DO SICYDIUM PUNCTATUM ADULTS MOVE IN THE CARIBBEAN ESTUARIES? NEW INSIGHT FROM STRONTIUM ISOTOPES

H. TABOURET1,2*, D. MONTI3, J. MARTIN1,4, S. BERA1, C. PECHEYRAN1, P. KEITH2, G. BAREILLE1

1 Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254 CNRS - Université de Pau et des Pays de l’Adour, Pau, France
2 Muséum national d’Histoire naturelle, Département Milieux et Peuplements Aquatiques, Biologie des Organismes Marins et Ecosystèmes Aquatiques (UMR BOREA 7208 CNRS/MNHN/UPMC/IRD), CP-026, 43 rue Cuvier, 75231 Paris, France
3 Université des Antilles et de la Guyane (DYNECAR, UMR BOREA CNRS/MNHN/UPMC/IRD), Laboratoire de Biologie marine, UFR SEN, 97157 Pointe-à-Pitre, Guadeloupe, France
4 IRSTEA, Estuarine Ecosystems and Diadromous Fish Research Unit, 30 avenue de Verdun, 33612 Cestas Cedex, France
Corresponding author: helene.tabouret@univ-pau.fr

ABSTRACT. – Strontium isotopic variations (87Sr/86Sr) were investigated in otoliths of an amphidromous goby, Sicydium punctatum, coming from a tropical insular river and showing contrasted depositional patterns of barium:calcium in otolith (Ba:Ca$^{\text{otolith}}$). In our study, varying as well as non-varying Ba$^{\text{Ca_{	ext{o}}\text{t}l}i\text{th}}$ individuals exhibited unchanged 87Sr/86S$^{\text{rotolith}}$ throughout the adult phase with values typical of stream water flowing through volcanic substrate (0.7053 ± 0.0003). These results unambiguously discard the Ba:Ca$^{\text{otolith}}$ peaks as markers of migrations between freshwater and brackish estuarine water during the adult phase of the species and open on investigations of sources of variations on microhabitats or unknown physiological effects.

INTRODUCTION

The life traits of most amphidromous fish (McDowall 1988) living in the tropical insular rivers are not well-known despite their major contribution to the diversity of fish communities in the Indo-Pacific and the Caribbean insular systems. These species have the highest levels of endemism (Keith 2003) and undergo an increasing anthropogenic pressure. This leads researchers to explore the otolith composition in order to reconstruct their life traits and develop relevant management tools.

A recent study (Lord et al. 2011) on Gobiidae Sicydiinae species highlighted Sr:Ca$^{\text{otolith}}$ variations after the recruitment mark, which were thought to be linked to downstream migrations to the estuary and behavior plasticity of adults. Such migration at the spawning time is interpreted as an advantage as it may reduce the migration time for larvae to reach the estuary and increase their survival (Keith et al. 2008). Investigations on Sicydium punctatum Perugia, 1896 (Teleostei: Gobioidae), a Caribbean Sicydiinae species from Guadeloupe rivers (French West Indies), pointed out post-recruitment cyclic Ba:Ca$^{\text{otolith}}$ Variations in the outer regions of otolith (Tabouret et al. 2011) but only for a part of the individuals sampled at a same location. Ba:Ca$^{\text{otolith}}$ Variations were suggested to reflect individual migrations to the estuary zone since Ba concentrations are expected to be enhanced at mid to low salinities (Coffey et al. 1997). No increase of Sr:Ca$^{\text{otolith}}$ occurred comcomitantly to the Ba:Ca$^{\text{otolith}}$ peaks, as it would be expected during a migration to the brackish waters. However, at low salinity (< 5), Sr:Ca$^{\text{water}}$ may be too low to induce a significant increase of the Sr:Ca$^{\text{otolith}}$. In the absence of spatial and temporal water chemistry database, the hypothesis of behavioral plasticity for $S. \text{punctatum}$ in these tropical environments was unresolved.

Sr and Ba, especially Sr:Ca, Ba:Ca and 87Sr/86Sr ratios in the otolith, are commonly used to describe life traits of diadromous fish (Elsdon et al. 2008; Walther & Limburg 2012). These ratios are trapped in the otolith primarily, in proportion to the ambient water (Elsdon & Gillanders 2004). Even if physiological effect cannot be excluded in the case of Sr:Ca$^{\text{otolith}}$ and Ba:Ca$^{\text{otolith}}$ (Webb et al. 2012), 87Sr/86Sr$^{\text{otolith}}$ ratio is not expected to be fractionated neither by biological processes neither during the uptake from dietary or water sources (Barnett-Johnson et al. 2008; Walther & Limburg 2012). Additionally, in rivers draining volcanic substrates, 87Sr/86Sr$^{\text{otolith}}$ is systematically less radiogenic (Barnett-Johnson et al. 2008, Walther & Limburg 2012) than the seawater ratio (Allègre et al. 2010), allowing thereby migration to brackish waters to be easily solved. In volcanic insular systems, this ratio appears as a complementary tool to Ba:Ca and Sr:Ca ratios to investigate the life traits of migration fishes.

In this study, we propose for the first time to analyze strontium isotopic composition of $S. \text{punctatum}$ otoliths on which Ba:Ca$^{\text{otolith}}$ varying and non-varying composition was previously observed. As both dissolved Sr and 87Sr/86Sr ratios generally mix conservatively across salinity gradients (Walther & Limburg 2012), we modelled the
expected $^{87}\text{Sr}:^{86}\text{Sr}_{\text{water}}$ trend in the estuary gradient. The objective was to compare $^{87}\text{Sr}:^{86}\text{Sr}_{\text{otolith}}$ variations with model values to infer possible movement of $S. \text{punctatum}$ to saline habitats.

MATERIAL AND METHODS

Fish were sampled at two stations (upstream/downstream) on the Pérou River in Guadeloupe (French West Indies; Fig. 1) as described by Tabouret et al. (2011). Among $S. \text{punctatum}$ otoliths studied by Tabouret et al. (2011), four were selected for $^{87}\text{Sr}:^{86}\text{Sr}_{\text{otolith}}$ analysis. These otoliths previously showed Sr:Ca$_{\text{otolith}}$ and Ba:Ca$_{\text{otolith}}$ profiles representative of both elemental patterns observed in the sampled population ($n = 62$). They came from two individuals (total length: 43 mm and 54 mm) caught in the lower part and two individuals (total length: 44 mm and 60 mm) caught in the upper part of the river. For each site, we chose one otolith with almost invariable Ba:Ca$_{\text{otolith}}$
STRONTIUM ISOTOPES IN S. PUNCTATUM OTOLITHS

RESULTS AND DISCUSSION

87Sr/86Sr in Guadeloupe and Martinique rivers is less radiogenic (0.7041 to 0.7055, Rad et al. 2007) than seawater (0.7092 ± 0.0001) as it is generally observed in rivers draining volcanic substrate (Allègre et al. 2010). The difference of Sr concentration observed between these rivers and marine water (17-90 ppb and 7.6 ppm, respectively; Rad et al. 2007) induces a steep increase of 87Sr/86Srwater and Sr:Caresulting in ratios close to marine water at salinities above 2 and 5, respectively (Fig. 2). According to the 87Sr/86Srwater trend across the salinity gradient, fish that resided in water with salinities above 0.5 can be easily detected using the 87Sr/86Sr.

In *S. punctatum* otolith, 87Sr/86Sr showed similar trend for all the individuals analyzed whatever the site and the Ba:Ca patterns (Figs 3, 4). Mean 87Sr/86Sr values between the nucleus and the check mark, indicating the recruitment, were comprised between 0.7082 ± 0.0010 and 0.7094 ± 0.0004 (Figs 3, 4). These values are close to seawater values (Allègre et al. 2010) and consistent with a
marine larval phase (Tabouret et al. 2011). After the check mark, $^{87}\text{Sr}:^{86}\text{Sr}_{\text{otolith}}$ decreased drastically and remained constant until the edge. The decrease onset occurs simultaneously with the $\text{Sr}:\text{Ca}_{\text{otolith}}$ decrease and $\text{Ba}:\text{Ca}_{\text{otolith}}$ increase observed at the recruitment (Figs 3, 4). Mean $^{87}\text{Sr}:^{86}\text{Sr}_{\text{otolith}}$ were similar between upstream and downstream goby: 0.7053 ± 0.0006 and 0.7053 ± 0.0005, respectively. At both sites, isotopic ratios were close to those observed by Rad et al. (2007) in Guadeloupe freshwater habitats and close to other rivers draining volcanic substrates in the world (Barnett-Johnson et al. 2008, Milton et al. 2008). Since the equilibration time of the Sr incorporation in otolith varied from 12 days to several weeks (Miller 2011), any residency of $S.\ punctatum$ longer than three weeks in the estuary at salinity above 0.4 would induced $^{87}\text{Sr}:^{86}\text{Sr}_{\text{otolith}}$ higher than 0.707 (Fig. 1). There was no evidence of such increase when $\text{Ba}:\text{Ca}_{\text{otolith}}$ peaks occurred. This result invalidates one of the hypotheses proposed by Tabouret et al. (2011) linking $\text{Ba}:\text{Ca}_{\text{otolith}}$ changes to movements to the upper estuary zone where desorption of Ba from suspended sediments enhanced the water Ba:Ca ratio (Coffey et al. 1997). Although flexible migratory pattern between freshwater and brackish or marine habitats was suggested for other Sicydiinae species (Tsunagawa et al. 2009, Lord et al. 2011), our results support the sedentariness of $S.\ punctatum$ from the Pérou River in freshwater after recruitment. Unchanged $^{87}\text{Sr}:^{86}\text{Sr}_{\text{otolith}}$ does not exclude migration within the watershed. Computed $\text{Ba}:\text{Ca}_{\text{water}}$ values from springs and waters draining volcanic substrates (Louvat & Allègre 1997, Dessert et al. 2009) indicate that $\text{Ba}:\text{Ca}_{\text{water}}$ can be widely different in a same region. At the habitat scale, aquifer-river interactions should play an important role in the geochemistry of surface water, especially during the dry season (Rad et al. 2007). Tributaries or subsurface waters with significantly different $\text{Ba}:\text{Ca}_{\text{water}}$ ratios can largely contribute to a $\text{Ba}:\text{Ca}_{\text{otolith}}$ variability.

Our results urge to focus on further investigations on the Ba geochemistry in tropical insular rivers as well as on variations at microhabitat scale. A better understanding of the Ba biogeochemical cycle may lead to the validation of a new marker of freshwater habitat use in the tropical insular systems. Results also demonstrate the relevance of $^6\text{Sr}:^{86}\text{Sr}_{\text{otolith}}$ in a multimarker approach to describe diadromous fish behaviour in tropical rivers especially when water data are not available.

ACKNOWLEDGMENTS. – The authors are grateful to the staff from the Université des Antilles et de la Guayane (UAG) of Pointe-à-Pitre (Guadeloupe) for their help in the field logistics and fish sampling. We thank K Russon, a native English speaker, for her help in the manuscript revision, as well as two anonymous reviewers. This work and H Tabouret postdoctoral fellowship were supported in the framework of ANR CHLORDEXCO program.

REFERENCES

Vie Milieu, 2015, 65 (2)

Received on January 16, 2015
Accepted on May 3, 2015
Associate editor: N Coineau