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ABSTRACT
Aim: Assessing the influence of diel vertical migration (DVM) on biogeographic patterns to improve the macroecological char-
acterisation of the structure and function of zooplankton communities.
Location: North Atlantic Ocean and adjacent seas.
Taxon: Marine copepod species.
Methods: We base our bioregionalisation on Continuous Plankton Recorder (CPR) data of copepod species abundances from 
1966 to 2021. We separate day and night samples using the solar elevation corresponding to civil twilight. For each condition, we 
interpolate abundances onto a grid adapted to the irregular sampling effort. We then generate a bipartite network (geographical 
cells—species) on which we apply the Map Equation clustering algorithm to delineate bioregions and identify their underlying 
copepod communities. We use canonical correspondence analyses to characterise the resulting bioregions in terms of environ-
mental forcings, species composition and community- weighted mean traits.
Results: We identify four bioregions for both day and night partitions, with dynamic transitions and changes in spatial patterns 
as well as in community composition between day and night. While environmental forcings seem to transcend diel variations, 
ecological features of bioregions show day/night discrepancies: higher copepod diversity at night is driven by changes in species 
composition mediated by diel vertical migration.
Main Conclusions: We highlight how day/night variations driven by highly migratory copepod species shape community spa-
tial patterns and species composition. We uncover distinct levels of functional diversity across bioregions, suggesting different 
responses of copepod communities to environmental changes. Transition zones emerge as crucial markers of pelagic bioregion 
connectivity, emphasising their dynamic nature. Embracing a partitioning approach that better captures these dynamics is es-
sential for understanding how ecosystems function and will evolve in response to climate changes.

1   |   Introduction

Historically, studies in ocean biogeography have relied on physi-
cal predictors of species distribution, such as surface temperature 
or global circulation (Reygondeau and Dunn 2019), to overcome 

the scarcity and limited availability of biological observations 
(Ratnarajah et al. 2023). This assumes that biological communi-
ties strongly respond to environmental variations (Boudinot and 
Wilson 2020). Although these predictors are effective in ecosys-
tems with marked transitions such as foreshore benthic habitats 
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(Lewis 1964), their applicability in the pelagic realm is less clear 
due to the widespread dispersal of communities driven by strong 
water mass connectivity. Recently, Beaugrand et  al.  (2019) 
combined phytoplankton and zooplankton richness estimates 
with habitat characteristics to define an ecological partition 
of the North Atlantic Ocean and its adjacent seas. While this 
partition captures habitat physical features, it only partially 
describes the biotic composition within ecological units, a criti-
cal aspect for deciphering the underlying community structure 
governing biogeographic patterns (Pata et al.  2022). Kléparski 
et al.  (2021) extended this work by linking the environmental 
signatures of phytoplankton and zooplankton assemblages to 
the ecological partition defined by Beaugrand et al. (2019). The 
dominant patterns among previous North Atlantic partitioning 
reflect large- scale oceanographic features, such as the Polar 
Front and the Gulf Stream extension, resulting in a clear oce-
anic/neritic distinction along a latitudinal gradient from colder 
to warmer waters. Historical data from the North Sea reveal 
that rising temperatures in the 1980s facilitated the replace-
ment of cold- water by warmer- water species, some expanding 
their range northwards by over 10° to track their thermal optima 
(Beaugrand 2004; Beaugrand and Ibanez 2004). Warmer- water 
species generally have lower energy- rich lipid content than cold- 
water species (Cavallo and Peck 2020), which can negatively im-
pact the food intake and survival of larvae from higher trophic 
levels (Record et al. 2018). This suggests that looking into spe-
cies traits makes it possible to characterise certain community 
functions and thus provide a mechanistic understanding of po-
tential ecological consequences of biogeographic shifts (Violle 
et al. 2007).

Increasingly adopted in marine macroecology (Barton 
et al. 2013), trait- based approaches focus on key traits—interre-
lated through trade- offs—influencing the fitness of a species in a 
given environment (Litchman et al. 2013). Studying traits—com-
mon to all life forms—helps overcome taxonomic complexity by 
relying on a comparable unit (Hébert and Beisner 2020). McGinty 
et al. (2018) showed that copepod traits (body size, dietary and 
life history strategies) may partially determine their realised 
niches, emphasising the significance of trait- based analyses in 
understanding species distributions. Benedetti et al. (2023) high-
lighted a pronounced latitudinal gradient in copepod functional 
traits expression—including body size, trophic group, dietary 
strategy, myelination and spawning mode—driven by global 
abiotic gradients such as temperature. This latitudinal gradient 
is particularly evident for body size (e.g., Bergmann 1848), a key 
trait influencing vital processes (e.g., growth, fecundity, metab-
olism; Barton et al. 2013) as well as prey–predator interactions 
(Munk 1997). This in turn influences ecological processes and 
ecosystem functions. For instance, large and intermediate- sized 
copepods contribute more to carbon cycling than smaller cope-
pods (Stamieszkin et al. 2015) by producing larger, faster- sinking 
faecal pellets (i.e., which spend less time in the water column 
and are therefore less degraded; Turner  2002), and by respec-
tively living deeper in the water column and performing diel ver-
tical migrations (i.e., respiration and excretion at greater depths; 
Bandara et al. 2021; Ohman and Romagnan 2016).

Diel vertical migration (DVM) is a particularly striking be-
havioural trait in allegedly passive drifters, which describes 
how some species can migrate to different depths in the water 

column throughout the day, with amplitudes that can reach hun-
dreds of metres (Conroy et al. 2020). This complex mechanism 
is controlled by both exogenous (e.g., irradiance, temperature- 
linked water stratification) and endogenous (e.g., circadian 
rhythm) cues (Bandara et al. 2021). DVM can be seen as a trade- 
off between feeding opportunities in food- rich near- surface 
waters and predator avoidance (Ohman  1990; Thygesen and 
Patterson  2019), which can lead to cascading DVMs through 
food webs (Bollens et al. 2011). DVM influences several features 
of zooplankton life, including dampening UV radiation exposure 
(Williamson et  al.  2011) and optimising dispersal (Batchelder 
et al. 2002). Synchronised vertical movements of metazoans can 
transport particulate matter across density gradients (Katija and 
Dabiri 2009) and consequently play an essential role in the bi-
ological carbon pump, with an estimated contribution of more 
than 50% of the global total of carbon sequestered by the biolog-
ical pump (Pinti et al. 2023). Therefore, DVM tightly links eco-
logical and biogeochemical processes. Yet its impact on marine 
zooplankton biogeography remains poorly understood. While 
some regional DVM- related variations in diversity patterns of 
calanoid copepods have been described (Beaugrand et al. 2001), 
the influence of DVM on large- scale biogeographic patterns 
remains understudied (Brun et  al.  2016)—partly because of 
the challenging need for data with good horizontal and taxo-
nomic resolutions combined with a day/night sampling—and is 
often overlooked in functional approaches (Becker et al. 2021; 
Benedetti et  al.  2023; Djeghri et  al.  2023). Here, we partition 
the North Atlantic Ocean using a network approach based on 
copepod abundances to demonstrate the influence of DVM on 
the composition and spatial distribution of marine zooplankton 
communities, with the aim of better integrating the role of verti-
cal processes of pelagic connectivity.

2   |   Materials and Methods

The different steps of this study are synthesised in Figure 1. All 
analyses were performed using R Statistical Software (v4.3.2; R 
Core Team 2023).

2.1   |   Delineation of Bioregions Based on Copepod 
Species Abundance

2.1.1   |   Continuous Plankton Recorder Data

This study investigates zooplankton communities in the North 
Atlantic Ocean and its adjacent seas, spanning from 80° W 
to 30° W longitude and 25° N to 80° N latitude. We used data 
from the Continuous Plankton Recorder (CPR) Survey, a long- 
standing monitoring programme managed by the Marine 
Biological Association of the UK (MBA, 2022). Plankton sam-
ples are routinely collected by the CPR, a sampling instrument 
towed through the surface layer of the ocean (~5–10 m deep). 
While CPR data cannot fully depict the water column, Hélaouët 
et al. (2016) demonstrated their reliability compared to vertical 
trawl samples. The CPR allows seawater to flow through, filter-
ing plankton with a 270 μm mesh silk band—which may lead 
to underestimating certain small taxa and plankton abundances 
(Lewis et al. 2006; Richardson et al. 2006)—before storing it in 
4% formalin (Hardy 1939). Samples are identified to species, and 
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semi- quantitative abundances are estimated (Batten et al. 2003). 
Sampling methods and analysis procedures have remained con-
sistent since 1958 (Reid et al. 2003).

2.1.2   |   Species Selection

We applied both taxonomic and robustness filters to ensure 
high- quality zooplankton data identified at the species level. We 
focused on adult copepods as species- level data predominantly 
represent this class and life stage. The CPR database exhibits a 
gradual increase in the number of species identified over time 
that reflects not only the advancement of taxonomic knowledge 
but also the introduction of new species. To ensure consistent 
tracking of the same species over an extended period, we se-
lected the 1965 taxonomic dataset (MBA, 2022). This approach 

offers a consistent long- term perspective on species community 
changes while maximising the inclusion of diverse species. 
Consequently, this study covers the period 1966–2021. It should 
be noted that the successive taxonomic filters induce an under-
estimation of the real variability in species composition and 
exclusively reflect Calanoid (96%) and Harpacticoid (4%) cope-
pods, excluding dominant Cyclopoid genera such as Corycaeus, 
Oithona, and Oncaea, and some abundant Calanoid genera such 
as Calocalanus and Clausocalanus.

2.1.3   |   Day/Night Distinction

To integrate the effects of diel variations on copepod community 
composition and abundance into the delineation of bioregions, we 
separated day and night samples using three solar elevation (θs) 

FIGURE 1    |    Flow chart illustrating the key analyses conducted in this study. Each analysis is performed separately for day (light blue flow) and 
night (dark blue flow). Abbreviations: Ab, abundance; CCA, canonical correspondence analysis; cell, geographical cell; CPR, Continuous Plankton 
Recorder; CWM, community- weighted means; DVM, diel vertical migration; ENV, environment; irr., irregular; MERO, meroplankton (fish larvae 
and invertebrate larvae); nb, number; PHYTO, phytoplankton (diatoms and dinoflagellates); sp., species; supp., supplementary; var., variable; ZOO, 
zooplankton.
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thresholds: the civil (θs = −6°), nautical (θs = −12°) and astronom-
ical twilight (θs = −18°). Bioregions remained consistent across 
scenarios (Appendix Figure S1), so we retained the civil twilight 
scenario as it offered the most balanced day/night ratio. The re-
sulting dataset comprises 125,107 day samples and 93,498 night 
samples, encompassing 72 and 77 copepod species, respectively.

2.1.4   |   Dealing With Irregular Sampling: 
Regularisation of CPR Data

To mitigate the effects of sampling heterogeneity and improve 
the detection of the signal- to- noise ratio associated with spatial 
dynamics within copepod communities (Goberville et al. 2014), 
we set up two grids (one for day, one for night) adapted to the 
sampling effort using a quadtree approach (AQuadtree R pack-
age v1.0.4; Lagonigro et  al.  2023). Geographical cell sizes are 
adjusted to incorporate a minimum of 10 observations: areas 
with a high sampling density (e.g., in the North Sea) display 
smaller cells than regions with lower sampling density (e.g., off 
the North Atlantic). Within each geographical cell, we resam-
pled abundances with a minimum of 10 observations per cell 
and 999 permutations. Zero abundances were treated as true 
absences and were also resampled to ensure unbiased represen-
tation across grid cells. The seasonal distribution of CPR sam-
ples and spatial coverage being consistent year- round (Appendix 
Figure  S2), we were able to calculate the 56- year average of 
log10(abundance+1) for each species, resulting in a biological 
matrix in the format [Site × Species × Abundance], for both day 
and night. Given the semi- quantitative nature of CPR data, the 
log- transformation produces clearer and more representative 
biogeographic patterns (see Appendix Figure S3 for a compari-
son of log- transformed vs. untransformed abundances).

2.1.5   |   Bioregionalisation Using Network Clustering

To map day/night bioregions, we applied a biogeographic net-
work approach (Leroy et al. 2019; Vilhena and Antonelli 2015), 
using the R package biogeonetworks (v0.1.2; Leroy 2024) on each 
[Site × Species × Abundance] matrix. This approach involves 
generating a bipartite network composed of (i) geographical cells 
and (ii) species, forming a set of nodes interconnected by links: 
when a species is present in a geographical cell, a link is estab-
lished between species and cell, and the link is weighted by the 
associated abundance value. To delineate bioregions, we applied 
the Map Equation hierarchical clustering algorithm (Rosvall and 
Bergstrom 2008) on this network, which groups nodes into clus-
ters based on high intra- group and low inter- group connectivity. 
In other words, the algorithm creates groups of cells that share 
the same species with similar abundance patterns. In practice, 
it relies on information theory: it measures the per- step average 
length of binary code needed to describe the movements of a 
random walker on the network and find the partition that mini-
mises the total length (L) of this description. The Map Equation 
algorithm has been widely recommended for identifying biogeo-
graphic regions (Bloomfield et al. 2018; Edler et al. 2016; Leroy 
et al. 2019; Rojas et al. 2017; Vilhena and Antonelli 2015) and 
has found applications in diverse fields such as disease- related 
insect distribution (e.g., Ferrari et al. 2022), change in biogeo-
graphic patterns due to human activities (e.g., Leroy et al. 2023) 

and benthic biogeographies (e.g., Victorero et al. 2023; Watling 
and Lapointe  2022). Because Map Equation is a stochastic al-
gorithm, it was iterated 1000 times to let it converge towards 
an optimal solution, enhancing the robustness of the analysis 
and mitigating potential variations induced by minor changes 
in the data or parameters. Additionally, we computed two clus-
tering metrics: the codelength of a node reflects its importance 
in the overall connectivity of the network (Bohlin et al. 2014): 
the higher its value, the most structuring the node is in the net-
work; the participation coefficient measures the connectivity 
across clusters: higher values reflect a greater number of links 
a node has to different regions (Bloomfield et  al.  2018). For a 
geographical cell, the participation coefficient indicates whether 
it contains species from other regions (i.e., transition zones; 
Victorero et al. 2023). The present bioregions represent a snap-
shot at 10 m depth, which biases the observed patterns of species 
dominance towards surface- dwelling species. Larger species, 
such as Heterorhabdus norvegicus (Yamaguchi et al. 2022), typ-
ically inhabit deeper layers of the water column and are likely 
underrepresented in our dataset.

2.2   |   Environmental and Ecological 
Characterisation of Bioregions

2.2.1   |   Environmental Variables

Hydro- climatic and atmospheric hourly ERA5 data from 1966 
to 2021 were retrieved from the Copernicus Climate Change 
Service (Hersbach et  al.  2023). The spatial resolution for at-
mospheric parameters—including sea surface skin tempera-
ture (K), mean sea level pressure (Pa) and wind (10 m u-  and 
v- component; m s−1)—is 0.25° × 0.25°, while for mean ocean 
wave direction (degree true) it is 0.5° × 0.5°. Sea surface skin 
temperature serves as a reliable proxy for downward irradiance 
and exhibits a strong diel cycle signature. Bathymetry (m) was 
extracted from the General Bathymetric Chart of the Oceans 
(GEBCO Compilation Group  2022), with a spatial resolution 
of 15 arc sec. We calculated the solar elevation at the scale of 
the North Atlantic Ocean between 1966 and 2021 using the 
SolarAzEl Matlab function (v1.1.0.0; Koblick  2023), which we 
translated into R language. Using the civil twilight as the day/
night limit (θs = −6°), we generated binary filters to segregate 
environmental datasets for day and night conditions. We com-
puted 56- year means, alongside standard deviations (σ), of each 
environmental variable for both day and night.

2.2.2   |   Ecological Covariates

Phytoplankton and meroplankton data (cells L−1) were extracted 
from the CPR dataset (MBA, 2022). Phytoplankton taxa were 
categorised into dinoflagellates and diatoms. Meroplankton 
was divided into fish larvae and invertebrate larvae. This tax-
onomic partitioning was chosen because of their contrasting 
trophic roles within marine ecosystems. Diatoms form the base 
of the copepod–fish food web, providing significant nutritional 
value, while dinoflagellates offer lower nutritional benefits 
(McQuatters- Gollop et  al.  2007). Fish larvae often prey upon 
small copepods and their nauplii (Turner  2004), while larvae 
of many benthic invertebrate species have minimal effects on 
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their food supply due to their relative scarcity compared to 
potential competitors (Strathmann  1996). Invertebrate young 
stages include Lepas nauplii, Bivalvia, Decapoda, cirripede and 
polychaete larvae, echinoderm larvae and post- larvae. Day and 
night samples were differentiated and abundances were trans-
formed into log10(abundance+1) and regularised using the same 
methodology described for copepod communities.

2.2.3   |   Species Traits

Five traits (body size, myelination, feeding mode, trophic group 
and spawning strategy) were extracted from Benedetti et al. (2023) 
for 71 of the 78 copepod species of our CPR dataset (Figure 2). 
Missing body size data were filled in according to Razouls 
et  al.  (2005–2024) for Euchaeta pubera, Euchirella curticauda, 
Euchirella pulchra, and Paraeuchaeta tonsa but remained unavail-
able for Diaixis hibernica, Diaixis pygmaea, and Scottocalanus 
persecans. We also computed a diel vertical migration index 
(DVMindex), following Equation (1). As bioregions are abundance- 
based, we used the day/night difference in species abundance over 
the study period as the basis for this index, contrasting with the 
biomass- based DVM estimate of Brun et al. (2019).

AbDay and AbNight represent the abundance of the species (ind. 
m−3) during the day and night, respectively. This index was cat-
egorised according to its sign: DVMindex < 0 (i.e., more surface 
abundance at night) was classified as ‘classic DVM’, whereas 
DVMindex ≥ 0 (i.e., more surface abundance during the day) 
was classified as ‘reverse DVM’. Absolute values were used as 
relative proxies for DVM amplitude, with values ≥ 0.5 indicat-
ing strong DVM. Lowest DVMindex values observed in the day 
and night bioregions are referred to as ‘minimal’ and serve as 
a baseline. Intermediate values between these two thresholds 
are termed ‘moderate’. Given the spatio- temporal variability of 
DVM (Irigoien et al. 2004), it should be noted that this index re-
flects long- term regional averages and cannot be generalised as 
the typical behaviour of a species. Community- weighted mean 
traits (CWM; Bruelheide et al. 2018), representing the ‘typical’ 
trait values of a community, were calculated using the cwm 
function of the weimea R package (v0.1.19; Zelený 2021).

2.2.4   |   Analyses of the Spatial Structure and Species 
Composition of Bioregions

To assess how environmental and ecological variables (phyto-
plankton and meroplankton abundances) structure each biore-
gion, we performed two Canonical Correspondence Analyses 
(CCA) using the cca function from the vegan R package (v2.6.4; 
Oksanen et al. 2022). Pseudo F- ratios were determined to assess 

(1)DVMindex =

AbDay − AbNight

AbDay + AbNight

FIGURE 2    |    Description of copepod traits used in this study and classified according to ecological function and type, following the framework of 
Litchman et al. (2013). Dotted lines indicate traits that may be of secondary importance for other functions.
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the significance of constraints in the CCAs, using a permuta-
tion test with 999 permutations, implemented in the anova.cca 
function from the same package. Both CCAs showed significant 
results (F = 32.764, p < 0.001 for day; F = 53.279, p < 0.001 for 
night), with all explanatory variables being significant for the 
first two axes (p < 0.001).

Community- weighted mean trait values were projected as sup-
plementary variables using the envfit_cwm function from the 
weimea R package. A test based on permuting species attributes 
(Zelený and Schaffers  2012) assessed the strength of relation-
ships between CWM supplementary variables and ordination 
axes. It considers that species abundances are used both to build 
CCA axes and to compute CWM, preventing an overestimation 
in relationship strength (Zelený 2018). With 999 permutations, 
no significant correlation was found (p > 0.1), indicating that 
CWM can only be interpreted qualitatively, as illustrative vari-
ables (Figure 3c). To preserve geographical significance in line 
with bioregion mapping (Figure 3a), axis 1 is represented on the 
ordinate and axis 2 on the abscissa.

All variables were averaged by bioregions and statistically com-
pared through Kruskal–Wallis tests followed by Dunn post hoc 
tests with Hochberg adjustment, respectively using the kruskal_
test and dunn_test functions from the rstatix R package (v0.7.2; 
Kassambara  2023). Shannon's and Simpson's diversity indices 
were computed for copepod communities using the diversity 
function from the vegan R package.

Species compositions of each bioregion were summarised 
through boxplots representing the percentage of species 
abundance in their respective bioregions, calculated using 
Equation (2):

Bioregion X =

{

xi
}

1≤i≤m
 is defined as the set of m geographical 

cells xi. For any geographical cell xi containing n total species 
affiliated to bioregion X , the abundance of species j is denoted 
Abxi ,j. The percentage of abundance represented by species j in 
cell xi is denoted pxi ,j.

3   |   Results

3.1   |   Spatial Structures of Bioregions and Their 
Variations Between Day and Night

Four significantly distinct bioregions (Kruskal–Wallis tests: 
p < 0.001), aggregated across the period 1966–2021, were delin-
eated for both day and night conditions (Figure 3a). Two gradi-
ents emerge as key factors shaping the partitions. A latitudinal 
North–South gradient separates northern bioregions A and E 
from southern counterparts D and H. A longitudinal continen-
tal shelf–open ocean gradient extending from the Grand Banks 
of Newfoundland to the Northwest European continental shelf 
distinguishes bioregions B and F from the others. Day–night dis-
crepancies in spatial patterns are particularly evident between 
continental shelf bioregions B and F. Bioregion F (night) covers 

a broader area since, in addition to the North Sea and European 
continental shelves (B), it encompasses the British Isles, Celtic 
seas, and Armorican continental shelves (eastern Atlantic). This 
pattern is mirrored in the western Atlantic, with the addition of 
the Georges Bank shelf to the Grand Banks of Newfoundland 
and the Scotian shelf (B). Bioregion G (night) has a more open 
ocean and northern distribution in the Northeast Atlantic than 
bioregion C. These specificities highlight dynamic transitions 
between bioregions, with overlapping boundaries and biogeo-
graphical cell exchanges between day and night (Figure 3b).

3.2   |   Environmental and Ecological Factors 
Shaping Bioregions

Canonical Correspondence Analyses (CCA) allow us to char-
acterise the environmental conditions and ecological distinc-
tiveness of each bioregion (Figure  3c). Explanatory variables 
explain 32%|45% of the day–night variance in copepod species 
abundances, with the first two axes explaining 22.6%|29.4%. 
Bioregions are depicted as 95% confidence ellipses of sites dis-
tribution (assumed to be normal as species abundances are 
log- transformed) and their environmental characteristics are 
detailed in Table 1. The y- axis of the CCA (axis 1) highlights the 
latitudinal distribution of bioregions and is mostly structured by 
environmental variables, with sea surface skin temperature (cor-
relation to axis: rday = −0.93 and rnight = −0.97) and atmospheric 
pressure (rday = −0.88; rnight = −0.80) as main drivers. It is also 
structured—to a lesser extent—by wave direction (rday = −0.54; 
rnight = −0.60) and environmental variations (σ) in pressure 
(rday = 0.58; rnight = 0.33), in wave (rday = 0.47; rnight = 0.29), in 
eastward wind speed (σU_WIND; rday = 0.44; rnight = 0.31) and in 
sea surface skin temperature (rday = 0.35; rnight = 0.42). For night 
condition, bathymetry also exerts a moderate influence on axis 
1 structuring (rnight = 0.52). The x- axis (axis 2) reflects a longitu-
dinal pattern indicative of inshore influence. Main covariates in 
the positive part of axis 2 include invertebrate larvae abundance 
(rday = 0.76; rnight = 0.87) and bathymetry (rday = 0.74; rnight = 0.66), 
as well as fish larvae (rday = 0.56; rnight = 0.59), dinoflagellate 
(rday = 0.56; rnight = 0.52) and diatom (rday = 0.48; rnight = 0.37) 
abundances. The negative part of this axis is associated with 
variations in wave direction (rday = −0.42; rnight = −0.58), and for 
night condition, with variations in pressure (rnight = −0.49) and 
in eastward wind speed (rnight = −0.44).

The northernmost bioregions (A|E) are located in the posi-
tive part of axis 1, reflecting colder waters (7.8°C ± 0.2°C and 
7.1°C ± 0.2°C on average, respectively) and relatively lower at-
mospheric pressure. These bioregions also experience stronger 
environmental variations (σ) in wave direction, wind speed, 
atmospheric pressure, and sea surface skin temperature. 
Located in the negative part of both axis 1 and axis 2, south-
ern bioregions (D|H) are characterised by warmer temperatures 
(17.7°C ± 0.2°C |16.6°C ± 0.2°C) and encompass open- ocean wa-
ters ranging from depths of 1036–4928 m or 946–4860 m, respec-
tively. They exhibit the lowest diatom abundances (23.1 ± 1.8 
cells L−1|19.2 ± 1.3 cells L−1). Conversely, bioregions B and F, 
located in the positive part of axis 2, are predominantly influ-
enced by high meroplankton and phytoplankton abundances 
(e.g., 263.3 ± 34.5 ind. m−3|101.5 ± 8.7 ind. m−3 for invertebrate 
larvae), reflecting the vicinity of the coasts, with bioregion B 

(2)pxi ,j =
Abxi ,j

∑n
j=1 Abxi ,j

× 100
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FIGURE 3    |    Bioregions generated by network clustering with their fluxes between day and night and associated environmental and ecological 
characteristics. Different colours indicate different bioregions. (a) Copepod- based bioregions of the North Atlantic Ocean over the 1966–2021 period 
(scenario θs = −6°) during day (left) and night (right) resulting from optimal partitions (LDAY = 7.10 bits; LNIGHT = 7.66 bits). Mapping in Equivalent 
Lambert azimuthal projection. (b) Alluvial diagram showing species and geographical cell fluxes between day and night bioregions. Only the first 
3–5 most structuring species of each bioregion are represented. (c) Canonical correspondence analysis (CCA) on environmental and biological vari-
ables (scaling 1; solid black lines) during day (left) and night (right). The first 2 axes of the CCA are represented (axis 1 on the y- axis; axis 2 on the 
x- axis), and 95% confidence ellipses of the distribution of sites are drawn. Community- weighted mean traits (CWM) are added as supplementary 
variables (dotted grey lines). Only the first 17 most structuring species of each bioregion are represented (see Figure 4) and abbreviated using the first 
letter of the genera and the first three letters of the species (see Figure 4 for full names).
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displaying a shallower depth range than bioregion F (depthmax = 
2083 m|depthmax = 4878 m). Bioregion C (day) is characterised by 
warm- temperate waters (13.1°C ± 0.1°C) and relatively stable en-
vironmental conditions (negative part of axis 1 associated with 
lower standard deviations). This bioregion encompasses both a 
coastal and an open- ocean component (28–4872 m depth), with 
dominant coastal influence. At the centre of the CCA, bioregion 
G (night) appears as a transition zone between all other night 
bioregions.

3.3   |   Copepod Diversity, Composition and CWM 
Traits in Bioregions

Dominant species in bioregions tend to be the most structuring, 
revealing two distinct profiles (Figure  4). No more than 25% 
of species significantly contribute to the structuring of biore-
gions A, B, C (day) and E, F, G (night), whereas this percentage 
rises to more than 60% in southern bioregions (D, H). The first 
group is characterised by the presence of a few dominant species 

FIGURE 4    |    Percentage of abundance of species in their affiliated bioregion during the day (left) and night (right). Species are ordered from the 
most to the least structuring, based on their codelength (= quantitative information from the Map Equation algorithm; the higher the codelength, 
the more structuring the species in its affiliated bioregion). Only the first 17 most structuring species of each bioregion are represented. The total 
number of structuring species in each bioregion is indicated in the bottom right- hand corners (n = X). The cross in the boxplot marks the mean of the 
distribution. Different colours indicate different bioregions (see Figure 3).
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that significantly shape bioregions, while the second exhibits 
greater diversity and a more balanced influence on structur-
ing. A North–South diversity gradient is observed in both day 
[Shannon's diversity = 0.4 (A) to 1.5 (D)] and night [Shannon's 
diversity = 0.7 (E) to 2.0 (H)] partitions, with the highest diver-
sity at night (Table 1).

Northern bioregions (A|E) are structured by a few cold- water 
species (7|8 structuring species; Figure  4), which are rela-
tively large (highest copepod community length, 3.60 ± 0.02 
mm|3.96 ± 0.03 mm; Table 1) and tend towards herbivory (Calanus 
finmarchicus, C. glacialis, C. hyperboreus; Figure 3c). Moderate 
diel vertical migrations are observed (DVMindex = 0.23|0.32), 
with reverse DVM as the main pattern in bioregion A (0.17) 
and classic DVM as the main pattern in bioregion E (0.20). The 
strongly migratory species Metridia longa ranks as the third 
most structuring species of bioregion E (night; 7.1% ± 0.5%), 
whereas it represents 2.1% ± 0.2% of the abundance of bioregion 
A (day; Figure 4). Most species are myelinated, including C. fin-
marchicus, C. glacialis, C. hyperboreus, Paraeuchaeta norvegica, 
and Paraeuchaeta glacialis (present only at night; Figure  3c). 
C. finmarchicus plays a significant role in structuring biore-
gions A and E, representing on average 91.2% ± 0.4% (day) and 
74.1% ± 0.7% (night) of the total abundance of the bioregion, fol-
lowed by P. norvegica (6.8% ± 0.3%|17.7% ± 0.6%; Figure 4).

Southern bioregions (D|H) exhibit a diversity of warm- water spe-
cies that contribute to their structuring (39|47 structuring spe-
cies; Figure 4). In these diatom- poor open waters, detritivorous 
(e.g., Euchirella species, Scaphocalanus echinatus, Scolecithrix 
danae) and carnivorous (e.g., Candacia, Paracandacia, 
Euchaeta, and Undeuchaeta species) trophic groups emerge 
(Figure  3c). The main species demonstrate robust and classic 
DVM (e.g., Euchirella and Pleuromamma species, Neocalanus 
gracilis; Figure  3c). Such migratory species dominate at night 
(DVMindex = 0.27 for day, with 0.20 accounting for classic pat-
tern and DVMindex = 0.54 for night, with 0.51 for classic pattern) 
and drive changes in the bioregion structure and composition 
between day (D) and night (H). Four Pleuromamma species 
rank among the top five most structuring species, represent-
ing more than 50% of the abundance of bioregion H (Figure 4), 
while bioregion D is primarily structured by Nannocalanus 
minor (31.9% ± 1.3%; also third most structuring species in biore-
gion H, representing 11.2% ± 0.4% of the total abundance) and 
Mecynocera clausi (14.5% ± 1.7%), then Pleuromamma borealis 
(13.7% ± 1.1%), P. gracilis (10.6% ± 1.0%), and Candacia ethiopica 
(12.1% ± 1.0%) (Figures 3b and 4).

The most striking day- night shifts in species composition are 
observed in the remaining bioregions. Bioregion C (day) occu-
pies a central position in the North–South gradient and is struc-
tured by 17 species (Figure 4) with diverse thermal preferences, 
ranging from cold- temperate species (e.g., Aetideus armatus, 
Metridia lucens, and Pleuromamma robusta) to temperate spe-
cies (e.g., Calanus helgolandicus, Candacia armata, Centropages 
typicus, and Rhincalanus nasutus) and warm- temperate/sub-
tropical species (e.g., Calanoides carinatus, Ctenocalanus vanus, 
and Undeuchaeta major). Ambush- feeding species (Aetideus 
armatus, Centropages chierchiae, and C. typicus; Figure  3c) 
stand out in this bioregion where motile species (dinoflagellates, 
meroplankton) are rather highly abundant (Table 1). C. typicus 

accounts for 52.1% ± 1.2% on average of the abundance of the 
bioregion, followed by C. helgolandicus (35.6% ± 1.2%) and M. 
lucens (11.9% ± 0.7%) (Figure 4).

Bioregion C divides mostly into bioregion G and F at night 
(Figure  3b). Three dominant species of bioregion C mainly 
structure bioregion G (night), which is composed of 5 large 
cold- temperate and mixed- water species (Figure  4) with a 
free- spawning strategy, boasting the second- highest copepod 
community length after northern bioregions (3.14 ± 0.03 mm; 
Table  1). The two most structuring species, Metridia lucens 
(74.1% ± 1.0%) and Pleuromamma robusta (27.1% ± 0.9%), exhibit 
strong classic DVM patterns. The other three, Aetideus armatus 
(1.7% ± 0.2%), Gaetanus minor (1.3%), and Subeucalanus mucro-
natus (0.5%), are myelinated species, which help optimise their 
escape responses (the latter two also displaying strong DVM in-
dexes; Appendix Figure S4). The three most structuring species 
of bioregion G are also abundant in neighbouring bioregions, 
especially in bioregion H, highlighting the transitional nature of 
bioregion G (Appendix Figure S5).

Continental shelf bioregion F (night) is structured by 17 spe-
cies (Figure 4), including 7 warm- emperate/temperate pseudo- 
oceanic species from bioregion C (day) and a total of 9 shallow 
water/continental shelf species structuring bioregion B (day) 
(Figures 3b and 4). The latter is characterised by a strong inshore 
influence evidenced by high abundances of phytoplankton and 
meroplankton (Figure  3c, Table  1), therefore representing the 
most coastal part of bioregion F. This bioregion (B) is character-
ised by small to intermediate- sized species (smallest community 
body length of 2.37 ± 0.03 mm) such as the dominant Temora 
longicornis (representing on average 74.4% ± 1.2% of the abun-
dance of the bioregion) and Centropages hamatus (23.1% ± 1.2%; 
Figure  4), along with Isias clavipes, Parapontella brevicornis, 
and Tortanus discaudatus. Copepods structuring this inshore- 
influenced area exhibit minimal DVM (DVMindex = 0.17), pre-
dominantly in reverse (0.16). These species are amyelinated, 
feed on a variety of prey (omnivory) and are free- spawning (ex-
cept Euterpina acutifrons). The first most structuring species of 
bioregion F are alternately those of bioregions C and B: C. typi-
cus (33.4% ± 1.4%), T. longicornis (30.3% ± 1.6%), C. helgolandicus 
(27.0% ± 1.2%), and C. hamatus (7.8% ± 0.7%) (Figure 4).

4   |   Discussion

4.1   |   Major Gradients Structure North Atlantic 
Partitions

This bioregionalisation study highlights two major gradi-
ents transcending diel variability and shaping North Atlantic 
partitions, similarly to what Longhurst  (2007) observed for 
phytoplankton responses to external forcing (Reygondeau 
and Dunn 2019). Longitudinally, continental shelf bioregions 
(B|F) coincide with the ‘coastal’ biome and contrast with 
other bioregions further offshore. Latitudinally, we follow the 
previously described polar- temperate transition from north-
ern (A|E) to southern bioregions (D|H). This North–South 
gradient extends beyond the pelagic domain, as it can even 
influence the bathyal benthos (Watling and Lapointe  2022). 
Such a strongly structuring gradient is allegedly linked to 



12 of 17 Journal of Biogeography, 2025

temperature, with the 10°C isotherm associated with the 
oceanic polar front (Kléparski et al. 2021). The latter acts as 
a critical boundary for mesozooplankton distribution at the 
surface, as illustrated by the lowest participation coefficient 
values found at the extremities of the North–South gradi-
ent for both day and night conditions (Appendix Figure S6), 
although its influence weakens with depth (Vecchione 
et al. 2015). A latitudinal diversity gradient mirrors this bio-
geographic gradient. Southern communities, with higher 
diversity and functional redundancy, might be more stable 
over time and resilient to changes than northern communi-
ties (Biggs et al. 2020). All bioregions present higher diversity 
values at night than during the day, which is likely due to diel 
vertical migrations. Indeed, most migratory copepods dive 
into deeper waters during daytime and rise to surface waters 
during night- time (classic DVM; Bandara et al. 2021), which 
leads to greater aggregation (Wiebe et  al.  2023) and can en-
hance diversity in nocturnal communities of the epipelagic 
zone (Govindarajan et al. 2023). The day/night consideration 
sheds light on a distinct bioregion (G), located at the bathy-
metric transition between the continental shelf of the British 
Isles and the Porcupine abyssal plain—associated with mixed 
and productive waters (Frigstad et  al.  2015). In this region, 
Beaugrand et al. (2001) documented high variability in cala-
noid diversity, with strong nychthemeral cycles and seasonal 
fluctuations. This dynamic nature is supported by the pres-
ence of species exhibiting strong diel vertical migrations (e.g., 
Metridia lucens, Pleuromamma robusta), which are shared 
with the surrounding bioregions (i.e., high participation co-
efficient; Appendix Figure  S6- right; Appendix Figure  S5), 
reinforcing vertical and horizontal connectivity. In brief, our 
partitions reflect consistent macroscale environmental gradi-
ents while showing day/night discrepancies driven by changes 
in species composition mediated by diel vertical migration.

4.2   |   About Trait–Environment Relationships

No statistically significant trait–environment relationship was 
detected at the study scale based on our approach. This could 
partly be explained by limitations in the trait dataset, which 
excludes intraspecific variations modulated by environmental 
factors (e.g., body size; Brun et  al.  2016). Coupled with broad 
environmental data, the lack of intraspecific trait variability 
introduces uncertainties into community characterisation, re-
sulting in a potentially biased representation of species traits at 
some locations (Albert et  al.  2010). Nevertheless, community- 
weighted mean traits can reflect dominant structuring species 
traits displaying large- scale biogeographic patterns (Benedetti 
et  al.  2023). In particular and qualitatively, community body 
length shows spatial patterns aligning with the detected envi-
ronmental gradients. Northern bioregions (A|E) host large cope-
pods. By contrast, southern bioregions (D|H) display a smaller 
community body length, and more inshore bioregions (B|C|F) 
have the smallest, echoing the findings of Brun et al. (2016) on 
similar data. These patterns support Bergmann's rule  (1848), 
which stipulates that smaller species inhabit warmer waters 
(Campbell et al. 2021). Ectotherms tend to grow faster, with a 
higher moulting rate, and to reach maturity earlier, thus with a 
smaller body size, under warmer temperatures (Atkinson 1994; 
Miller et al. 1977). Roman and Pierson (2022) postulated that a 

smaller size could help copepods living in warmer coastal wa-
ters to adapt to the increased respiratory demand and reduced 
oxygen solubility (Verberk et  al.  2011). Body size also influ-
ences predator–prey interactions (Hansen et al. 1994). Average 
zooplankton body size along the Atlantic Meridional Transect 
tends to decrease in oligotrophic seas dominated by pico-  and 
nanoplankton and to increase in more nutrient- rich regions (San 
Martin et  al.  2006). Predicted global warming- induced shifts 
in phytoplankton communities towards smaller cells (Henson 
et al. 2021) could lead to a decrease in average copepod body size 
through bottom- up effects, inducing shallower DVM (Ohman 
and Romagnan 2016) and reduced carbon export via the biolog-
ical carbon pump (Bopp et al. 2005; Brun et al. 2019). Despite 
the above- mentioned limitations, community- weighted mean 
traits add a valuable functional component to the North Atlantic 
bioregionalisation, although further studies incorporating intra-
specific trait variability and/or the arrival of new species will 
offer a more mechanistic understanding.

4.3   |   Diel Vertical Migration Role in Community 
Dynamics and Trophic Interactions

DVM indirectly enhances aggregation (Chaput et  al.  2019) 
as copepods tend not to migrate as compact populations 
(Roe 1984). Classic DVM (i.e., night- time ascent/daytime de-
scent; Bandara et al. 2021) is strongest in southern (D|H) and 
transitional (G) bioregions, while northern bioregions (A|E) 
display a weaker reverse DVM (i.e., daytime ascent/night- time 
descent). DVM patterns closely relate to the structure of the 
pelagic food web, with predators adjusting their behavioural 
strategies in response to prey behaviour and vice versa (Pinti 
et  al.  2019). Migrants' movements cause microscale turbu-
lence (Kunze et  al.  2006), making them extremely vulnera-
ble to tactile predators (ambush- feeders; Bandara et al. 2021). 
Reverse DVM likely enables zooplankton to avoid non- 
visual invertebrate predators (e.g., chaetognaths, Saito and 
Kiørboe 2001) which exhibit classic DVM to escape their own 
visual predators (Ohman et al. 1983). Ambush- feeding cope-
pods stand out in most inshore bioregions (B|C|F) with high 
prey concentrations (e.g., highest abundances of motile dino-
flagellates), displaying weak reverse DVM or no DVM. In our 
study, ambush- feeders are often current- ambush feeders (i.e., 
mixed feeders), which aligns with the co- dominance pattern 
of mixed and active feeders in the northwestern European 
coasts observed by Brun et al. (2016). To complement this mi-
gration behaviour with greater responsiveness, copepods have 
evolved specialised escape mechanisms. Metridia lucens and 
Pleuromamma robusta, structuring transitional bioregion G 
and exhibiting large DVM amplitudes (Hays et al. 1995), use 
bioluminescence to evade visually sensitive predators in close 
proximity (Hartline et al. 1999). The other structuring cope-
pods of bioregion G (Aetideus armatus, Gaetanus minor, and 
Subeucalanus mucronatus) have myelinated axons which en-
hance nerve impulse conduction, potentially inducing faster 
escape responses (Davis et  al.  1999), although evidence re-
mains debated (Waggett and Buskey  2008). Myelinated co-
pepods dominate the structuring community of northern 
bioregions (A|E), while the most amyelinated community is 
found in coastal bioregions (B|F), in coherence with Brun 
et  al.  (2016). Myelination is thought to be more prevalent 
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where predation pressure and transparency are high, and food 
resources are low (Lenz  2012). This can seem counterintui-
tive, as myelination requires a large amount of dietary lipids 
to build cholesterol- rich membranes (Okamura et  al.  1986), 
but it saves metabolic energy during copepod impulses 
(Hartline 2008; Ritchie 1984), which is particularly advanta-
geous in low- food/high- quality conditions.

4.4   |   Variability in DVM: Detection Limitations 
and Influence of Interrelated Traits

The timing and amplitude of DVM vary greatly, being highly 
dependent on copepods' depth of occurrence (Wiebe et al. 1992), 
and are influenced by several interrelated traits. At equivalent 
size, female krill migrate closer to the surface at night than 
males, probably due to the higher energetic demand for re-
production (Tarling  2003). Conversely, egg- carrying copepod 
females (sac- spawners) tend to remain deeper than egg- free in-
dividuals, minimising risk to offspring (Bollens and Frost 1991). 
Free- spawners' fecundity rates are significantly related to chlo-
rophyll a concentration (Bunker and Hirst 2004), which helps 
to explain their dominance in phytoplankton- rich coastal biore-
gions (B|F). Osgood and Frost  (1994) also suggested an onto-
genetic effect, observing that older stages of Calanus pacificus 
are generally deeper than younger stages during the day. This 
may be linked to size (De Robertis et al. 2000), as we found that 
community body length was systematically greater at night. 
Sainmont et al.  (2014) showed that small Calanus spp. exhibit 
clear DVM while large ones stay mostly at depth during the 
Greenland spring bloom.

Vertical migrations also vary seasonally, shifting between clas-
sic and reverse migrations, changing in periodicity and am-
plitude, or even ceasing entirely from one season to another 
(Bandara et al. 2016, 2021). This is particularly evident for large 
herbivorous- omnivorous copepods such as Calanus finmarchi-
cus, C. glacialis, and C. hyperboreus, which structure northern 
bioregions (A|E) and experience highly seasonal climatic condi-
tions and phytoplankton abundances (Barton et al. 2013). These 
high- latitude copepods tend to have particularly efficient lipid 
storage (Cavallo and Peck  2020) enabling them to overwinter 
by migrating to deeper waters, where they survive under a re-
duced metabolism thanks to their accumulated lipid reserves 
(Barton et al. 2013). This phenological behaviour induces a high 
seasonal variability in their vertical migrations (Krumhansl 
et al. 2018). Omnivorous (e.g., Metridia longa) and carnivorous 
(e.g., Paraeuchaeta norvegica) copepods are less subject to sea-
sonal food shortages at high latitudes, since they may rely less 
on phytoplankton seasonality. Therefore, they do not usually ex-
hibit such specific seasonal adaptations (Hagen and Auel 2001). 
In line with McGinty et al. (2018), carnivorous and detritivorous 
species are mostly found in warmer and less diatom- productive 
southern bioregions (D|H). In such regions, two trophic path-
ways may co- exist: (i) carnivorous species (Woodd- Walker 
et al. 2002) preying on smaller zooplankton or even larger gelat-
inous zooplankton (Takahashi et al. 2013) may exert top- down 
control on mesozooplankton, whereas (ii) detritivorous species 
feeding on marine snow aggregates and copepod carcasses con-
tribute to organic matter recycling (Yamaguchi et al. 2002) and 
favour regenerated production (Becker et al. 2021).

The influence of interrelated traits on vertical migration depends 
on the species, their environment, and spatio- temporal scales. 
Disentangling the complex relationships between traits remains 
a challenge to gain insight into the ecological and functional 
consequences of vertical migration variability on ecosystems.

4.5   |   Towards Dynamic Bioregions Highlighting 
Connectivity

While the same core structure and species composition as 
previous North Atlantic bioregionalisations have been found 
(Beaugrand et al. 2019; Kléparski et al. 2021), our partitions dif-
fer in terms of transitions between bioregions. We found biore-
gions with diffuse boundaries (high participation coefficients 
overall; Appendix Figure  S6), indicating the connectivity of 
pelagic bioregions and suggesting that species can persist over 
a wide range of environmental variations (Woolley et al. 2020; 
Appendix Figure  S5). This questions the ecological relevance 
of the greater number of bioregions with geometrically sharp 
transitions found in environment- based bioregionalisations 
(Morrone  2015). Transition zones are ecologically fascinating 
areas hosting intermixing communities and exhibiting high 
diversity (Hermogenes De Mendonça and Ebach  2020). They 
are inherently dynamic, with periods of stability and expansion 
(Lenoir et al. 2020). Range- edge individuals display phenotypic 
plasticity, adapting to environmental changes within a few gen-
erations (Pfennig 2021). Transition zones are thus particularly 
interesting to track biogeographic changes such as climate- 
driven shifts (e.g., North Atlantic regime shift; Beaugrand 
et al. 2008). A focus on seasonal dynamics could provide valu-
able insights into bioregions' variations and transitions over 
time, particularly in coastal and northernmost regions, where 
environmental conditions display strong seasonality. This could 
inform a typology of pelagic habitats that better reflects eco-
logical reality, supporting ecosystem management (Holland 
et al. 2023). Ultimately, it is all about bringing species ecology 
back to the core of bioregionalisation studies by considering the 
behaviour and variability inherent to living organisms in a more 
dynamic partitioning to better reflect the functioning of pelagic 
ecosystems.
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