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Satellite remote-sensing and wildlife tracking allow researchers to record rapidly increasing volumes of information on the spatial ecology of
marine megafauna in the context of global change. This field of investigation is thereby entering the realm of big data science: Information
technology allows the design of completely new frameworks for acquiring, storing, sharing, analysing, visualizing, and publicizing data. This
review aims at framing the importance of big data for the conservation of marine megafauna, through intimate knowledge of the spatial ecology of
these threatened, charismatic animals. We first define marine megafauna and big data science, before detailing the technological breakthroughs
leading to pioneering “big data” studies. We then describe the workflow from acquiring megafauna tracking data to the identification and the
prediction of their critical habitats under global changes, leading to marine spatial planning and political negotiations. Finally, we outline future
objectives for big data studies, which should not take the form of a blind technological race forward, but of a coordinated, worldwide approach
to megafauna spatial ecology, based on regular gap analyses, with care for ethical and environmental implications. Employing big data science
for the efficient conservation of marine megafauna will also require inventing new pathways from research to action.

Introduction

In 1998, Daniel Pauly and his team used fisheries data col-
lected by the Food and Agriculture Organization, to demon-
strate the global extent of overfishing (Pauly et al., 1998).
Their landmark publication is one of the pioneering examples
of analysing big data to address marine conservation issues.
More specifically, the paper dealt with the spatial ecology of
marine megafauna, as it employed novel analytical tools to
show the gradual disappearance of large predatory fish from
the world’s oceans. Pauly described his rationale as follows:
“In the late nineties, people were realizing that fishing is actu-
ally a problem for the oceans. To figure out if this activity is
in the process of wiping itself out, you have to go beyond the
Bay of Whatchamacallit or the Gulf of Whatever. When astro-
physicists can’t see something well enough, they build a big-
ger telescope. So that’s what I did, build a bigger machine, the
biggest one I could imagine—the world since 1950” (Grémil-
let, 2021).

Ecology is a complex science because of the multitude of
biotic and abiotic factors affecting natural processes at vast
spatio-temporal scales, and because logistics constraints make
it difficult to conduct experiments. Multifactorial analyses
therefore call for big data approaches, able to handle increas-
ingly large and heterogeneous datasets. Also, ecologists of-
ten suffer from spatial and temporal short-sightedness (Pauly,
1995), and worldwide approaches combined with deeper his-
torical perspectives are urgently needed.

With respect to environmental sciences, there is a corre-
lation between the successive technological revolutions and
global changes. Breakthroughs, such as the invention of the
internal combustion engine in the 19th century, and of the
microchip in the 20th century, gave humanity unprecedented
power to exploit natural resources and to modify its environ-

ments. Technological advances also provided scientists with
powerful tools to study the consequences of unrestrained hu-
man development on terrestrial and marine ecosystems. Those
notably include electronic technologies, which allowed gener-
ating, storing, sharing, and analysing large volumes of data,
to address research questions in Ecology.

In the oceans, ecological knowledge often lags behind that
achieved for terrestrial biota, notably for observing marine
megafauna in its natural environment. This initial handicap
forced marine scientists to invent new methods, to fathom the
unknown. This is notably the case of remote sensing, which
revolutionized oceanography following the launch of Nimbus
7 in 1978. This satellite carried a multispectral radiometer,
recording the first large-scale measurement of primary pro-
ductivity at the ocean surface. Satellites with many other sen-
sors followed, measuring a great variety of biotic and abi-
otic, static, and dynamic ocean variables (Goddijn-Murphy et
al., 2021). Around the same time, microchip technologies al-
lowed the design of satellite transmitters light enough to be
carried by large fish, marine mammals, turtles, and seabirds
(Timko and Kolz, 1982). This breakthrough revolutionized
the spatial ecology of marine megafauna, which could then
be tracked anywhere on the planet. Marine megafauna in-
cludes 30% threatened species, more than any other group
of marine species (Pimiento et al., 2020). Knowledge of their
whereabouts across all oceans, and of environmental condi-
tions shaping their movements, is key to the conservation of
this suite of marine animals, notably through the designation
and implementation of protected areas (Pichegru et al., 2010;
Hindell et al., 2020). Many elements of marine megafauna are
charismatic, and studying their spatial ecology often yields
dramatic results about their ocean voyages and the ecolog-
ical functioning of marine systems, displayed widely using
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attractive maps and animations. Therefore, studying the spa-
tial ecology of marine megafauna is also a powerful means to
gain public support for marine conservation, and to win the
interest of decision-makers (Hays et al., 2016).

Over the last two decades, large volumes of data on the spa-
tial ecology and conservation of marine megafauna have been
collected. As handling, storing, and manipulating such data
are becoming increasingly difficult, researchers are now ex-
panding their activities towards the field of information tech-
nology, thereby entering the realm of big data science. Yet,
where does this technological race lead us to? In this review,
we first define marine megafauna and big data, before detail-
ing the variety of approaches used to study the spatial ecol-
ogy and conservation of marine megafauna with big data.
We then address the technological challenges of collecting and
analysing such big data, and of translating research findings
into operational conservation measures for threatened marine
megafauna. Finally, based on this knowledge, we outline the
way forward.

What are marine megafauna and big data?

In a strict sense, megafauna is defined as any adult creature
weighing more than 45 kg (Pimiento et al., 2020). In the
sea, this includes some bony fish and elasmobranchs, reptiles
(sea turtles), a seabird (the Emperor penguin, Aptenodytes
forsteri), as well as most marine mammals, several species
of molluscs and cnidaria. Yet, this definition varies a lot ac-
cording to biota (marine vs. terrestrial), groups of species
(e.g. birds vs. mammals), and scientific communities (palaeon-
tologists vs. ecologists). Overall, a definition of megafauna
primarily based on body mass seems reductive. This is be-
cause such a threshold does not reflect the potential impor-
tance of smaller-sized species, which may also act as ecolog-
ical engineers and keystone species within trophic webs and
at the landscape scale. For this reason, Moleón and colleagues
(Moleón et al., 2020) recently proposed the extended defini-
tion of functional megafauna. This operational definition is
particularly relevant across environmental contexts and taxo-
nomic groups, because it better reflects the trophic significance
of single species. For instance, in a provocative manner, one
may consider that the little auk (Alle alle), one of the smallest
seabirds in the North Atlantic, is marine megafauna. Indeed,
the little auk is one of the most numerous seabirds in the world
(40–80 million individuals), capable of extracting up to 24%
of zooplankton stocks in certain areas, and of transforming
entire coastal landscapes by carrying tonnes of nutrients from
sea to shore with its guano (González-Bergonzoni et al., 2017).
Therefore, for this review, we took a functional look at marine
megafauna, by also including smaller (but trophically impor-
tant) species.

Defining “big data” can be equally challenging. There is the
general perception that big data is a large volume of informa-
tion generated from complex and multiple data sources, which
cannot be handled, analysed, stored, and shared with com-
mon tools. Also, growth in data volume and complexity seems
an adequate metric to identify big data. For instance, wildlife
tracking depicting the at-sea movements of marine megafauna
only consisted of tens of data points when based on radio-
tracking in the 1970s. This field of investigations abruptly en-
tered in the “big data” area from the early 2000s, with the
advent of GPS recorders, accelerometers, magnetometers, and
other bio-logging tools, which were at once yielding millions

of data points (Ropert-Coudert and Wilson, 2005; Tournier et
al., 2021). More generally, big data is defined along the lines
of the four Vs (Yang and Huang, 2013; Farley et al., 2018):

Volume refers to the size of the data,

Velocity indicates that big data are sensitive to time,

Variety means big data comprise various types of data with
complicated relationships, and

Veracity indicates the trustworthiness of the data.

Overall, the occurrence of big data reflects the capacity of
a specific research community to deal with this flood of bytes:
If you at once struggle to handle a large data set, to the point
that you have to invent completely new tools to check, store,
analyse, and share information, be sure that you are working
with big data.

Studying the spatial ecology of marine
megafauna with big data

The spatial ecology of marine megafauna can be studied us-
ing a great variety of methods (Figure 1). Yet, this research
field is based up to 60% (Web of Science, Nov 2021) on elec-
tronic tracking data of animal movements (e.g. satellite trans-
mitters, GPS), and on bio-logging [sensu (Ropert-Coudert and
Wilson, 2005)]. Also, beyond simple positioning information,
tracking, and bio-logging have the great advantage of provid-
ing fine-scale, three-dimensional information on animal move-
ment. We will therefore mainly detail big data tracking/bio-
logging studies of marine megafauna, but will first briefly ad-
dress some alternative methods.

(1) Historically, information on the whereabouts of ma-
rine animals was compiled from direct observations per-
formed on land, and from vessels and aircraft. These
sightings concern unidentified individuals (Grémillet
et al., 2017), or marked animals, for instance, ringed
seabirds of known origin. Occurrence data and ring re-
coveries were used to sketch the first species-specific,
global distribution atlases of marine megafauna (e.g.
(Harrison, 2000)). Originally designed to inform nat-
uralists, these atlases are still essential information
sources, notably for retrospective analyses of global
change impacts on marine megafauna, in a spatial con-
text (Grémillet et al., 2018a). These also integrate pop-
ulation processes, which can be studied via capture–
mark–recapture schemes (Omeyer et al., 2019), and
they are being expanded rapidly by inputs from citizen
sciences, notably through GBIF and OBIS-SEAMAP.

(2) Underwater baited cameras, operated either remotely or
by divers, also emerged as powerful tools to study the
distribution of marine megafauna. They were initially
designed to study rare marine species (Hessler et al.,
1972) and scavengers in abysses (Priede et al., 1991).
Meanwhile, they are used around the world, notably
as a cost-efficient way to study fish assemblages (Lan-
glois et al., 2010), and recorded videos and audios gen-
erate big data, which can fuel international networks
of researchers. This also applies to hydrophone net-
works, used for the passive acoustic monitoring of ma-
rine megafauna (e.g. (Hauser et al., 2017; Stafford et al.,
2018)).
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Figure 1. Acquiring big data on the spatial ecology of marine megafauna.

(3) More recently, environmental DNA (eDNA) metabar-
coding emerged as a completely new way to iden-
tify individuals, species, and communities, to track
their movements and distributions, and study biolog-
ical diversity across time and space (Taberlet et al.,
2018). This approach brings streams of big data and its
own methodological challenges (Mathon et al., 2021),
but is booming in the context of marine conservation
(Boulanger et al., 2021). Beyond studying the current
occurrence of marine megafauna, genomics studies also
allow assessments of past abundances and distributions,
and modelling of future dynamics (Cristofari et al.,
2018).

(4) With respect to bio-logging studies of marine
megafauna, the advent of big data occurred much
earlier for certain species and taxa, and according
to tag type: Accelerometry, video, and acoustic tags
generated data sets, which were substantially larger
and more complex than simple positioning devices.

Due to massive economic interests linked to bluefin tuna
(Thunnus thynnus), this species was probably the first element
of marine megafauna subjected to a “big” tracking studies,
released in 2005 (Block et al., 2005). These insights gained
using satellite tracking of 330 individuals were essential in a
conservation context, because they revealed two distinct, yet
connected stocks of bluefin tuna in the eastern and western
North Atlantic. Around the same time, first big tracking stud-
ies of seabirds also occurred (Grémillet et al., 2004), mainly
because some of the larger seabirds are easily accessible when
they breed on land, and can be fitted with GPS recorders un-
ravelling their at-sea movements. Big tracking studies of other
marine megafauna proved far more challenging, but spectac-
ular results also appeared for elephants seals (Mirounga leon-
ina) and leatherback sea turtles (Dermochelys coriacea) from
the mid-2000s (Biuw et al., 2007; Georges et al., 2007; Char-

rassin et al., 2008). Those demonstrated the astonishing three-
dimensional movement capabilities of these large species, and
their potential as samplers of oceanographic variables in the
deep ocean (Chambault et al., 2017; Treasure et al., 2017).

Once electronic tags became cheaper, they could be fitted
at multiple sites, and big single-species tracking studies soon
embraced meta-population processes, as in northern gannets
(Morus bassanus), which displayed inter-colony at-sea space
partitioning (Wakefield et al., 2013). From there, the com-
munity level was reached by the TOPP program (Tracking
of Pacific Predators), which recorded the movements of 23
species of whales, seals, turtles, fish, and seabirds on an ocean-
basin scale (Block et al., 2011). Nowadays, there are signifi-
cant efforts made to perform truly global studies of the spa-
tial ecology of marine megafauna using bio-logging. Seabirds
are probably the most studied group in this respect (Strøm et
al., 2021), with tracking information available for 212 species
out of 363 (Bernard et al., 2021), and the global seabird
tracking database curated by BirdLife International contain-
ing >17 million data points. First multispecies/global stud-
ies concerning shark movements were also recently released
(Queiroz et al., 2016, 2019), and similar approaches are un-
derway for sea turtles (Fossette et al., 2014), facilitated by
the State of the World’s Sea Turtles Project. Finally, it is im-
portant to keep in mind that marine and terrestrial ecological
processes remain tightly linked. To embrace this additional di-
mension, the largest tracking study ever published (Davidson
et al., 2020) gathered 15 million data points during 30 years,
for 96 animal species, across land and sea in the Arctic.

The challenges of working with big tracking
data

(1) Data management:
Once big data sets of tracking data for marine

megafauna have been recorded, the first challenge is

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsac059/6564869 by guest on 08 April 2022



4 D. Grémillet et al.

Figure 2. Imaginary example of tracking data and its use for studying the ecology and conservation of marine megafauna.

to format and store them in secure and accessible
databases. This is generally not a technical problem for
tracking information, and automatic uploading feature
onto databases such as Movebank exist (Kranstauber
et al., 2011). Yet other bio-logging data such as ac-
celerometry, video, and acoustic recordings generate far
larger volumes of information, and are currently more
or less absent from large online databases. Also, expe-
rience has shown that efficient data curation and ex-
change with the scientific community does require ad-
vanced technical skills and time, making this task a
full-time job in research institutions performing a lot
of wildlife tracking. This challenge is enhanced when
data are made available in real time, as within the pro-
gram Marine Mammals Exploring the Oceans Pole to
Pole, and when data sets are linked with information
on the biology of studied individuals (sex, age, repro-
ductive status, and population trends). Data curation
is also demanding when tracking information is com-
bined with the very large volumes of oceanographic
data provided by satellite remote sensing by marine
megafauna as samplers of their environment (McMa-
hon et al., 2021), and/or by models simulating physical
and biological processes (Cotté et al., 2015; Treasure et
al., 2017). Consequently, research labs providing dedi-
cated engineer positions perform much better than oth-
ers, where research scientists spend a lot of their time
curating big data, with little recognition from their hier-
archy. This could be compensated via further dedicated
work of wealthier laboratories, to create tools and pro-

vide technical support, allowing all researchers to re-
motely upload and share their data (e.g. the Movebank
initiative).

(2) Analyses:
The second step when analysing big tracking data is

to identify behavioural modes along the tracks of ma-
rine megafauna (Figure 2). Usually, this consists of fil-
tering data to determine travelling, resting, and feeding
phases. This is important, since conservation measures
will differ according to these phases, with often higher
levels of preservation for feeding (or breeding), then
resting, and lastly for areas, animals only travel through.
Initially, filtering tracking data drew its rational from
previous studies on terrestrial animals, mainly insects
(Bell, 1991). Those used speed and sinuosity indexes:
An animal travelling fast and straight is assumed to be
commuting, whereas a slower and more sinuous path
is distinctive of active prey searching, and very slow
motion indicates resting (Grémillet et al., 2004). This
metric is often seen as rudimentary, yet variations along
this analytical theme remain valid to this date (Andrze-
jaczek et al., 2019). First passage time (FPT) analy-
ses were also widely used by pioneering tracking stud-
ies of marine megafauna (Pinaud and Weimerskirch,
2007), but this approach was criticized by Barraquand
and Benhamou on a series of statistical grounds (Bar-
raquand and Benhamou, 2008), and they proposed us-
ing residence time (the time spent near a location). This
seemed both simple and sound, yet the method was
soon supplanted by the widespread use of Bayesian ap-
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proaches for the classification of behavioural modes
along marine animal tracks. This is the case of hidden
Markov models (HMMs) which were initially used to
classify movement behaviour (Patterson et al., 2009) in
southern bluefin tuna (Thunnus maccoyii), followed by
more general state-space models. Those state-space ap-
proaches greatly improved the accuracy of behavioural
inferences along animal tracks, and accounted for the
natural temporal dependency in behaviours (Patterson
et al., 2017). Following the landmark methodological
publication by Ian Jonsen and colleagues (Jonsen et
al., 2005), HMMs are currently the most widespread
method to categorize behaviours along the tracks of ma-
rine megafauna, with constant methodological refine-
ments (Michelot and Blackwell, 2019). Yet, associated
routines require substantial computing power and long
running times, which often delay analytical processes.

Analysts often tend to reinvent the wheel, and to den-
igrate previous work. In this context, Patterson and col-
leagues (Patterson et al., 2017) warned: “There is a
trend in movement ecology toward […] overly-complex
modelling approaches”. The authors wisely concluded
that: “Ecologists mostly […] need intuitive and practi-
cal tools which they can implement and handle them-
selves”. This is now possible through the profusion of
routines available within the R computing environment
(Joo et al., 2020), and through simplified classification
routines, such as the calculation of residence through
space and time (Torres et al., 2017) or segmentation-
clustering methods (Patin et al., 2020).

(3) Modelling:
Next, tracking data can be combined with other in-

formation sources (Figure 2), on (a) the behaviour and
the physiology of marine megafauna, on (b) their phys-
ical and biological environments, and on (c) threats to
them. This allows (d) the identification and the predic-
tion of marine areas essential for conservation, now, and
in the future.
(a)Ecophysiological information on tracked animals

can be provided by bio-logging, with a great vari-
ety of sensors (Ropert-Coudert and Wilson, 2005)
ranging from simple temperature probes to on-
board video and acoustic recorders (Sequeira et
al., 2021). Among them, 3D accelerometers became
prominent across the last decade. These modules,
which are the same as those spying on body move-
ments in our smartphones, were initially deployed
to record high-frequency ethograms of marine ani-
mals on the move (Sakamoto et al., 2009), but were
not necessarily linked to tracking information on
spatial distribution. This is now common practice
through combined deployments of GPS, accelerome-
ters, and magnetometers within the same tags, which
allow the three-dimensional investigation of ma-
rine megafauna movements. Machine learning ap-
proaches are particularly useful in this regard, be-
cause large volumes of accelerometry data can be
automatically and rapidly analysed (Bidder et al.,
2014). For instance, deep learning convolutional
neural networks can be used for the automatic iden-
tification of behavioural patterns from sea turtle ac-
celerometry data (Jeantet et al., 2021). Those can
then be verified through the combined use of cam-

eras affixed to a subset of studied animals (Jeantet et
al., 2020).

While GPS-tracking usually allows the identifica-
tion of three major behavioural modes (travelling,
foraging, and resting), accelerometry data pinpoint
numerous other behavioural features, notably those
linked to prey capture (Chimienti et al., 2016). They
may also provide proxies for energy expenditure
across time, through calculation of overall dynamic
body acceleration (Wilson et al., 2006, 2020). With
information available both on energy expenditure
and capture yields, it is therefore possible to infer
the energy balance of marine animals across time
and space, and to map their energyscapes identify-
ing areas that are particularly profitable, or unprof-
itable for them (Amélineau et al., 2018), and there-
fore shape their individual fitness (Grémillet et al.,
2018b).

(b)To understand the drivers of such energyscapes,
it is essential to put tracking data in the context
of the biotic and abiotic environments of marine
megafauna. Thereby, animal tracks are mostly linked
with remote-sensed variables such as sea-surface
temperature and ocean colour, depicting spatio-
temporal patterns of marine productivity. This ap-
proach is useful, but might be biased by spatio-
temporal mismatches between primary productiv-
ity measured at the ocean surface, and the ac-
tual three-dimensional availability of prey to ma-
rine megafauna (Grémillet et al., 2008). Therefore,
to understand the whereabouts of top predators, it
is essential to gather information on prey fields, and
those may be linked to predator distributions using
resource selection functions (Courbin et al., 2018).
More generally, statistical relationships can be built
between megafauna distributions and environmen-
tal variables, the most important being prey fields,
followed by bathymetry. Indeed, this second fea-
ture has already been identified by pioneering stud-
ies (e.g. Garthe, 1997), and confirmed ever since for
its decisive importance in shaping oceanic fronts ag-
gregating productivity and marine megafauna (Nur
et al., 2011; Chambault et al., 2017). Such fronts,
which may also occur at the boundary between wa-
ter masses and independently of bathymetry, are a
global determinant of marine megafauna aggrega-
tions (Scales et al., 2014). To better identify these
aggregative features, further oceanographic variables
(in situ or modelled) can be added to statistical anal-
yses: Sea-surface height, eddy kinetic energy, and
other variables indicative of ocean currents (Scales
et al., 2018), three-dimensional patterns of marine
productivity (Saba et al., 2010), information on the
deep-scattering layer indicative of the aggregation of
mesopelagic prey (Le Croizier et al., 2020), oxygen
concentrations and pH values pinpointing anoxic
zones (Bakun et al., 2015), or measurements of biolu-
minescence indicating the presence of potential prey
in the aphotic zone (Vacquie-Garcia et al., 2012).
Importantly, some of these key variables can now
be studied using additional sensors attached to for-
aging marine megafauna, including echosounders
detecting mid-trophic levels organisms, including
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prey fields (Goulet et al., 2019; Tournier et al.,
2021).

(c)Variables alluded to in the previous paragraph
can fluctuate naturally, but also under the influ-
ence of human activities, causing threats to ma-
rine megafauna. Notably, climate change can affect
marine productivity, because global warming trans-
forms the spatio-temporal abundance of prey avail-
able to top predators (Cheung et al., 2010). Fish-
eries also compete with marine megafauna on a
worldwide scale (Grémillet et al., 2018a), and gener-
ate global by-catch threats to large oceanic animals
(Worm et al., 2006). In addition, those are impacted
by chemical and plastic pollutions (Kühn and Van
Franeker, 2020; Albert et al., 2021), marine traffic
(Peltier et al., 2019), and habitat loss (e.g. (Sievers et
al., 2019)). Indeed, big data approaches also encom-
pass large-scale information on this series of threats
generated by humanity (Kroodsma et al., 2018), and
on their impacts on the spatial ecology and con-
servation of marine megafauna (e.g. (Grose et al.,
2020)).

(d)Once linkages between marine megafauna, oceano-
graphic patterns, and processes are better under-
stood in the context of global changes, habitat mod-
els can be built. Those use statistical relationships be-
tween megafauna occurrence data and environmen-
tal features at the time and place of the investiga-
tions, to infer megafauna presence across yet unstud-
ied areas and time-scales (Redfern et al., 2006). Ani-
mal occurrence data can also be linked to population
data to infer actual animal densities across marine
areas (Carneiro et al., 2020; Beal et al., 2021). These
approaches are particularly important in the context
of exploited marine species (Péron et al., 2016), of
marine spatial planning (Sequeira et al., 2019b), and
of testing the incidence of different climate change
scenarios (Clairbaux et al., 2021a). For this pur-
pose, general additive mixed models (GAMMs) are
the most commonly used statistical tool (but see
Thuiller et al., 2009; Oppel et al., 2012 for review
and alternatives), whereby their accuracy and re-
liability critically depend upon the quality of en-
vironmental information linked to animal tracking
data (Yates et al., 2018), and of working at ade-
quate spatio-temporal scales (Authier et al., 2017).
Yet, GAMMs are unlikely to cope with millions of
data points, and MAXENT or other machine learn-
ing approaches might be more suitable in the future.
Further, there are clear issues with the transferability
of habitat models, from an ecological context into
another (Péron et al., 2018; Yates et al., 2018). Be-
yond these statistical approaches, big data informa-
tion on marine megafauna ecology can be also used
to parametrize mechanistic models. This is notably
the case of NicheMapperTM, an algorithm used to
simulate the energy balance of marine predators in
the context of environmental variability (Clairbaux
et al., 2021b), but a range of other process-based
ecosystem models may also benefit from distribu-
tion data for marine megafauna, notably Ecopath
with Ecosim (Christensen et al., 2005) and OSMOSE
(Travers et al., 2007). Those models are the main

facilitators of marine ecosystem-based management
(Heymans et al., 2016).

Preserving marine megafauna using big
tracking data

As acknowledged by Hyrenbach and colleagues over 20 years
ago (Hyrenbach et al., 2000): “Pelagic species forage far from
their breeding areas and do not respect arbitrary boundaries
imposed by managers.” In their seminal work on marine pro-
tected areas (MPAs) and ocean basin management, the au-
thors pointed to the high mobility of marine megafauna,
and the many challenges these movements created for ma-
rine spatial planning and conservation. Their synthesis was
soon echoed by an equally fundamental review compiled by
Hooker and Gerber (Hooker and Gerber, 2004), on marine re-
serves in the context of marine megafauna. Both writings un-
derlined the importance of gathering detailed knowledge on
the whereabouts of large marine animals, implicitly pointing
to the value of global tracking data for these species. Indeed,
big tracking data accumulated across the last two decades
opened worlds of knowledge on the spatial ecology of ma-
rine megafauna (Figure 3). It notably helped identify areas ir-
replaceable for species conservation (Grémillet et al., 2014)
and multi-species hotspots (Grecian et al., 2016). From a legal
perspective, those track-based protection areas notably take
the form of Ecologically or Biologically Significant Areas (EB-
SAs), of Essential Fish Habitats (EFHs), of Important Bird and
Biodiversity Areas (IBAs), and of Important Marine Mam-
mal Areas (IMMAs) (Hays et al., 2019). Multispecies track-
ing of marine birds and mammals, thereby led to the designa-
tion of MPAs, one of the first and largest of its kind, covering
665301 km2 in the Southern Ocean (Delord et al., 2014). De-
spite these spectacular advances, tracking-based MPAs faced
two major challenges. First, even though Hyrenbach and col-
leagues called for mobile MPAs, most MPAs are static, of lim-
ited extent, and they are primarily defined using benthic cri-
teria, rather than information on highly mobile megafauna.
Therefore, their value for oceanic species might be questioned
(Hyrenbach et al., 2000). Yet, detailed investigations revealed
that even coastal MPAs fit well with the distribution zones
of some mobile predators, at least during the reproduction
phase, during which they function as central-place foragers
(Péron et al., 2013; Hays et al., 2021). Second, the actual ben-
efits of MPAs for marine megafauna remained initially unclear,
even though early GPS-tracking studies within fishery exclu-
sion zones did demonstrate more or less immediate benefits
(Pichegru et al., 2010).

Overall, despite thousands of tracking studies, conserva-
tion benefits often seem meagre, and one of the key questions
in marine megafauna movement ecology remains: “How can
movement data be used to support conservation and man-
agement?” (Hays et al., 2016). After raising this issue, Hays
and colleagues adequately answered it by detailing 34 suc-
cess stories around the world, within which tracking informa-
tion on seabirds, marine mammals, turtles, and fish were used
for effective conservation action in favour of these species,
and of the marine environment (Hays et al., 2019). The au-
thors acknowledge the potential biases of their expert team
in collecting these studies, and hence many more may exist,
such as the recent designation of the MPA in the Ross Sea
(Brooks et al., 2020). Also, in the meantime, a major multi-
species tracking study has been released for the marine region
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Figure 3. Working for conservation with big data on the spatial ecology of marine megafauna.

bordering Antarctica (Hindell et al., 2020). This analysis in-
tegrated >4000 tracks from 17 birds and mammal species,
to identify areas of ecological significance around the sub-
Antarctic islands of the Atlantic and of the Indian Ocean,
as well as over the Antarctic continental shelf. As these ar-
eas are under the combined stressors of climate change and
fisheries, tracking information will be essential to the designa-
tion of new MPAs across these vast regions, notably under the
auspices of the Commission for the Conservation of Antarc-
tic Marine Living Resources (CCAMLR). Even more remark-
ably, Davies and colleagues (Davies et al., 2021) used tracking
data, along with information on population numbers and phe-
nology for 21 seabird species breeding all across the Atlantic
ocean, to identify a major year-round hotspot associated with
the subpolar frontal zone of the North Atlantic. They demon-
strated that this specific area aggregated between 2.9–5 mil-
lion seabirds from at least 56 colonies, and their analysis led
to the designation of this ca. 600000 km2 as an MPA by the
OSPAR commission.

Yet, the way from tracking to actual conservation benefits
for marine megafauna, is often an extremely long one (Hays et
al., 2019; see their six-step flow chart). It might also be a highly
frustrating process for scientists, who rightly think that they
are not being heard, that only a fraction of their recommen-
dations are being implemented, and that “paper parks” with
only weak legislation and surveillance are being created (Mee-
han et al., 2020). For example, the Ross Sea MPA only covers
one-eighth of the area initially identified as irreplaceable for
the ecological functioning of the “Last Ocean” (Brooks et al.,
2020).

The way forward

As Authier and colleagues rightly stated: “Marine megafauna
provides in fact a striking and concrete illustration of the syn-
ergistic interplay between technological innovations and ad-
vanced modelling. This synergy opens the door to ecosystem-
based management which is the cornerstone of current conser-
vation policies” (Authier et al., 2017). Indeed, the potential for
using big data to address the spatial ecology and the conserva-
tion of marine megafauna has never been so high, and is ever
expanding. Data volumes thereby grow super-exponentially,
because the memory size per gram of biologger doubles ev-
ery 2 years (Elliott, 2016), because of the multiplicity of new
sensors that can be fitted to biologgers, and because the 1000
remote-sensing satellites that are currently operating generate
>100 terabytes of data per day (Amani et al., 2020). As dozens
of satellites can now be launched within single missions, this
super-exponential growth in data availability is bound to per-
sist, augmented by the wealth of information provided by hu-
man social media (Thums et al., 2018).

Wading through these terabytes of data is a methodological
challenge, but Sequeira and colleagues provided a roadmap,
notably for advanced standardization of bio-logging data,
with an emphasis on data sharing and open access (Sequeira et
al., 2021). Such standardization, which should ideally be pro-
moted by tag manufacturers and users alike, will make track-
ing data available in near real-time (Navarro et al., 2016), with
their automatic transfer to global, open access databases (re-
viewed in (Sequeira et al., 2019b, 2021)). Also, it seems essen-
tial to share expertise, with publically accessible platforms for
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posting analytical routines, such as GitHub. Analysed spatial
information can then contribute to global initiatives such as
the Marine Megafauna Movement Analytical Program (Meg-
aMove) and the Global Ocean Observing System, for dynamic
marine spatial planning and a better protection of marine bio-
diversity, not only within coastal areas encompassed within
exclusive economic zones, but also in high seas beyond na-
tional jurisdictions. In practice, the aim of such global initia-
tives is to generate freely accessible, dynamic, and interactive
maps overlaying global threats generated using automated de-
tection algorithms, to the trajectories and distributions of ma-
rine megafauna (Sequeira et al., 2019b).

Yet, beyond what might be perceived as a technological
race forward, it also seems important for our research com-
munity to occasionally stand back and reflect on the ethical
(Reduce–Refine–Replace framework, see Richmond, 2000),
environmental (environmental footprint, see Grémillet, 2008),
and societal implications of using big data to study the spa-
tial ecology and conservation of marine megafauna. It thereby
appears that, on a worldwide scale, most big tracking studies
are still conducted in an uncoordinated manner (but see no-
table exceptions such as the Ocean Tracking Network, Meg-
aMove, and Icarus). Hence, beyond the temptation to simply
“track all marine animals”, it seems essential to always care-
fully determine necessary sample sizes according to the poten-
tial impact of tagging on sensitive species, to biases linked to
the choice of sites at which individuals are tagged (O’Toole et
al., 2021), and to the statistical power required to run specific
analyses (Sequeira et al., 2019a). Further, now is also the time
to run gap analyses using existing tracking information. This
has been performed by Bernard and colleagues (Bernard et
al., 2021) for the world seabird community, and they showed
that even though this group has been subjected to at least 700
tracking studies on >28000 individuals, key movement infor-
mation is still lacking for 54 threatened species, notably in
tropical areas. Such knowledge led the authors to call for an
ethically, environmentally, and logistically sound global ini-
tiative for seabird tracking, which could be expanded to the
world’s marine megafauna.

But producing knowledge on the spatial ecology of ma-
rine megafauna is only one step towards their conservation
(Hays et al., 2019). From there, how do we make decision-
makers aware of research findings, and motivate them to take
decisions in favour of marine nature protection? This is cur-
rently the key issue, which expands to the entire biosphere,
and will not be solved through the production and use of big
data alone. As the general public is generally fascinated both
by charismatic megafauna and by electronic technologies, an-
imal bio-logging has a strong potential for winning people’s
attention (Lescroël et al., 2016). Nevertheless, publishing in
scientific journals, on websites, or in conventional media is
not sufficient any more. Especially when communicating with
younger generations, posting of images, animations, videos
on social media, and the use of virtual reality systems seem
far more likely to have an incidence on public opinion, and
politicians strongly respond to fast-track media (Kalsnes et al.,
2017). Therefore, for the coming generation of conservation
biologists, the major challenge will be to make research find-
ings visible on social media through collaborations with com-
munication and virtual reality specialists, while safeguarding
scientific objectivity and integrity, and keeping in mind the en-
vironmental footprint of big data science.
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