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Abstract

As Arapaima gigas is one of the most valuable species for the growing production of

Amazonian aquaculture, knowledge of its reproductive behaviour and its application

to increase reproduction success in captivity is of great importance as no hormonal

spawning induction technique exists for this species. An acoustic positioning system

(LOTEK Inc.) was used to observe the interactions of adult fish to better understand

the formation of mating pairs. Fish were placed in a 4,500 m2 aquaculture pond

over a 6-month period in the IIAP field station of Pucallpa, Per�u. This paper

describes the methodological protocols used to set up and test the hydrophone

array and presents the methodology used for the analysis of the huge amount of

collected data. This methodology is illustrated by the analysis of a 6-day period for

a mating pair that showed a spawning event. The results indicated that male and

female occupied mostly one preferential area in one pond edge where the nesting

area is located. Different activity patterns were observed during the spawning

event, with male and female being closer during the spawning day. The results also

showed that male travelled less distance than female during the studied period.

Finally these results demonstrated the suitability of such equipment to monitor fish

interactions at fine spatial (sub meter) and temporal (5 s) scales in confined environ-

ments like aquaculture ponds.
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1 | INTRODUCTION

Arapaima gigas is an air-breathing, giant fish of the Amazon basin

and the largest scaled freshwater fish in the neotropics with over

3.5 m and 250 kg. In spite of the tremendous economic and cultural

importance of this species in the Amazon ragion, behavioural studies

of this species are scarce. As A. gigas has been over-exploited for

decades (Castello, Arantes, McGrath, Stewart, & Sousa, 2015), the

natural populations are now seriously depleted and the species is

listed in CITES Appendix II as an endangered species (CITES, 2018)

and IUCN Red List of Threatened Species as a data deficient species

(IUCN, 2017). This situation has led to introduce in many areas A. gi-

gas into lagoons and ponds for aquaculture purposes to face the

decline of wild populations and it was hoped that it would adapt to

pond culture environment. One of the first difficulties encountered

was the low reproduction rate in captivity as there was no artificial

propagation technique for this species because of its complex beha-

viour and anatomical characteristics of the reproductive system

DOI: 10.1111/are.13692

2296 | © 2018 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/are Aquaculture Research. 2018;49:2296–2304.

http://orcid.org/0000-0003-3668-5446
http://orcid.org/0000-0003-3668-5446
http://orcid.org/0000-0003-3668-5446
http://wileyonlinelibrary.com/journal/ARE


(Chu-Koo et al., 2009). Fry production relies only on spontaneous

reproduction in earthen ponds after one or more pairs have formed.

Under these conditions, the current production of fry remains low

because of the few number of pairs formed in captivity. The purpose

of our work is to better understand male–female interactions in cap-

tive pairs to improve reproductive success. Direct observation or

video recordings are not possible in this earthen pond environment,

the transparency of which rarely exceeds 20 cm, so we looked for

other indirect means, like ultrasonic telemetry, that nevertheless

allowed a precise spatiotemporal follow-up of several individuals at

the same time.

Remote tracking of mobile aquatic animals in water bodies

with limited visibility is the best technique to study individual

movements or behaviour, social interactions and territory exten-

sion of each individual or group using generally the home range

proxy (Vokoun, 2003; Worton, 1989). It is critical to know the

locations of individuals over a significant period of time with the

greatest possible accuracy when studying interactions between

individuals, habitat preferences or reproductive behaviour. Such

studies are generally based on radio telemetry (Baras, 1998;

Koehn et al., 2009; N�u~nez-Rodr�ıguez et al., 2015; Økland, Thor-

stad, Hay, Næsje, & Chanda, 2005). With manual positioning, ani-

mal detection is performed with the aid of a receiver and a

“Yagi”-type antenna in the case of radio transmitters or with a

hydrophone operated from a boat. Once located, coordinates of a

transmitter are registered using a GPS receiver. With automatic

positioning systems, the detection of transmitters is performed

automatically with a few antennas or hydrophones strategically

positioned and connected to data loggers, which record time and

transmitter code detected the by antenna or hydrophone. The

manual methods are used mainly when continuous monitoring and

high accuracy or resolution of the position of more than one indi-

vidual at a time is not required.

In studies that require precise positioning (at meter range or less)

an array of several transmitters is necessary to obtain a coarse

detection network associated with calculation systems by triangula-

tion. In aquatic environments, this can only be done with a system

of ultrasonic coded transmitters and a network of hydrophones.

Technical and miniaturization improvements have permitted the

development of ultrasonic telemetry equipment in aquatic environ-

ments (Crossin et al., 2017; Hussey et al., 2015) or GPS system in

aerial or terrestrial studies, which allow a much higher positioning

frequency (Abecasis, Bentes, Lino, Santos, & Erzini, 2013; Bellquist,

Lowe, & Caselle, 2008; Binder, Holbrook, Hayden, & Krueger, 2016;

Binder et al., 2017; Espinoza, Farrugia, Webber, Smith, & Lowe,

2011; Espinoza, Heupel, Tobin, & Simpfendorfer, 2016; Farmer, Ault,

Smith, & Franklin, 2013; Lowe, Topping, Cartamil, & Papastamatiou,

2003; Martins et al., 2014; Mason & Lowe, 2010; Pursche, Suthers,

& Taylor, 2013; Semmens, 2008; Simpfendorfer, Heupel, & Hueter,

2002; Topping, Lowe, & Caselle, 2006; Villegas-R�ıos et al., 2013).

In aquatic environments this technology is based on sound speed

propagation in water (approx. 1,500 m/s at 25°C) where 1 m corre-

sponds to 0.6 millisecond transmission delay.

At least three hydrophones are necessary to process the signal

by an hyperbolic triangulation routine (B�egout & Lagard�ere, 1995).

The best accuracy is obtained when the transmitter is equidistant

from three hydrophones. Due to these characteristics, the design of

the hydrophone network will depend mainly on the size and shape

of the water body in which the fish movements are studied. Recep-

tion strength will also depend on some parameters such as soil type

and vegetation, water stratification and acoustic noise that can gen-

erate reverberations of ultrasonic waves (Pincock & Johnston, 2012).

Distance between hydrophones will depend on the hydrophone

characteristics and the power of the transmitters used. An approxi-

mate range of 100–200 m to several kilometres depending on the

chosen systems and topography of the water body is generally

admitted.

This type of fine scale monitoring is expected to generate infor-

mation, at detailed spatial and temporal ranges, on simultaneous

behaviour of all fish in the pond and their interactions (Baktoft et al.,

2015; Cooke et al., 2013; Pincock, Welch, McKinley, & Jackson,

2010). This paper describes the methodology used and the position-

ing accuracy within the hydrophones array as well as some data on

a specific pair as an example of the suitability of this technique for

monitoring fish behaviour in such environments. We expect that the

information collected with this system will allow a better under-

standing of A. gigas reproductive ethology, which can contribute to

improve management of captive breeding stocks.

2 | MATERIALS AND METHODS

2.1 | Study area

All individuals were placed together the same day in a sub-square

4,500 m2 and 1 m average depth aquaculture earthen pond at the

IIAP research station of Pucallpa, Peru (Figure 1). These ponds repre-

sent the typical breeding environments used by local fish farmers to

manage A. gigas reproduction in captivity.

2.2 | Fish

Twenty adult A. gigas specimens, 10 females and 10 males of 5–

6 year-old, born in captivity were selected for this study and gender

was determined using the specific Arapaima sexing technique (Chu-

Koo et al., 2009). At the same time each fish was permanently iden-

tified by an 11 mm Pit Tag injected with an appropriate syringe in

the medio-anterodorsal musculature for posterior identification. All

fish used were sexually mature and size and weight ranged from

144 to 188 cm TL and 26 to 65 kg respectively.

2.3 | Fish transmitter implantation

Transmitters (16 9 80 mm, 76 KHz) weighing 35 g (MM-M- 16-50-

PM, LOTEK Inc.) were attached externally according to the tech-

nique described previously for radio transmitters of similar size and

weight (N�u~nez-Rodr�ıguez et al., 2015). Briefly, a stainless steel

N�U~NEZ-RODR�IGUEZ ET AL. | 2297



plastic coated cable was inserted using an adapted needle near the

dorsal fin after local anaesthesia with 0.5% lidocaine (0.5 ml on each

side), and transmitter were fixed to the cable with plastic clamps.

The needles and cables were previously sterilized with 70% ethanol

and an anti-bacterial solution (10% Povidone) was applied on the

injection sites. The whole tagging procedure lasted less than 2 min.

The manipulation did not alter fish behaviour notably since fish

recovered a normal quiet swimming immediately after their release

in the experimental pond.

2.4 | Hydrophones array geometry

Eight hydrophones (WHS 3250D, LOTEK Inc.) have been immersed

at the periphery of the 4500 m2 square-shaped pond (Figure 1),

fixed on metal poles (3 cm in diameter, 2 m long) placed approxi-

mately every 25 m and 1 m away from the shoreline. The average

depth of the pond varied from 0.8 m at the shoreline to 1.20 m in

the central area with a relatively smooth muddy bottom. Hydro-

phone antennas were placed approximately 50 cm above the bot-

tom of the pond and 30–50 cm from the water surface depending

on water depth at each location. The exact coordinates of each

hydrophone and pond-shoreline were determined using a sub

meter GPS (Trimble GeoExplorer 6000 XH 3.5G) giving a position

accuracy of approximately 30 cm according to manufacturer’s indi-

cations.

3 | RESULTS

All 20 adult fish implanted with acoustic transmitters survived and

were tracked successfully for a 6 month-period, 24 hr a day. Data

were downloaded from the eight receivers located at the periphery of

the pond (Figure 1) on a weekly basis. In average, from a maximum

possible number of 17,280 bearings per individual and per day corre-

sponding to one detection every 5 s which was the pulse interval of

transmitters, 11,500 � 2,800 bearings were recorded, representing a

detection efficiency of 66.55%. Over the 6 months monitoring, an

average of 2,070,000 � 504,000 bearings were recorded for each

individual. The data processing methodology is described hereafter to

illustrate the behavioural assessment of the single mating pair that

showed a spawning event during this period (data correspond to a 6-

day period from which only 2.5 days were analysed in detail).

3.1 | Array accuracy

A single transmitter positioned approximately in the centre of the

pond, which is theoretically the best detection position by the array

(Figure 2), was used to test the precision of the positions calculated

by the U-Map package. The transmitter was maintained 50 cm above

the bottom of the pond and approximately 40 cm from the water sur-

face. Bearings calculations were possible only when at least three

hydrophones received the tag signal. The positions were recorded

every minute for 1,378 successive positions (Figure 3). The results

showed that bearings were not exactly randomly distributed around

the mean position of the transmitter as standard deviations on both

axes, calculated on average position, were slightly different (x

axis � 0.65 cm SD; y axis � 0.56 cm SD). A preferential distribution

in the W-SW to E-NE direction was observed (r2 = .13, n = 1378).

3.2 | Detection efficiency

Detection of hydrophone array efficiency was analysed using Qgis

2.12 package (QGIS Development Team, 2016. QGIS Geographic

F IGURE 2 Dilution of precision (DOP) of the hydrophone array
as calculated by Lotek’s U-Map software (right axis). Hydrophone
positions are given in UTM (Universal Transverse Mercator) system
(in meters). Numbers correspond to the location of the eight
hydrophones of the array. Pond limit is indicated by a solid line
[Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 1 Aerial view (Google © DigitalGlobe 2016) of the zone
where the experimental pond (8°24002″S–74°38026″W) is situated
and positions of the eight hydrophones (numbered circles) forming
the array inside the pond [Colour figure can be viewed at
wileyonlinelibrary.com]
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Information System. Open Source Geospatial Foundation Project.

http://www.qgis.org/) by plotting unfiltered bearings calculated by

U-Map and then filtered by pond shape. All bearings falling out of

the pond area were discarded (Figure 4). Another filter was then

applied to eliminate successive points that were separated by a dis-

tance higher than that obtained with a displacement speed >5 km/hr

which was the maximum average speed observed in previous tests.

During this 2.5-day monitoring period, from a total of 38,558 bear-

ings recorded, 6.4% (pond shape filter) and 1.1% (speed filter) of the

calculated positions were discarded for this male. Similar procedure

applied to six other fish bearings allowed us to calculate that

recorded bearings represented more than 90% of real positions

(90.3 � 2.8%). Please note that due to overlapping specially in the

pond area all points are not visible.

3.3 | Space occupation and activity

Interaction of male and female fish was first determined using the

home range methodology. The filtered data by pond shape and

speed filter (Figure 5a,b) were processed using a R macro to set a

time-synchronized data sequence for male and female bearings and

then formatted for OpenJump import filter. The fixed time here

between two successive positions was set at 30 s in order to lower

the number of data for each calculation run. Home range calcula-

tions (Figure 5c,d) have been performed using Horae (Steiniger &

Hunter, 2012) package for OpenJump (Steiniger & Bocher, 2009).

The data reduction process (one bearing per 30 s) did not signifi-

cantly alter the accuracy (results not shown). In Figure 5c,d grey

shaded areas represent the Kernel density estimation (KDE) at 95%

of probability. This means that 95% of the bearings fall into the cal-

culated home range area. In this particular case the two fish (male

and female) were mostly present only in one edge of the pond, the

female showing a higher displacement activity than the male. The

same technique was applied for 50% and 10% probabilities of pres-

ence (Figure 6). Both fish spent most of their time on two specific

areas in one edge of the pond where two nests were detected. But

in only one occasion during the 2.5 day period, male and female

travelled simultaneously all around half of the pond area very closely

(Video S1) and then returned to the nesting zone (Figure 7). We do

not know if spawning took place before or after this particular beha-

vior observed only once during this survey. The straight travelling

line for the female corresponded to interpolated trajectories for the

time where no detections were received by hydrophones. The trav-

elled distance during the 6-day period was higher for female

(22,813 m) than for male (12,804 m) indicating that male spent more

time around the nesting area than the female (Figure 7).

F IGURE 3 Precision of acoustic telemetry array. Data represent
the coordinates recorded every minute (n = 1,378) of a single
transmitter (not all points are visible due to overlapping) positioned
approximately at the middle of the pond, 50 cm above the bottom.
Solid black circle corresponds to the average position (� standard
deviation error bars) and black line represents the linear regression
over all bearings (y = 0.33X + 8.89. 10E6, R2 = .14). Axes values are
expressed in meters using UTM system.

F IGURE 4 Detection efficiency of the
8-hydrophone array. Coordinates are
expressed in meters using the UTM
system. Data correspond to the bearings of
a male Arapaima gigas. Black dots
represent unfiltered bearings (n = 30,558);
grey squares represent filtered bearings
(n = 28,603) by pond shape (blue
background). Out of pond points
(n = 1,955) represented 6.4% of total
bearings. Not all points are visible due to
overlapping [Colour figure can be viewed
at wileyonlinelibrary.com]
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The distance between both fish was calculated during a 6-day

period including the 2.5 days of detailed survey where the spawning

day occurred. Male–female distance varied from less than a meter to

45 m (results not shown), but the mean daily distance reached a

minimum of 4.71 � 0.15 m SE the day of spawning (Figure 8). Dur-

ing the three previous days the distance progressively decreased sig-

nificantly (p < .01) from 13.14 � 0.34 m SEM to 4.71 � 0.15 m SEM

and then significantly (p < .01) increased during the following days

to reach 14.82 � 0.33 m SEM and 13.14 � 0.42 m SEM on day 1

and 2 respectively (Figure 8).

4 | DISCUSSION

4.1 | Accuracy

Array accuracy has been determined using a fixed transmitter at

known coordinates in the geometric centre of the detectors array.

As described in another study (James, Fischer, Laube, & Spindler,

2014) we were expecting an homogeneous distribution on all

directions as the test transmitter was placed approximately at the

centre of the array. Nevertheless as previously mentioned (Berg�e

et al., 2012; Binder et al., 2016) this finding showing an oriented

distribution could be attributed to sound wave reflection on the

pond shoreline, which slope is not perfectly similar on all its

length. But if we consider the observed accuracy (<1 m) we still

have highly reliable position accuracy as fish average size was

1.67 � 0.15 m. This accuracy around the meter range is similar to

that obtained with Chinook salmon in similar 4,000 m2 enclosure

using a 9-hydrophone array (Semmens, 2008) and an 8-hydro-

phone array in a 10,000 m2 natural lake (Baktoft et al., 2015).

Although this technique gives the best accuracy over all other

telemetry techniques in turbid environment, the underwater video

observation would be of great interest to get complementary and

detailed data on fish behaviour as reported for other aquatic ani-

mals (Ebner, Clear, Godschalx, & Beitzel, 2009; Fatsini, Rey, Ibarra-

Zatarain, Mackenzie, & Duncan, 2017; Mills, Verdouw, & Frusher,

2005; Struthers, Danylchuk, Wilson, & Cooke, 2015). Nevertheless

in turbid environments the video option is not possible.

4.2 | Detection efficiency

Theoretical detection distance (few-hundred meters) was virtually

higher than the largest possible distance (diagonal) of the pond

used in this study, which corresponded to 102 m. Nevertheless

the effective average detection rate reached only 66.55%. The

reason, as mentioned in other studies (Binder et al., 2016; Hartill,

F IGURE 5 Space occupation of a
mating pair of Arapaima gigas in the pond
(2.5 days of survey). Points represent
calculated positions every 30 s. (a) Male
bearings (blue dots); (b) Female bearings
(purple dots). (c, d) grey shaded area
corresponds to 95% KDE (Kernel Density
estimation) of male (c) and female (d)
[Colour figure can be viewed at
wileyonlinelibrary.com]
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Morrison, Smith, Boub�ee, & Parsons, 2003), is probably due to

fish orientation or position close to the shore inducing signal

absorption, background noise or signal collisions when numerous

transmitters are present that did not allow a valid calculation posi-

tion by the LOTEK’s U-Map software. A small percentage of

detections corresponded to out of pond bearings (6.4%) and some

in-pond wrong bearings too (1.1%) identified by the speed filter.

Finally the corrected detection rate reached around 50%, which

means a valid detection every 10 s in average which is of the

same order of magnitude reported for 0.01 km2 natural lake with

similar equipment using an array of eight hydrophones (Baktoft

et al., 2015). Nevertheless this detection rate allowed to monitor

fish movements and interactions quite precisely as showed by the

male–female interaction during a spawning event.

4.3 | Space occupation and activity

Fish were most of the time close to the shore probably because of

nest building and cleaning activity in the pre-spawning period as the

male and female observed showed a spawning event during the

studied period and generally nests are built in the vicinity of the

shore area where the water depth is smaller (Bard & Imbiriba, 1986;

Imbiriba, 1991). The short distance between male and female might

be a good indicator of mating behaviour and proximity of a spawning

event. In this pair, the lower distance between male and female and

the duration of the period when both fish were closer coincided

with an effective spawning. We will apply this parameter to all fish

present in the pond to detect potential mating pairs during the

6 month-period of survey and look to the permanency of these

pairs. In previous observations on reproductive behaviour of A. gigas,

it was thought that only one nest was built by male and female

(Bard & Imbiriba, 1986; Imbiriba, 1991) but for this particular pair

F IGURE 6 Home range areas of male and female Arapaima gigas
using KDE at 95% (light grey: female; dark grey: male), KDE50%
(doted line shaded purple: female; shaded blue: male) and KDE10%
(solid purple: female; solid blue: male). Each position is calculated
every 30 s for a 2.5 days period [Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 7 Visualization of the
positions and trajectories of two paiches,
Male (blue) and Female (purple) during
9.5 hr (from 0:00 to 9:30 a.m.)
corresponding to the period of spawning.
Each position is determined every 10 s.
The arrow indicates a very peculiar
trajectory where both male and female are
travelling together towards the middle of
the pond and then coming back to the
nesting areas (here two areas labelled A
and B) [Colour figure can be viewed at
wileyonlinelibrary.com]
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we observed during the survey period that two different nests were

built although only one was used for egg deposition.

5 | CONCLUSION

The results obtained with the acoustic telemetry array deployed in

this study establish the suitability of such ultrasonic telemetry equip-

ment to monitor, at fine spatial and temporal scales, multiple fish

interactions in confined turbid environments like aquaculture ponds.

The first results presented here in A. gigas, provides new information

on fish movements, space occupation, male–female interactions and

reproductive behaviour in an earthen pond. This preliminary work

will be extended to the analysis of all data collected on the survey

of 20 A. gigas individuals (10 males and 10 females) during a 6-

month period.
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