time ser-

ies with the results derived from two sets of artificial time

series. The procedure used to create these autocorrelated time

series is fully described in Beaugrand et al. (2014). First, we

examined the 72 real time series with an autocorrelation func-

tion. The resulting autocorrelograms include information on

the order if the correlation and the value for each lag, and

showed a pronounced autocorrelation for some of our real

time series (Fig. S1a). Second, the artificial time series were

produced with two types of temporal autocorrelation, ‘high’

and ‘medium’, to approximate reality. For each type, 70 time

series with 67 hypothetical years were simulated to corre-

spond to the maximum period of the real time series (1946–
2012, a total of 4690 years each). In the real data, some of the

72 time series extended over a shorter period (a total of

4104 years or 88% of the maximum possible).

The two types of autocorrelation were as follows: (1) High

temporal autocorrelation, where 70 time series were con-

structed with a linear trend of magnitude 100 (arbitrary units)

and random temporal fluctuations of magnitude 120 (green in

Fig. S1b). These time series had an autocorrelation that corre-

sponded to the maximum autocorrelation observed in the real

time series (upper fine lines in Fig. S1a). (2) Medium temporal

autocorrelation, where 70 time series were constructed with a

linear trend of magnitude 100 (arbitrary units) and random

temporal fluctuations of magnitude 45 (blue in Fig. S1b). These

time series had an autocorrelation that corresponded to the

medium autocorrelation in the observed time series (central

fine lines in Fig. S1a). The thresholds of 45 and 120 were cho-

sen to correspond to the two main situations (i.e. high and

medium levels of autocorrelation) encountered in the time ser-

ies. The total number of significant test-periods and shift years

for the real and the two artificial time series sets are shown in

Fig. S2.

A further comparison between the results for the real

and artificial data sets shows the longest significant test-pe-

riods observed (Fig. S3a–c), where the triangular shape of

the plots reflects the longest possible test-period length at

the edges of the time series, from 6 years at the bottom to

25 years at the top. The strength of shift years in a specific

calendar year is shown as a percentage of the number of

significant test-periods against the total number of possible

test-periods (Fig. S3d–f). In the middle of long time series

the latter is 20 test-periods, but at the edges it is less. A

cut-off of 20% was applied to eliminate the majority of only

one or two significant test-periods, which are more likely to

be artefacts.

Modelling

CMIP5 historical climate modelling. Global mean historical

CMIP5 temperature data (Jones et al., 2013) were used to attri-

bute the changes in observed global temperature from the

HadCRUT4.3.0.0 data set (Morice et al., 2012). Two multi-

model ensembles were selected, firstly with natural (solar and

volcanic) forcings (with a total of 46 members), and secondly

with both natural and anthropogenic forcings (99 members).

The multimodel ensemble mean is taken to represent the best

estimate of the response of global mean temperature to the

forcings in each ensemble. The difference between the two

ensemble means is used as an estimate of the effect of anthro-

pogenic forcings on global mean temperature. Linear least-

squares fitting was used to obtain running 7-year trends in the

various global mean time series.

Statistical modelling. Estimates of the response of global

mean temperature to solar and volcanic forcings individually

were produced based on statistical reconstructions (Folland

et al., 2013). This latter study used a cross-validated multiple

regression approach on data from 1891 to 2011 to estimate the

effect of a range of known influences on global mean tempera-

ture. The sum of the solar and volcanic reconstructions was

calculated to provide an equivalent to the ensemble mean

temperature in the CMIP5 natural forcing ensemble. Calcula-

tion of anomalies and trends was performed using similar

techniques to those used for the CMIP5 data.

Results

Identification of the 1980s regime shift in a wide range of
Earth systems

Many statistical techniques exist to identify regime

shifts (e.g. Beaugrand, 2004; Mantua, 2004; Rodionov

& Overland, 2005; Rodionov, 2006; Beaulieu et al.,

2012a; Varotsos et al., 2013). All have strengths and

drawbacks, but the three we use here are complemen-

tary. To determine the main long-term patterns of

variability, we applied a standardized principal com-

ponent analysis (PCA) (Beaugrand et al., 2002) to the

data set as an entity. The results (Fig. 1, Table 1)

showed a clear shift in 1987 for the first component,

which accounts for almost half (49%) of the total vari-

ance. A large number of time series, especially of vari-

Fig. 2 Significant regime shifts in time series representing a range of different Earth systems. Vertical lines denote regime shift years

(P ≤ 0.05), coloured throughout the paper to reflect the ‘1980s period of interest’ (1983–1990): 1984 (blue), 1985 (green), 1986 (orange),

1987 (red), 1988 (brown), 1989 (purple), 1991 (pink as a lagged effect); grey solid lines mark the earlier and later regime shifts (1976 and

1996), and grey dashed lines other significant shift years outside the 1980s. Horizontal lines mark the longest test-period with a signifi-

cant result. Triangles (coloured as per the shift year) point up or down to indicate the direction of a significant trend before or after the

shift year: here 3 before, 12 after the regime shift and 26 time series with a shift in the ‘period of interest’ but no trends. The plots are

presented in the following sequence: atmosphere (a–p) and (ar), cryosphere (q–v), terrestrial biosphere (w–ad), hydrosphere (ae–aq).

Further details for each of the time series are given in Tables 3 and S3 (origin, units and shift years).
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ables related to temperature and vegetation, are

strongly correlated with the first component. The sec-

ond component, which accounts for 12% of the total

variance, is correlated, for example, with the Arctic

Oscillation, North Atlantic Oscillation, Arctic sea-level

pressure and zonal wind. We applied Taylor’s

change-point analysis (Taylor, 2000) to identify step-

wise shifts along the first principal component

(Fig. 1a); the analysis detected a significant regime

shift in 1987 (P ≤ 0.05).

For standardization and a more detailed analysis of

regime shifts in individual time series, the multiple

version of the STARS method (Rodionov, 2004, 2006;

Rodionov & Overland, 2005) described above (see Ma-

terials and methods) was employed. The well recog-

nized and documented Rodionov method has now

been used in several dozen papers (e.g. Luczak et al.,

2011; Jaffr�e et al., 2013; Litzow & Mueter, 2014). Multi-

ple STARS results for 44 time series representative of

six natural systems (terrestrial and marine bio-

spheres/hydrospheres, the atmosphere and cryo-

sphere) are shown in Fig. 2, with more information

on the time series given in Table 3 and Table S3. The

multiple STARS method identifies a shift from a

mostly stationary state to a new state, which in a

third of cases contains a trend after the regime shift

(Table 2). Note that our definition allows a significant

linear trend within a regime.

The results of the multiple STARS method stress

again the importance of the 1980s event compared to

the smaller regime shifts in the 1970s and 1990s. The

dominant 1980s regime shift also shows synchronous

timing for systems and geographical regions. A total of

165 step changes were identified in the 72 time series

over the analysis period from 1946 to 2012. Of these,

11% occurred in the late 1970s (1973–1980), 40% in the

late 1980s (1983–1990) and 25% in the late 1990s

(1993–2000). A comparison between the scale of the

1970s, 1980s and 1990s regime shifts can also be made

by noting the maximum hemispheric step change in

temperature shown by the GHCN LST time series with

differences between the old and new regimes of 0.38 °C
in 1976 (Southern Hemisphere), 0.80 °C in 1985

(Northern Hemisphere, Table 2) and 0.66 °C in 1997

(Northern Hemisphere).

Within the ‘1980s period of interest’ (1983–1990), 66
step changes were found in 59 of the 72 time series

(82%). In some of these, none were found, and in others

more than one. Of the 66 detected shift years, very

strong shifts (100% of the possible test-periods signifi-

cant) were found in 27% and strong shifts (≥50% of the

possible options) in 74%, the latter divided into 35%

and 39% between temperature (for all air, sea and

freshwater data sets) and a grouping of all other time

series (36 each). Of the 44 time series presented in

Fig. 2, 41 show a step-change in the mid-1980s, only

two (Fig. 2v, ac) in the mid-1970s, and only 11 (Fig. 2d,

90
11

0

 (a)

 Japan Kyoto cherry blossom 
80

10
0

12
0  (b)

 Switzerland Liestal cherry blossom 

1880 1900 1920 1940 1960 1980 2000

80
10

0

 (c)

 USA Washington D.C. cherry blossom 

Fig. 3 Long-term time series of cherry blossom blooming dates

from three different continents. Units: day of the year. Vertical

lines denote significant regime shift years (P ≤ 0.05), coloured

for the ‘1980s period of interest’ (1983–1990) throughout the

paper, in this case: 1988 (brown) and 1985 (green); grey dashed

lines mark other significant shift years outside the 1980s. Hori-

zontal lines mark the longest test-period possible with a signifi-

cant result. (a) The date on which the blossom of the Japanese

cherry (Prunus jamasakura) comes into full bloom in Kyoto,

Japan, 35°N, 136.67°E (1873–2012). Data: updated and revised

from Yasuyuki Aono. Shift years: 1898, 1940, 1988. (b) The start

date of the flowering of blossoms on a cherry tree (Prunus

avium) at Liestal, Switzerland, 47.48°N, 7.44°E (1894–2012). The

tree is checked with a telescope every day at the beginning of

the flowering season; the date when 25% of the blossoms are

open marks the start. Data: Andreas Buser, Landwirtschaftliches

Zentrum Ebenrain, Sissach and MeteoSwiss, Switzerland. Shift

year: 1988. (c) The peak bloom date of the blossoms on the

Yoshino cherry trees (Prunus x yedonensis) in the tidal basin,

Washington D.C., USA, 38.88°N, 77.04°W (1921–2011). Peak

bloom date is defined as the day when 70% of the blossoms on

the trees in the basin are open. Data: from http://www.nps.-

gov/cherry/upload/Cherry-Festival-dates.pdf. Shift year: 1985.
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j, k, u, v, x, aa and all the indices Fig. 2g, h, i, ar) in the

mid-1990s. The timing of the 1980s event in all natural

systems ranges from 1984 to 1989, with most changes

occurring in 1987 or 1988. Two examples are shown

where the timing of the shift may reflect a lagged

response (Swiss river pH and tuna catch in the Japan

Sea, Fig. 2ag, an).

The change can be expressed as a percentage for

24 of the 72 time series (not for temperature,

anomalies, indices, day of year or pH). In 19 of

these 24 time series, the change between the two

levels of the longest test-period with a result was

≥10%, in 7 ≥ 50% and in 3 ≥ 100%. In one – wildfire

duration in the western USA – there was an

increase of >400%. This means, from our calcula-

tions, that Western US wildfires lasted on average

29 days between 1986 and 2003 compared to

5.5 days between 1970 and 1985 (Table 2).

If the regimes (of n years length and for the longest

test-period with a result) to either side of the shifts

are considered, with the term ‘old’ applied to the per-

iod before and ‘new’ to that after the regime shift,

there are few significant trends in the old regimes,

but many more in the new, emphasizing the dynamic

nature of the change after the 1980s. Significant

trends in the old regimes before the shifts were only

found in 11% of the 66 shifts in the ‘period of inter-

est’ and in the new regimes after the shifts 41%,

while 55% had no significant trends either before or

after the shifts. Only three time series (Australia,

Fig. 4l; GHCN land SH, HadSST3 sea SH, Fig. 5c,i)

show trends in both old and new regimes, which

0
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Arctic Ocean
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North America

0
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 (k)
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0
0.
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0

 (h)
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0
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5  (g)
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Fig. 4 Time series of annual mean land/sea surface temperature for six continents and eight ocean basins. Anomalies calculated with

respect to their own mean over the period 1961–1990 (continents 1946–2011, oceans 1946–2012). Vertical and horizontal lines, symbols

and colours as per the legend for Fig. 2. Data for land from ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/v3/, processed by Eric Gober-

ville. Units: °C. (c) North America, shift years: 1985, 1997; (e) Europe: 1987; (f) Asia: 1988; (h) South America: 1976, 1984, 1998; (j) Africa:

1996; (l) Australia: 1956, 1971, 1978, 1987, 1996. Data for the sea processed by Jonathan Barichivich from http://www.metoffice.gov.uk/

hadobs/hadsst3/data/download.html. All grid boxes with data for a given region were selected, averaged, and weighted by the cosine

of the latitude to account for the changing size of grid cells towards the poles. Units: °C. (a) Arctic Ocean, shift years: 1961, 1962, 1999;

(b) North Pacific Ocean: 1969, 1970, 1985, 1989; (d) North Atlantic Ocean: 1969, 1970, 1986, 1994, 1996, 1997, 2002; (g) South Pacific

Ocean: 1978, 1994; (i) South Atlantic Ocean: 1958, 1971, 1997; (k) North Indian Ocean: 1986, 2000; (m) Southern Ocean: 1974, 1998, 2006;

(n) South Indian Ocean: 1976, 1986, 1996, 1997.
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means for these three out of 72 another method

would be more appropriate.

To demonstrate that the identification of regime

shifts determined by the multiple STARS method is not

spurious and to address autocorrelation, we compared

the results from the real data with those from two sets

of artificial time series (Figs S1–S3). The sum of signifi-

cant test-periods or shift years in the ‘1980s period of

interest’ is much greater in the real time series than

achieved by the two sets of artificial time series

throughout the analysed time period and conclusively

confirms the reality of the 1980s regime shift and the

validity of the multiple STARS method. In the real data,

a total of 165 shift years were detected with 40% in the

‘period of interest’; in the data sets with high and

medium autocorrelation, the number of shift years

were 348 and 172, of which only 16% and 12%, respec-

tively, occurred in the ‘period of interest’. We expected

that the shift years would be evenly distributed over

the analysed time period in the artificial time series and

more concentrated in the real data, and this is clearly

evident. The probability of detecting a spurious shift is

thus likely to be the same in all of the time series. Both

sets of the artificial time series have a symmetrical pat-

tern to either side of the middle of the analysed time

period (Fig. S3b, c, e, f), whereas the real data are

strongly biased towards the second half of the time

series and especially within the ‘period of interest’

(Fig. S3a, d). An edge effect is evident in all the plots,

originating in the start and end phase of the time series

where shift years cannot be detected.

A long-term context for the 1980s shift is provided by

three centennial-scale time series of the flowering date

of cherry trees in Japan, Switzerland and the USA

(Fig. 3). The 1980s step changes at Liestal in 1988 and

Washington in 1985 are the only significant shifts in

these time series in at least 80 years. Flowering date cal-

ibrated against springtime air temperature showed that

the earliest timing of the bloom and warmest period in

over 1000 years in Kyoto (Aono & Kazui, 2008)

followed the shift in 1988.

In continental averages of LST (Fig. 4c, e, f, h, j, l), the

1980s regime shift is evident for all continents except

Africa, ranging from 1984 in South America to 1988 in

Asia. However, for mean oceanic SST (Fig. 4a, b, d, g, i,

k, m, n), the shift is only shown for the North Pacific in

1985, the North Atlantic in 1986 and the south and

north basins of the Indian Ocean in 1986. For both LST

and SST, the evidence for shifts in other decades is

limited. Our analyses confirm earlier findings that SST

has increased in steps over the last century (Reid &

Beaugrand, 2012; Varotsos et al., 2013) and that the pro-

nounced upward trend in global combined land and

sea temperatures seen in the decadal means of

Figure SPM.1 in the IPCC Summary for Policy Makers

(IPCC SPM, 2013; see also Fig. S4) started in the 1980s.

Land and sea surface temperatures averaged over the

entire globe and over the Northern and Southern Hemi-

spheres separately (Fig. 5) record rapid increases as sig-

nificant regime shifts centred on approximately 1976,

1986 and 1996. The relative increase in temperature is

much greater over land than over the sea, and also

larger over the Northern Hemisphere than over the

Southern Hemisphere. The 1970s regime shift was first

described for the North Pacific (Hare & Mantua, 2000),
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Fig. 5 Time series of annual mean global and hemispheric land

and sea surface temperatures. Periods: 1946–2011/2012. (a–c)

GHCN land surface temperature. (d–f) CRUTEM4.3.0.0 land

surface temperature. (g–i) HadSST3.1.1.0 sea surface tempera-

ture. (j–l) HadCRUT4.3.0.0 combined land and sea surface tem-

perature. Vertical and horizontal lines, symbols and colours as

per the legend for Fig. 2. All data series are anomalized with

respect to their own mean over the period 1961–1990. Data: (a–

c) Station-based from ftp://ftp.ncdc.noaa.gov/pub/data/

ghcn/v3. (d–l) 5° grid based from Hadley Centre, Met Office,

UK http://www.metoffice.gov.uk/hadobs/ or from Climatic

Research Unit, University of East Anglia, UK http://

www.cru.uea.ac.uk/cru/data/. Units: °C. Shift years: (a) 1985,

1997; (b) 1985, 1997; (c) 1956, 1971, 1976, 1986, 1987; (d) 1976,

1978, 1979, 1993, 1994, 1996; (e) 1979, 1986, 1993, 1994, 1996,

2004; (f) 1976, 1996; (g) 1986, 1996; (h) 1970, 1986, 1989, 1996,

2002; (i) 1968, 1976, 1986, 1996; (j) 1978, 1989, 1994, 1996; (k)

1986, 1996; (l) 1976, 1996.
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but in our results is evident only in the Southern Hemi-

sphere. By contrast, the 1980s and 1990s regime shifts

are seen in both hemispheres, although the 1980s event

is stronger in the Northern Hemisphere.

The atmosphere underwent a major transformation

around 1988 (Lo & Hsu, 2010; Xiao et al., 2012), with

changes in temperature, meridional and zonal wind

patterns, and pressure (Fig. 2a–f, j, k, o, p). Changes in

zonal winds, tropical storms and arctic sea level pres-

sure during the 1980s regime shift (Fig. 2d, f, k) and a

subsequent reversal, in part associated with the 1996

regime shift (Xiao et al., 2012), reflect a pattern that can

also be seen in the dominant general circulation modes

in the Northern Hemisphere (Fig. 2g–i). However, the

1980s regime shift appears unique in that it does not

show a relationship with El Ni~no (Yasunaka &

Hanawa, 2003).

Many step changes in the 1980s are apparent in

cryospheric records (Fig. 2q–v). In West Antarctica and

the Arctic, an approximately synchronous regime shift

in sea-ice extent occurred in the 1980s, with modelled

sea-ice volume in the Arctic declining linearly by 21%

from 1989 to 2012 (Fig. 2u). In marine systems the

1980s regime shift is well documented (M€ollmann &

Diekmann, 2012) (Fig. 2ah-an) and coincided with the

Eastern Mediterranean Transient in 1987, which initi-

ated profound hydrographic changes that appear to be

unique in the last hundred years (Roether et al., 2014).

Measured since 1982, satellite observations of vegeta-

tion greenness/plant biomass (Normalized Difference

Vegetation Index, NDVI) reveal a step increase in plant

growth in the Northern Hemisphere in 1987/88

(Fig. 2x). This index, derived from Advanced Very

High Resolution Radiometer (AVHRR) satellite ima-

gery, is a measure of the photosynthetically active radi-

ation absorbed by chlorophyll in the leaves of plants.

Other satellite- and ground-based observations of the

start and length (Fig. 2y, z), but not the end (Fig. 2aa),

Fig. 6 Global map with magnified insets: locations of time series plotted in Figs 2 and 4. The latitudinal extent of data averaged on a

global or zonal basis is shown as arrows on the right (the letters above the arrows refer to the time series in Fig. 2). The time series are

grouped into six system categories (symbols, top right); the terrestrial biosphere group also includes one freshwater biological category

(Fig. 2ao). Individual sites are denoted by solid coloured symbols and regions by hollowed coloured symbols. The colours represent

the regime shift year in each time series (see key, bottom right). White lettering with a black border (e.g. Africa) indicates time series

with no significant regime shifts in the 1980s. The areas covered by the six regions averaged to produce ‘Global’ tropical storm days are

labelled A to F (coordinates in Table S4). A list of the system allocation and shift years of each of the time series from Fig. 2 is given in

Table S5; for oceans and continents see Fig. 4.
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of the vegetation growing season and the cumulative

temperatures over this period (Fig. 2o) show that the

increase in productivity has closely tracked the rate of

warming in the northern extratropics (Barichivich et al.,

2013) and associated reductions in snow cover (Fig. 2r,

s). This evidence is reinforced by additional extensive

in situ measurements of changes in vegetation composi-

tion and biomass (Sturm et al., 2001; Mann et al., 2012;

Brandt et al., 2013) and by other synchronous

changes in terrestrial and freshwater systems (Fig. 2ab-

ag, ao-aq).

Annual emissions of CO2 from fossil fuel and land use

sources either accumulate in the atmosphere (atmo-

spheric growth rate) or are removed from the atmo-

sphere and absorbed by the land and oceans (sinks). The

net land uptake is calculated from emission data, minus

the atmospheric CO2 growth rate and minus modelled

ocean uptake. A rapid increase in photosynthetic activity

in the late 1980s is consistent with the step decrease in

summer atmospheric CO2 concentration in northern lati-

tudes and the simultaneous increase in winter atmo-

spheric CO2 (Fig. 2l, m) (Barichivich et al., 2013), the

latter a likely consequence of increased ecosystem respi-

ration (Barichivich et al., 2012). This linkage is confirmed

by carbon cycle observations and models (Sarmiento

et al., 2010) that show a sudden increase of ~1 Pg C yr�1

in net uptake by the land around 1988 (Fig. 2n). The

regime shift coincided with a sudden decline in the

annual growth rate of atmospheric CO2 (Beaulieu et al.,

2012b). This large increase in the net land carbon sink is

evident in the global carbon budget despite increased

carbon emissions from anthropogenic sources and from

greater fire activity (Fig. 2w).

The PCA and the change-point analysis results sug-

gest that the main shift took place in 1987. The 72 indi-

vidual time series show shifts within the ‘period of

interest’ in the proportions 1983 (0), 1984 (2), 1985 (8),

1986 (12), 1987 (23), 1988 (17), 1989 (4), 1990 (0) = 66,

with three shifts in 1991 that are likely to be lagged

effects. Regionally, the results are generally closely

grouped and show a degree of consistency with regard

to the year of their occurrence. For example, in North

America: wildfires, atmospheric summer CO2 concen-

tration, the Washington Cherry and the mean LST all

showed a shift in 1985; and in Europe eight time series

from the cryosphere, fresh water and vegetation sys-

tems all showed a shift in 1987, with a shift in a ninth

series, the UK sand martin arrival in 1988. These regio-

nal differences are mapped in Fig. 6 by ocean and con-

tinent for SST and LST (Fig. 4) with superimposed shift

years for some of the time series plotted in Fig. 2. With

the exception of dust storms in Asia (Fig. 2e), the signal

seems to have started in the early 1980s in South

America (1984), spreading to the North Pacific and

North America (1985), to the North Atlantic Ocean

(1986) and Europe (1987), and then on to Asia (1988),

with a possible, weaker, second signal in the North

Pacific in 1989 (see Fig. 4b and Table 2). In the Southern

Hemisphere, it seems to have extended eastwards to

the Indian Ocean (1986) and to Australia (1987).

Using CMIP5 and statistical modelling to examine
mechanisms

The global scale of the 1980s shift documented here

suggests that a fundamental shift in the climate system

took place at this time. It is clear that rapidly increasing

temperature is central to the shifts, with rising concen-

trations of greenhouse gases contributing to a net

warming of global climate since the late 1970s (Fig-

ure SPM 1, in IPCC SPM, 2013). Temperature is also

important for the carbon cycle as well as vice versa, as

reflected in the correlated changes in global combined

land and sea surface temperature and the atmospheric

growth rate of CO2 over the last ~50 years (Fig. 7).

Over the period 1975 to 1995, the anthropogenic

warming from CMIP5 simulations of 0.19 °C per dec-

ade is close to the observed warming rate of 0.16 °C per

decade (Fig. 8a). With a relatively steady trend

(Fig. 8b), however, it does not explain the abrupt and

substantial temperature shift in the 1980s. Natural forc-

ing, in contrast, induced a marked peak in short-term

warming of 0.34 °C per decade in 1986 (in the 7-year
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Fig. 7 Annual temporal development of CO2 growth rate and

global temperature. Correlation: (r2 = 57%, P < 10�10). Period:

1959–2014. Mauna Loa CO2 annual growth rate (black) plotted

against HadCRUT4.3.0.0 annual global combined land and sea

surface temperature (red), both as anomalies to 1961–1990.

Mauna Loa data from: ftp://aftp.cmdl.noaa.gov/products/

trends/co2/co2_gr_mlo.txt and Hadley data from: http://

www.metoffice.gov.uk/hadobs/hadcrut4/data/current/down-

load.html.
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trend belonging to the period 1983 to 1989, Fig. 8b),

temporarily exceeding the anthropogenic warming rate.

Therefore, anthropogenic and natural forcing factors

combined in the mid-1980s to produce a sudden accel-

eration in global warming.

Statistical modelling of historical temperatures (Fol-

land et al., 2013) indicates that this large natural forcing

has a volcanic origin rather than being linked to solar

radiation, the other possible natural forcing factor

(Fig. 8c,d). In the ‘period of interest’, the statistically

derived natural forcing has a similar pattern to that

from the CMIP5 model simulations but is somewhat

smaller in amplitude (Fig. 8b,d).

The major volcanic eruption of El Chich�on in 1982

was responsible for an estimated cooling of 0.2–0.3 °C
per decade, offsetting anthropogenic warming and

resulting in relatively small global mean temperature

trends in the early 1980s. By the mid-1980s to late

1980s, however, recovery from the climatic impacts of

the eruption, including a reduction in stratospheric

aerosol concentrations, led to a natural warming, rein-

forcing anthropogenic warming and producing a rapid

increase in global mean temperature on a higher level

than before the eruption (Fig. 7). As a result, the global

climate shifted to a warmer state in just a few years, set-

ting in motion a cascade of responses in natural sys-

tems.

Discussion

Based on evidence from a wide range of Earth system

components, we show that a global and approximately

synchronous shift occurred in the 1980s that is strongly

evident in global, hemispheric and some local tempera-

tures. Since the regime shift, decadal temperatures have

shown a steep increase compared to the previous per-

iod of little change and an earlier smaller rise from 1920

to 1950 (Fig. S4).

Temperature appears to be the main forcing factor

behind the shift: it is fundamental to most chemical,

physical and biological processes. Independent of our

study, there is substantial evidence that changes in the

heat structure of the world are profoundly affecting

regional climate variability, the cryosphere, terrestrial

systems, sea level, ocean hydrodynamics and the bio-

geochemistry, ecosystems and living resources of the

world. In a biological context, temperature modulates

all processes, including the physiology, reproduction,

development, occurrence, behaviour, disease and phe-

nology of organisms, at cellular to ecosystem scales.

The changes in temperature show great similarity

across the world; this commonality provides a plausible

explanation for the synchrony of the changes we

observed. The abrupt increase in temperature during

the regime shift may have initiated the intensification

of environmental impacts, for example storms, floods,

forest fires and the spread of pests seen over the last

few decades.

The increase in temperature of the 1980s has also

been linked to diverse biological changes on tropical

mountains of the New World. In a Costa Rican cloud

forest, declines of amphibian and reptile populations

and shifts in the altitudinal distribution of birds are

associated with a decrease in mist frequency and other

local climatic changes that appear to have crossed an

important biological threshold in 1987 (Pounds et al.,

1999). Extinction of harlequin frog species across Cen-

tral and South America, which, along with the disap-

pearance of the golden toad from Costa Rica, have been

associated with disease outbreaks and were the first

species-level extinctions in which global warming was

implicated, accelerated in the mid-1980s (Pounds et al.,

2006).
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Fig. 8 Attribution of the global mean temperature shift in the

1980s. The ‘period of interest’ (1983–1990) is highlighted in

white. (a) Observed annual global mean temperature [°C] (blue

fine) with its centred running 3-year means (blue bold), and the

response [°C] to anthropogenic (red) and natural (green) forc-

ings from CMIP5 climate model simulations. (b) Centred run-

ning 7-year trends [°C per decade] corresponding to the

variables in (a). (c) Statistical reconstructions of the impact of

solar (orange) and volcanic (brown) forcings on global mean

temperature, plus their total (green). (d) Centred running 7-year

trends [°C per decade] corresponding to the variables in (c). All

data series are anomalized with respect to their own mean over

the period 1985–1988. In reading the figure, note that the RUN-

NING means as well as the RUNNING trends begin per defini-

tion to rise/decline before the El Chich�on eruption starts.
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Table 3 Summary details of the time series presented in Fig. 2. Additional information in Table S3

a-b °C Stratospheric air temperature measured by radiosondes launched at Payerne, Switzerland.

(a) at 20 hPa (~26 km above sea level), (b) at 500 hPa (~5 km above sea level)

c m s�1 Meridional wind speed at 500 hPa

d m s�1 Zonal wind speed at 500 hPa

e No. of days yr�1 Number of spring (March - May) dust storms per year, averaged for 48 observing stations in

northwest China

f No. of days yr�1 Number of tropical cyclone storm days per year (hurricanes plus tropical storms)

g - Seasonally varying Northern Hemisphere annular mode (SV-NAM) index

h - Arctic Oscillation (AO) index: the dominant pattern of winter (Nov-Apr) sea level pressure

variation north of 20°N
i - North Atlantic Oscillation (NAO, December - March) index: a basin-scale alternation of

atmospheric mass over the North Atlantic between high pressure in the subtropical Atlantic

and low pressure around Iceland

j °C Combined land-surface air temperature and sea-surface water temperature for the zonal

band >64°N. Anomalies relative to 1951–1980
k hPa Sea-level pressure from the 20th Century Reanalysis version 2 data averaged over the Arctic

l-m ppm Interannually detrended atmospheric CO2 concentration at Point Barrow, Alaska: (l) during the

warm (April - September), and (m) during the cold (October - March) seasons

n Pg C yr�1 Global net CO2 land uptake

o °C Time-integrated air temperature over the thermal growing season for the extratropical (>35°N)

Northern Hemisphere. Thermal growing season if temperature >5 °C
p °C A reconstructed time series of air surface temperature for the Byrd meteorological station in

Western Antarctica

q 106 km2 Sea-ice extent in the Bellingshausen/Amundsen Seas, Western Antarctica

r 106 km2 Northern Hemisphere spring (March–April) snow extent

s Snow days Number of snow days on the north side of the Swiss Alps between December and March

t 106 km2 Maximum sea-ice extent in the Baltic Sea and Kattegat

u 103 km3 Modelled total sea-ice volume in September for the Arctic Ocean

v 103 km2 Northern Hemisphere (September) sea-ice extent

w No. of days Mean number of burning days per wildfire event in forests of the western USA

x – Normalized Difference Vegetation Index (NDVI) averaged for the growing season in northern

latitudes (>35°N)

y-aa Day of the year/days Thermal growing season (temperature >5 °C) for the extratropical (>35°N) Northern Hemisphere,

(y) start (day of the year), (z) length (days), (aa) end (day of the year)

ab Day of the year The flowering date on which the Japanese cherry, Prunus jamasakura, comes into full bloom in

Kyoto, Japan. A plot of the time series starting in 1873 is shown in Fig. 3

ac Day of the year Mean first arrival dates of the sand martin, Riparia riparia, averaged for eight locations in the UK

ad Day of the year V�eraison (colour change and initial maturation) of M€uller-Thurgau grapes harvested from

vineyards in Franconia, Germany

ae m3 s�1 Winter flow (December–February) in the >1000 km long River Daugava measured at the

Daugavpils hydrological station in Latvia

af °C River water temperature averaged for 18 hydrological stations that are representative of >80% of

the river outflow from Switzerland

ag – River water pH averaged for 6 hydrological stations that are representative of >80% of the river

outflow from Switzerland

ah Colour categories Phytoplankton biomass: a visual estimate of chlorophyll sampled at ~10 m depth by the

Continuous Plankton Recorder and averaged for the North Sea

ai °C Temperature of the North Sea averaged for the full depth within grid cells with centres enclosed

by 50°N-61°N and 3°W-9°E, anomalies relative to 1971–2000
aj – Mean salinity at 50 m depth at the deepest station on the Torungen–Hirtshals hydrographic

section between Norway and Denmark in the North Sea, Skagerrak

ak °C Sea temperature at 50 m depth based on monthly measurements taken in the Japan Sea

al 106 m3 s�1 Mean summer (July–September) volume transport of the Kuroshio Current in the Western

North Pacific
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The numerous individual processes behind sudden

changes (regime shifts) in a temporal context as defined

in this study are still poorly understood and to our

knowledge have not been replicated in climate models

(Lo & Hsu, 2010). However, analyses using CMIP5

model scenarios and patterns of global temperature

and precipitation have been carried out and estimate

that pronounced geographical changes will occur in cli-

mate regimes and vegetation types by 2100 (Feng et al.,

2014). This study of vegetation types confirms the key

role of temperature, highlights the regional importance

of precipitation and emphasizes the large size and

potential impact of future change (a ~31 to 46% increase

in warmer and drier climate types by 2070–2100 based

on RCP4.5 and RCP8.5 scenarios).

The long and precipitous decline in the CO2 growth

rate in the period after 1988 (Keeling et al., 1995; Fig. 7),

despite higher temperatures in 1989/90, coincides with

the step increase in the terrestrial carbon sink (Fig. 2n).

This decline in the CO2 growth rate and the net increase

in the terrestrial sink from 1988 started well before the

Pinatubo eruption in 1991. The sink was mostly in

northern temperate boreal regions, as increases in the

tropics were counterbalanced by deforestation and

changes in land use (Sarmiento et al., 2010). Likely rea-

sons for the enhanced biospheric carbon sequestration

after the regime shift are increased photosynthesis from

CO2 fertilization, an earlier and longer thermal growing

season in the Northern Hemisphere (Fig. 2o, y, z),

expansion of forests (IPCC Chap. 6, 2013) and the

increase in surface solar radiation known as global

brightening (Wild, 2009). To quantify approximately

the change in the carbon cycle, decadal means from

table 4 of Le Qu�er�e et al. (2013) were used to calculate

averages for the periods 1960 to 1989 and 1990 to 2009

of three variables: total anthropogenic emissions, atmo-

spheric growth rate and carbon uptake by the com-

bined land and ocean sinks (Table 4). The rate of

carbon uptake by the combined land and ocean sinks

(carbon storage) increased between these periods by

~1.65 Pg C yr�1, a 52% increase over the earlier period.

To place this regime shift in carbon storage in context,

it is close to double the rise in atmospheric growth rate

of CO2 (0.92 Pg C yr�1) and equals 64% of the increase

in total anthropogenic emissions between the same

periods (2.57 Pg C yr�1) (Le Qu�er�e et al., 2013). If a sink

of this magnitude reversed to a CO2 source, it would

markedly accelerate the rise in atmospheric CO2

growth rate and temperature.

The mechanisms behind the apparent easterly move-

ment seen in the timing of the 1980s regime and possi-

ble interhemispheric transfer of the year of the shift

(e.g. South to North America) around the world are not

understood. The pattern is best seen in the Northern

Hemisphere where it in part alternates between land

and ocean, starting in the Pacific in 1985 to Asia in 1988

(Fig. 4), reflecting the dominant flow of mid-latitude

winds and possibly the progressive movement of

waves along the eastward flowing polar and subtropi-

cal jet streams.

What is the trigger that initiated the sudden increase

in temperature from the 1980s until 2010 (Fig. S4)? Did

the Earth’s climate jump to a new ‘equilibrium’ state

due to its sensitivity to past radiation forcing (Hansen

am No. of eggs m�2 Egg abundance per m2 of the deep water (mesopelagic) fish Maurolicus japonicus sampled by

regular ichthyoplankton net surveys in May in the eastern Japan Sea. The eggs are found below

100 m and are used as an index of the biomass of the adult population

an 103 tons Tuna catch in Japanese waters of the Japan Sea

ao Calendar week Timing of the spring algal bloom in Lake M€uggelsee, Berlin, Germany

ap °C Mean groundwater temperature of two Swiss aquifers fed by riverbank filtration

aq °C Volume-weighted mean temperature of Lower Lake Zurich, Switzerland

ar – The Southern Annular Mode (SAM) index is a zonal feature that reflects the main variability of

atmospheric circulation in the Southern Hemisphere extratropics and high latitudes

Table 4 Change in CO2-sink after the 1980s regime shift. Based on data from table 4 in (Le Qu�er�e et al. (2013)

*Fossil fuel emissions + cement production + land-use change. Text in red to emphasize the scale of the change.

Table 3 (continued)
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et al., 1984), or did its systems cross a threshold

(Barnosky et al., 2012) possibly linked to the rise in the

concentration of atmospheric CO2? Our results based

on CMIP5 and statistical modelling indicate that a com-

bination of warming from natural and anthropogenic

forcing was responsible as a rebound from the cooling

that followed the El Chich�on eruption together with a

reduction in stratospheric aerosols, although the rela-

tive contribution of each forcing factor is still unclear.

While the present generation of climate models can

reproduce the general features of global temperature

change and the cooling that follows major volcanic

eruptions (IPCC Chap. 9, 2013), up to now they have

not been able to replicate observed regime shifts (Lo &

Hsu, 2010) or simulate the dynamic response to exter-

nal forcings that includes the effects of volcanism (Dris-

coll et al., 2012).

If the above-combined anthropogenic and natural

forcing thesis is correct, why was there no equivalent

regime change after the larger Pinatubo eruption?

Changes in direct and diffuse radiation as measured at

Mauna Loa (Robock, 2000) were much greater for El

Chich�on in 1982 than for the eruption of Mount Pina-

tubo almost a decade later (Fig. S5). The recovery from

El Chich�on was also more rapid, and the aerosol plume

initially covered a greater area than for the following

Pinatubo eruption (to 30°N compared to 15°N) (Robock,

2000), which favours a stronger shift impulse from the

former. This fits with measurements that show that

much of the aerosol plume from Pinatubo moved

rapidly to the south of the equator after the eruption

whereas most of the El Chich�on plume remained in the

Northern Hemisphere (McCormick et al., 1995). The

seasonal timing of the eruptions (figure 7 in Post et al.,

1996) and differences in stratospheric wind direction

and strength, linked to the quasi-biennial oscillation

(McCormick et al., 1995), have also contributed.

A reversal in trend from global dimming to global

brightening, with stronger surface solar radiation from

the late 1980s, preceded and possibly masked some of

the effects of the Pinatubo eruption. The enhanced

radiation has been attributed to a substantial reduc-

tion in anthropogenic sulphur aerosols (Wild, 2009)

that occurred at this time (Stern, 2006). Parallel and

likely associated changes occurred in precipitation,

reflecting a more active global hydrological cycle

(Wild, 2009).

In the last decade, there has been an increasing

debate on the possible need to deliberately geoengi-

neer the climate to compensate for greenhouse gas

induced global warming by either removing CO2 from

the atmosphere or by reducing solar irradiance (Shep-

herd et al., 2009). Our results have considerable rele-

vance to this debate. The speed, scale and global

extent of the changes that took place in the 1980s have

not been recognized until now, and therefore could

not have been taken into account by geoengineering

proposals. Current understanding that major volcanic

eruptions only cause short-term cooling of the Earth

(Cole-Dai, 2010) is contradicted by our demonstration

of a longer-term warming effect that involves the

interaction of major volcanism with global warming.

The cascading effects of the 1980s regime shift empha-

size the vulnerability of the Earth to large scale human

climate intervention.

The importance of the 1980s regime shift is shown

here to have been unparalleled within at least the last

century. It has been little recognized in the past due to

a paucity of long-term time series that are maintained

and sampled in the same consistent way over decades,

and a compartmentalization of science with insuffi-

cient communication between different disciplines.

Many factors related to atmospheric and oceanic circu-

lation, volcanism, latent and sensible heat transport,

cloudiness, aerosol effects, and shortwave and long-

wave radiation are likely to have been involved. Given

the scale and global extent of the shift, the public, pol-

icy makers and the scientific community need to be

made more aware of the importance of such events.

We need to improve our ability to forecast and model

the occurrence, magnitude and consequences of

regime shifts and include their effects in risk assess-

ments for proposed geoengineering approaches to

modify the climate. The enormous impact of the

regime shift is seen especially in the land and ocean

carbon sinks; a key issue for humanity is how these

ecosystem services will behave in the future. The wide

range of changes associated with the 1980s regime shift

supports a threshold thesis that moved the whole glo-

bal system into a new, rapidly warming state, with

compounding consequences.
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