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Introduction

Along mid-oceanic ridges, deep hydrothermal vents are dynamic environments where
geothermally heated seawater, called hydrothermal fluid, discharges from chimneys and cracks in the
seafloor. The pure hydrothermal fluid is warm (up to 350°C), anoxic, acid and enriched in potentially
toxic minerals and dissolved gases (Charlou et al. 2000, 2002, 2010). The dilution of this fluid with the
surrounding cold (2°C) and oxygenated seawater creates steep variations of temperature and chemical
concentrations around active vents (Johnson et al. 1986). In spite of these hostile conditions, added to
high hydrostatic pressure and darkness, vents are colonized by dense macrofaunal communities
(Tunnicliffe et al. 1991, 1998, van Dover et al. 1995, Desbruyeéres et al. 2000, Wolff 2005). These vent
ecosystems rely on chemoautotrophic bacteria as primary producers, which convert reduced
chemicals through oxidation, providing the energy to fix carbon and to produce organic matter that
serves as a nutritional basis for primary consumers (Jannasch and Mottl 1985, Childress and Fisher
1992, van Dover 2000, Fisher et al. 2007, Ponsard et al. 2013). In light of their habitat, lifestyle and the
fairly extreme abiotic conditions they must cope with, vent animals are fascinating models to

investigate biological adaptations.

Alvinocaridid shrimp are an emblematic faunal taxon of vents from the Mid-Atlantic Ridge
(Segonzac et al. 1993, Desbruyeres et al. 2000, 2001), with four endemic species (Rimicaris exoculata,
Rimicaris chacei, Mirocaris fortunata and Alvinocaris markensis) that are widely distributed along the
ridge and commonly reported, depending on the species, from 850 to 4000 m depth (Lunina and
Vereshchaka 2014). Several studies show that these shrimp possess a range of morphological,
anatomical and physiological adaptations to the hydrothermal environment, related to ectosymbiosis
with bacteria (Casanova et al. 1993, Zbinden et al. 2004, Ponsard et al. 2013), respiration in hypoxic
conditions (Lallier and Truchot 1997, Hourdez and Lallier 2007), or thermal stress (Ravaux 2003, Cottin
et al. 2010) for instance. However, sensory adaptations have only been partially investigated (Jinks et
al. 1998) despite their importance in understanding the maintenance of these species, their life cycle
and their long-term evolution. The mechanisms used by vent shrimp for orientation in the absence of
sunlight are still enigmatic. Vent shrimp colonize the close surrounding of active chimneys, suggesting
that they might detect attractants to choose their microhabitat, such as abiotic factors of the
hydrothermal fluid emissions (Segonzac et al. 1993, Sarrazin et al. 1999). This refers to short-distance

detection (i.e. few meters). The detection and selection of distant active vents is also questioning. The
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abundance of shrimp and other vent organisms along the Mid-Atlantic Ridge indicates that they are
successful colonizers, but it is unclear how vent species locate and settle in new vents, that can be a
few to hundreds of kilometers apart (Teixeira et al. 2012, 2013). The main hypothesis is that larval
stages ensure dispersion in the water currents, and can detect cues of the scattering hydrothermal
fluid, called plume, emanating from an active vent (Rittschoff et al. 1998, Herring and Dixon 1998, Tyler
and Young 2003). Long-distance detection of hydrothermal cues also concerns vent shrimp adults,
which sometimes disperse in the surrounding abyssal water at tens of meters from the active
chimneys, and must orient theirselves towards the vent to return to their habitat (Segonzac et al.
1993). Hence, emissions of hydrothermal fluids are likely to play a major role for the orientation within
both local and remote habitats of vent shrimp, which may present specific sensory abilities to detect

the hydrothermal fluid.

The understanding of the mechanisms used by vent shrimp to detect their habitat is crucial
considering the current societal and economic context where the seafloor is the target of mining
industries. There is a rising demand for precious and rare metals, and consequently over the past
decade the interest has shifted from the overexploited terrestrial resources towards hydrothermal
vents as source of metals (van Dover 2011). Venting creates massive sulfide deposits which contain
valuable metals such as copper, gold, silver, and zinc (Krasnov et al. 1995). After prospection,
exploration and resource assessment phases, the first large-scale excavation of seafloor massive
sulfides is planned to start at 1600 m depth in the waters of Papua New Guinea (Filer and Gabriel 2017)
using specific designed remotely operated underwater vehicles (Teague et al. 2018). Aside from the
direct perturbations (e.g. turbidity, noise) on a mining zone, the sediment plumes created by the
extraction process could have various impacts on vent fauna. The release of mineral particles and
potentially toxic compounds will modify the water column properties, which could impact the
physiology of animals (Gwyther 2009, Hauton et al. 2017). The plume dispersal could also act as a lure
for vent organisms during dispersion processes (Boschen et al. 2013). Hence, studying vent shrimp
sensory abilities is part of the scientific background necessary to evaluate how these animals might

cope with deep-sea mining disturbances.

Sensory perception rules species interactions with their environment and congeners, and is
therefore central to most animal behaviors. In light of their vast diversity, crustaceans are excellent
models to use in comparative studies to reveal evolutionary sensory adaptations to diverse habitats

and lifestyles (Derby and Weissburg 2014). Caridean shrimp are particularly relevant for such
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approaches, with a broad distribution from shallow-waters to the deep ocean, but studies on their
sensory systems are scarce. In the vent habitat, Alvinocaridid shrimp (belonging to the Caridea) are
further interesting since the species that live on the Mid-Atlantic Ridge exhibit different lifestyles,
primarily linked to their trophic behavior. For example, R. exoculata relies on the primary production
of episymbiotic bacteria, and consequently needs to stay close to the hydrothermal fluid to
supplement its symbionts in reduced compounds (Zbinden et al. 2008, Durand et al. 2009, Petersen et
al. 2010, Ponsard et al. 2013), whereas M. fortunata is a secondary consumer that lives in the periphery
of the main chimneys (Gebruk et al. 1997, Desbruyeéres et al. 2001). Hence, these species might not be
sensitive to the same attractants. These differences within Alvinocaridid species make vent shrimp
excellent models to investigate sensory adaptations to habitats and lifestyles and to complement the

current knowledge on crustacean sensory biology.

The dim light emitted at vents, temperature and chemicals (especially sulfide) have been
proposed as potential attractants for the detection of hydrothermal fluid emissions (Pelli and
Chamberlain 1989, Segonzac et al. 1993, Renninger et al. 1995, Jinks et al. 1998). Due to their unusual
highly modified eyes, vision has been relatively well studied in vent shrimp (van Dover et al. 1989,
Gaten et al. 1998, Chamberlain 2000). They possess a highly sensitive retina which cannot form images
but might detect the thermal radiation of the hot fluid at the chimney exits (van Dover et al. 1989, Pelli
and Chamberlain, 1989). Such very dim light is detectable only at short-distance, likely less than two
meters (Segonzac et al. 1993). Next, temperature may be a key factor for shrimp positioning in their
habitat (Segonzac et al. 1993), and attraction to warm temperatures has been reported for R. exoculata
(Ravaux et al. 2009). Temperature is relevant for both the short- and long-distance detection of an
active vent field, since spreading hydrothermal plumes are characterized by fine temperature
anomalies (Tao et al. 2017). But it is not known if vent shrimp present specific adaptations of their
thermosensory systems, for which mechanisms are not yet understood in crustaceans (Lagerspetz and
Vainio 2006). Finally, the chemicals extensively released at vents might be used as orientation cues
(Renninger et al. 1995, Desbruyeres et al. 2000). Chemical gradients occur from the fluid emission
point, and can be either steep or gradual depending on the chemical (Klevenz et al. 2011). For example,
sulfide rapidly disappears around the chimneys after reacting with seawater and hydrothermal fluid
constituents (Mottl and McConachy 1990, Zhang and Millero 1993), whereas methane, manganese or
iron are more conservative (de Angelis et al. 1993, Aumond 2013, Waeles et al. 2017). Thus, depending
on their stability, chemicals can be relevant either for short- or long-distance detection of the

hydrothermal fluid and plume. Only Renninger and collaborators (1995) have to date investigated the
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chemosensory abilities of a vent shrimp, R. exoculata, for which the antennae were responsive to

sulfide, and the authors proposed chemotaxis as an orientation mechanism for vent shrimp.

To further investigate the potential sensory adaptations of vent shrimp that would allow the
detection of the thermal and chemical signature of the hydrothermal fluid, a multi-approaches study
of chemo- and thermosensory abilities in the vent shrimp M. fortunata is presented in this thesis. The
approaches were conducted in parallel on the coastal related species Palaemon elegans for
comparison, in order to highlight potential adaptations to the vent habitat. The main objectives of this

work are:

- to determine if vent shrimp present specificities of their chemosensory system compared to a related
shallow-water species, with potential dissimilarities at structural, functional and molecular levels that

could reflect adaptive traits,

- to evaluate the relevance of chemical and thermal guidance for vent shrimp orientation in their

habitat, through electrophysiological and behavioral experiments.

This thesis presents both published and unpublished results, with several approaches of
investigation (structural, neurophysiological, behavioral and molecular) detailed in distinct chapters.
Accordingly, the manuscript does not follow a publication plan. Thesis publications are presented at
the end of the manuscript, and published results are indicated at the beginning of the corresponding

sections.

Chapter I is the background of the study, with presentation of the hydrothermal environment,
the shrimp species living at the Mid-Atlantic Ridge, and the equipments developed for in vivo studies
on vent fauna. The chapter also reviews the current state of knowledge on chemo- and thermosensory

mechanisms in marine crustaceans.

Chapter Il contains the materials and methods, including sampling and maintenance of
specimens, and protocols for imaging approaches, electrophysiology, behavior experiments and

molecular studies.

Chapter Il presents a structural analysis of the chemosensory organs and integrative centers
in M. fortunata and P. elegans, with the morphology of the antennal appendages, the ultrastructure

of the olfactory aesthetasc sensilla and a description of the chemosensory centers in the brain.
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Numerical aspects used to infer on chemodetection efficiency are compared between the two species

to discuss on potential adaptations of the vent species.

Chapter IV investigates the detection of hydrothermal fluid chemicals by the antennal
appendages. An electroantennography method on marine shrimp was developed for this purpose and
is presented. Detection of sulfide, iron, manganese and food-related odors were tested on both M.

fortunata and P. elegans to investigate potential dissimilar response profiles.

Chapter V deals with the use of the food-related odors and hydrothermal fluid chemical and
thermal signature as orientation cues in vent shrimp. Several behavioral experiments were conducted
at atmospheric pressure on M. fortunata and P. elegans, and at in situ pressure on M. fortunata and

R. exoculata, to test attraction to food-related odors, sulfide and warm temperature.

Chapter VI presents first insights into the molecular basis of chemo- and thermodetection in
vent shrimp. Identification and expression pattern within the chemosensory organs of a well conserved
co-ionotropic receptor, IR25a, is conducted on four vent shrimp species and on P. elegans. Preliminary
results of a transcriptome analysis of the chemosensory organs in the four vent shrimp species are also

presented as they reveal several classes of chemo- and thermoreceptor candidates.

These chapters are followed by a conclusion integrating the main results from each chapter,
and the perspectives for future researches. Thesis publications, communications list, the glossary*and

the abbreviations are presented at the end of the manuscript.

! Scientific terms defined in the glossary are indicated at first use.
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I. The deep hydrothermal environment

Hydrothermal vents and related fauna were first discovered off the coast of the Galapagos
Islands in 1977 (Lonsdale 1977, Corliss et al. 1979). Further explorations have determined that
hydrothermal vents occur in all oceans from shallow-waters to depths exceeding 5000 m (Beaulieu et
al. 2013). They are mostly located in tectonic areas where active rifting occurs, such as the Mid-Atlantic
Ridge (MAR), and on zones of subduction processes and local spreading (Figure 1). Over the 60 000 km
of oceanic ridges, only hundreds of kilometers have been explored, so a large number of potential

hydrothermal vents remains to be discovered (Beaulieu et al. 2015, Baker et al. 2016).
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Figure 1 Global distribution of hydrothermal vents
From InterRidge Vents Database v.2.1.

(Credits: S. Beaulieu, K. Joyce, J. Cook and S.A. Soule / WHOI, InterRidge)

1. Formation of hydrothermal vents and fluid characteristics

Along oceanic ridges, hydrothermal vents are a consequence of the tectonic pressure that is
exerted on the oceanic crust in rifting areas, where the upper mantle of the Earth is molted and ascend
to form new crusts (Pomerol et al. 2005). Seawater infiltrates into the resulting cracks in the seafloor
to 2 to 3 km depth and is warmed up to several hundreds of degrees near magmatic chambers
(Edmond et al. 1982) (Figure 2). High temperature and hydrostatic pressure conditions trigger the

ascent of the warmed seawater, which interacts with the surrounding crust and gets enriched in
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various minerals and dissolved gases (Kelley et al. 2005, Charlou et al. 2002, 2010). This highly modified
seawater is called hydrothermal fluid. Hydrothermal fluids vary in composition depending on the rock
stratums encountered during the ascent, but they are commonly warm (up to 350°C), anoxic, acidic
(pH from 2-4) and rich in gases (e.g. hydrogen sulfide, methane, hydrogen...) and metals (e.g. iron, zinc,
copper...) (Jannasch and Mottl 1985, Johnson et al. 1986, Humphris et al. 1995, von Damm 1995,
Charlou et al. 2010).

Oceanic crust

Earth’s mantle

Figure 2 Formation of hydrothermal vents

A. Schematic description of hydrothermal vent functioning (Credits: GNS Science).
B. Black smoker from the Turtle Pits vent site on the Mid-Atlantic Ridge (Credits: University of Bremen, Center
for Marine Environmental Research).

When expelled through fissures in the seafloor, the hydrothermal fluid is diluted with the cold
and oxygenated surrounding seawater, which triggers mineral precipitation. These precipitations lead
to the formation of chimneys and deposits of mineral particles around the vent fields (Figure 2A,B).
The release of fluid also generates hydrothermal plumes©95ARY) that raise in the water column,
because of their high temperature which reduces the fluid density. While ascending and further mixing
with seawater, the plume temperature decreases until reaching a neutral buoyancy stage that will
spread horizontally. Around active chimneys, subsea-floor dilution of the hydrothermal fluid also
occurs over areas up to several meters, and leads to diffuse vents where warm (5-60°C) fluids diffuse
through seafloor and mineral deposits (Figure 2A) (Tunnicliffe et al. 1998). The duration of venting at
one site depends on the speed of accretion of the ridge, from tens of years for fast ridges (e.g. East

Pacific Rise) to thousands of years for slow ridges (e.g. MAR) (Rona et al. 1993, Lalou et al. 1995).
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Table 1 presents the physicochemical characteristics of hydrothermal fluids from different vent
sites at the MAR, for which the environmental conditions differ in relation with depths and subjacent
rocks. The vent sites Trans Atlantic Geotraverse (TAG), Snake Pit, Lucky Strike and Menez Gwen occur
on basaltic!6tOSSARY) s bstrata, from which emanate fluids rich in hydrogen sulfide but impoverished in
methane and minerals such as copper and iron (Charlou et al. 2000, Douville et al. 2002). In contrast,
the vent sites Rainbow and Logatchev are situated over ultramafic(®*9SSA"Y) rocks from which emanate
fluids rich in methane and hydrogen, but impoverished in hydrogen sulfide (Charlou et al. 2002, 2010,
Douville et al. 2002).

Table 1 Physicochemical characteristics of hydrothermal fluids from several vent sites at the Mid-Atlantic
Ridge, compared to abyssal seawater

From Charlou et al. 2002, Schmidt et al. 2007 and references therein.

Seawater MenezGwen Lucky Strike  Snake Pit TAG Rainbow Logatchev
Type basaltic basaltic basaltic basaltic ultramafic ultramafic
Depth (m) 850 1700 3670 2300 3000
Temp. (°C) 2 275-284 170-364 3050 290-321 365 347-352
pH (25°C) 7.8 42-43 3.5-3.7 3.7 3.1 2.8 33
Si(OH), (mM) <0.2 7.7-11.6 11.5-16.3 22 6.9 8.2
Cl (mm) 546 357-381 422-533 550 659 750 515
Br (uM) 838 666-710 735-924 - 880-1045 1178 818
S0, (mM) 28.2 0 0 - 0 0 0
Na (mM) 464 312-319 347-446 515 584 553 430
Li (M) 26 238-274 278-357 835 411 340 245
K (mM) 9.8 22.1-23.8 21.1-26.7 23 18 20.4 219
Rb (uM) 1.3 20.3-29.4 22.7-39.1 - 10 36.9 27.7
Cs (nM) 2.3 330 200-280 170 110 333 385
Mg (mM) 53 0 0 0 0 0 0
Ca (mMm) 10.2 29.7-33.1 31.3-38.2 11 26 66.6 27.3
Sr (UM) 87 100-111 67-19 54 99 200 138
Ba (uM) 0.14 >12 19268 - <19 >67 >4.5
Fe (uM) <0.001 <2-18 30-863 2400 1640 24050 2500
Mn (LM) <0.001 59-71 84-446 400 1000 2250 330
Cu (uM) 0.007 0.6-3 46113 35 150 121-162 15-50
Zn (uM) 0.01 2443 20941 53 46 115-185 25-30
Gases
H,S (mM) 0 <1.5 2.5-3 6 6.7 1.2 0.5-0.8
CO, (mM) 23 17-20 13-28 - 29-34 16 10.1
CH, (mM) 0.0003 1.35-2.63 0.5-0.97 - 0.124-0.147 2.5 2.1
Ar (uM) 16 11-38 11-30 - 20-40 - 12
N, (mM) 0.59 0.6-1.9 0.61-0.97 - 0.9-0.89 1.8 3
H, (mM) 0.0004 0.024-0.048 0.02-0.73 - 0.15-0.37 16 12

10



Chapter | - Background

2. Vent ecosystems and trophic networks

Deep-sea hydrothermal vent ecosystems share characteristic forms of energy sources,
assemblage structures, trophic relationships and environmental biotic and abiotic interactions (van
Dover 2000). Vents are colonized by an extremely high biomass of macrofauna (500 to 1000 times
superior to the biomass in abyssal plains [Fustec et al. 1988]), with approximately 70 % of species
endemic to vents (Wolff 2005, Galkin and Sagalevich 2017). These communities are concentrated in
the mixing zone of the hydrothermal fluid with the surrounding seawater. They are sustained by a
microbial chemosynthetic primary production (Fisher et al. 2007). Chemoautotrophic bacteria use the
energy produced by the oxidation of reduced compounds of the hydrothermal fluid (such as sulfide
and methane) to fix inorganic carbon and produce organic matter (Jannash and Mottl 1985, Fisher
1990). These bacteria can be directly ingested by primary consumers, can grow on their body surface

or be involved in endo- or ectosymbiosis relationships (Tunnicliffe et al. 1991, Segonzac et al. 1993).

Several vent species rely directly on hydrothermal fluid supplies because they depend on
products from symbiotic chemoautotrophic bacteria as a source of energy, for instance: Riftia
pachyptila (Vestimentifera) (Figure 3A), Alvinella pompejana (Annelid), Alviniconcha species and
Ifremeria nautilei (Gasteropods) (Figure 3B), Bathymodiolus species (Bivalvia) (Figure 3C) and Rimicaris
species (Crustacea) (Figure 3D) (Levin and Michener 2002, Bergquist et al. 2007, Le Bris and Duperron
2010, Govenar 2012, Govenar et al. 2015). Next, the primary consumers provide organic matter for
predator and scavenger species (crab, fish, shrimp...) that do not rely directly on the chemosynthetic

primary production (Tunnicliffe et al. 1991).

Vent communities differ widely among biogeographic regions (Figure 3) (Ramirez-LLodra et al.
2007). For instance, at vents in the Pacific Ocean, sessile Vestimentifera and Annelid are the dominant
taxa, whereas the MAR communities are dominated by Bivalvia and vagile Alvinocarididae (Gebruk et
al. 1997, Desbruyéres et al. 2006). Different vents within a region support different assemblages of
species, and within one vent the species composition and abundance vary between the top and the
base of the chimneys (van Dover et al. 2018). These different patterns of distribution are likely
determined by the physicochemical preferendum of each species (Tunnicliffe 1991, Sarrazin et al. 1997,

Desbruyeres et al. 2000).

11
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Figure 3 Examples of vent fauna communities from different locations
Modified from van Dover et al. 2018.

A. Giant tubeworms (Riftia pachyptila) with limpets and anemones at Galapagos spreading center, Eastern Pacific
Ocean (Credits: Wikimedia).

B. Hairy (Alviniconcha spp.) and black (/fremeria nautilei) snails with bythograeid crabs at Tu’l Malila vent field,
Lau Basin, Western Pacific Ocean (Credits:WHOI).

C. Mussels (Bathymodiolus azoricus) with bythograeid crabs at the Lucky Strike vent field, Atlantic Ocean (Credits:
Ifremer).

D. Swarming shrimps (Rimicaris hybisae) and anemones at Beebe vent, Mid-Cayman Rise, Caribbean Sea (Credits:
WHOI).

12
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Four shrimp species are widely distributed at vents from the Mid-Atlantic Ridge (MAR):

Rimicaris exoculata (Williams and Rona 1986), Rimicaris chacei (Williams and Rona 1986) (R. chacei

was later transferred to the genus Chorocaris [Martin and Hessler 1990], and recently reassigned to its

original genus Rimicaris [Vereshchaka et al. 2015]), Mirocaris fortunata (Martin and Christiansen 1995)

and Alvinocaris markensis (Williams 1988). They are all part of the Alvinocarididae family

(Christoffersen 1986, Komai and Segonzac 2003) inside the Caridea infraorder (Li et al. 2011, Aznar-

Cormano et al. 2015) (Figure 4A) among the Decapoda (Crustacea phylogeny is presented in Figure 11

and Figure 12). The phylogenetic relationships inside Alvinocarididae are still discussed but the genus

are well defined (Vereshchaka et al. 2015) (Figure 4B).
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Figure 4 Position among Caridea and phylogeny of Alvinocarididae

Nautilocaris saintlaurentae

A. Phylogenetic tree of the Caridea infraorder derived from Maximum Likehood and Bayesian analyses based on
partitioned nucleotide sequences of 13 mitochondrial protein-coding genes; sequences from Dendrobranchiata

species were used as an outgroup (from Sun et al. 2018).

B. Hypothetic phylogenetic tree of Alvinocarididae (modified from Vereshchaka et al. 2015). Species from the
Mid-Atlantic Ridge used in the present study are indicated in bold.
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2. Distributions and trophic behaviors

Vent shrimp species from the MAR exhibit different morphologies, behaviors and distribution

patterns around active chimneys (Gebruk et al. 2000). They are presented separately hereafter.

R. exoculata (Figure 5A) is by far the most abundant shrimp species on the MAR sites (van Dover
et al. 1988, Segonzac et al. 1993, Gebruk et al. 1997a, Desbruyeéres et al. 2001), except the shallowest
ones (Lucky Strike, 1700 m depth and Menez Gwen, 850 m depth) (Gebruk et al. 2000, Pond et al.
2000). It forms very dense and motile swarms (1500 to 3000 individuals per square meter) on the walls
of active chimneys (Figure 5A’) (van Dover et al. 1988, Segonzac et al. 1993, Gebruk et al. 1997a, 2000).
R. exoculata is a primary consumer that relies on the chemosynthetic primary production of symbiotic
bacteria harvested in the cephalothorax. Indeed, this species presents a dense epibiotic community of
chemoautotrophic bacteria in its gill chambers (Zbinden et al. 2004). These bacteria could oxide
sulphide, iron, methane and hydrogen (Zbinden et al. 2008, Hugler et al. 2011), and there is a direct
nutritional transfer of the organic matter from the epibionts to the host, by transtegumental
absorption across the gill chamber integument (Ponsard et al. 2013). Hence, the strong attraction
behavior to the hydrothermal fluid close suroundings observed in R. exoculata (Segonzac et al. 1993,
Renninger et al. 1995) might be explained by its need to sustain its symbiotic bacterial community on

which it relies for its nutritional supply.

R. chacei (Figure 5B) is much less abundant than R. exoculata (e.g. 200-300 ind./m? at the TAG
site, Segonzac et al. 1993; less than 10 ind./m? at the Rainbow site, Desbruyéres et al. 2001). It lives
from the periphery of R. exoculata swarms to the surrounding areas of the chimneys, close to diffuse
vents. This species also hosts bacteria in its gill chambers (Casanova et al. 1993, Apremont 2017), but
in a less extent than R. exoculata (Apremont 2017). Hence, R. chacei relies both on chemoautotrophic
production via its symbiotic bacteria and on classical food sources, being a predatory secondary
consumer and scavenging on R. exoculata and other invertebrates (Segonzac et al. 1993, Gebruk et al.

2000).

>
A. Rimicaris exoculata (Credits: P. Briand / Ifremer). A’. Swarm of R. exoculata around a black smoker (Credits:
Ifremer, Victor 6000). B. Rimicaris chacei (Credits: L. Corbari / MNHN). C. Mirocaris fortunata (Credits:
Océanopolis). D. Alvinocaris markensis (Credits: L. Corbari / MNHN). D’. A. markensis on Bathymodiolus mussels
(Credits: NOAA Vent Program).
Scale bars=1cm.
Nb: all species feeding on bacterial mats are technically primary consumers, but in the present study we restrain
primary consumers to those supplied in energy by symbiotic bacteria.
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Rimicaris exoculata Rimicaris chacei Mirocaris fortunata Alvinocaris markensis

I Primary consumer, relying on symbiosis with chemoautotrophic bacteria

11 Secondary consumer, feeding on invertebrate tissues and bacterial mats

Figure 5 General distribution patterns and lifestyles of alvinocaridid shrimp species from Mid-Atlantic Ridge
Legend previous page.

15



Chapter | - Background

A. markensis and M. fortunata (Figure 5C,D) are usually present in low abundances on the
surrounding areas of the chimneys and on mussel assemblages (Figure 5D’). They are opportunist
secondary consumers (Gebruk et al. 2000), necrophageous (Segonzac et al. 1993) and apparently do

not rely on a symbiotic relationship with chemoautotrophic bacteria.

A transitional series has been proposed from the “Alvinocaris-type”, closest in appearance to
non-vent caridean shrimp, to the “Rimicaris-type”, with Mirocaris falling between these two pairs, and
R. exoculata being the most specialized species (Segonzac et al. 1993, Vereshchaka 1996a, Gebruk et
al. 1997a). The authors proposed that this sequence reflects a pattern of increasing morphological
adaptation and trophic specialization to the hydrothermal environment. This concept is also supported

by the evolution of eyes in alvinocaridid shrimp (Gaten et al. 1998 and see section 11.5.1.).

3. Physicochemical characteristics of the habitat and related adaptations

Table 2 In situ measurements of temperature, pH and chemical concentrations in habitats of Alvinocaridid
shrimp from the Mid-Atlantic Ridge

Species Site Temp. (°C) pH S(uM) CHs (uM) Fe (uM) Cu (pM) References

Geret et al. 2002,

R. exoculata  Rainbow 4.7-25 6.3-7.8 0.4-22 21.9 58-1470 0.14-320 Desbruyéresetal. 2001,
Schmidt et al. 2008

Schmidt et al. 2008,

TAG 2.8-17.4 6.8-8.1 0.5-77 0.1-5.7 2.8-140 - Cathalot et al. 2018
SnakePit 537 774 1385 - 3-34 L Soonmacetal V%
R. chacei  Lucky Strike 6.5-7.49 6 18.7-38.31 - 1.22-3.53 0.25-1.62 Sarrazinet al 2015
M. fortunata Rainbow 11.2 7.1 7.2 6.5 - - Desbruyéres et al. 2001

Sarrazin et al 2015,

Lucky Strike 5.39-13.7 6.3-7.3 5.11-38.31 0.8 0.54-3.53 0.25-1.7 Desbruyéres et al. 2001

A. markensis Lucky Strike 6.5-8.79 6  18.7-40.07 - 1.22-5.25 0.25-0.46 Sarrazinet al 2015

As described earlier (see section 1.1.), the chemical composition of the hydrothermal fluids
from different sites along the MAR varies according to the nature of the underlying rock stratum. The
vent shrimp are present on all sites along the MAR, hence their chemical environment is different at
each site. At the scale of one site, fluid composition can also vary from one chimney to another (e.g.
at the Lucky Strike site, Desbruyéres et al. 2001). Next, the different positioning of the shrimp species

around the active chimneys (Figure 5) implies that each species faces different thermal and chemical
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conditions, in relation to the level of dilution of the hydrothermal fluid in their microhabitat. In
addition, the hydrothermal habitat is characterized by an important temporal and spatial variability of
abiotic conditions, since the continuous emission of hydrothermal fluid and its mixing with seawater
creates steep gradients of temperature and chemical concentrations (Bates et al. 2010, Cuvelier et al.
2011, Sarrazin et al. 2015). However, in situ measurements of temperature, pH and chemicals
concentrations can give an idea of the range values for these factors in the shrimp environments (Table

2).

3.1. Chemical environment

In the vent habitat, sulfides (H,S, HS and $%*) and dissolved metals (Fe, Cu, Zn, Pb...) can reach
concentrations potentially toxic for animals. HS inhibits the cytochrome c oxidase and consequently
blocks the production of ATP in the respiratory electron transport chain of mitochondria (Powell and
Somero 1986). Sulfide concentrations of few micromolar are considered toxic for most animals (Smith
and Gosselin 1979), but in basaltic vent sites sulfide concentrations can exceed 30 umol.L? in the vent
shrimp microhabitats (Sarrazin et al. 2015, Cathalot et al. 2018). High concentrations of iron, copper
and zinc have been measured in the gills and the digestive glands of R.exoculata and M. fortunata,
superior to those of shallow-water species from polluted coastal environments (Geret et al. 2002,
Kadar et al. 2007). Among the various protection mechanisms in vent animals (Grieshaber and Volkel
1998), the symbiotic bacteria were proposed to be involved in the detoxification of sulfide and metals

(Alayse-Danet et al. 1987, Zbinden et al. 2004, 2008).

Because the pure hydrothermal fluid is anoxic, the mixing zone is furthermore characterized
by low oxygen concentrations that add to the toxicity potential of the environment (Childress and
Fisher 1992). To cope with the low availability of oxygen, vent crustacean hemocyanin presents a high
affinity for O,, superior to the one displayed by shallow-water species (Sanders et al. 1988, Lallier and

Truchot 1997, Chausson et al. 2001, 2004).

3.2. Temperature

The dilution of the hot hydrothermal fluid (up to 350°C) in the cold surrounding seawater (2°C)
creates abrupt temperature gradients around active chimneys. Such spatial and temporal variability
makes the characterization of vent thermal environments difficult (Bates et al. 2010), but in situ
measurements of temperature are informative on the level of dilution of the hydrothermal fluid in the

seawater (Johnson et al. 1988a, Childress and Fisher 1992, Sarradin et al. 1998).
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Temperature is considered as a major determinant of spatial distribution of vent species
(Sarrazin et al. 1997, Lee 2003). R. exoculata lives close to chimney exits and consequently is frequently
exposed to warm temperatures (>20°C), whereas the microhabitat of other shrimp species rarely
exceeds 10°C. In vivo experiments at in situ pressure revealed that the critical thermal temperature is
3842 °C for R. exoculata (Ravaux et al. 2003, Shillito et al. 2006) and 36+1 °C for M. fortunata (Shillito
et al. 2006). These species are hence not functionally adapted to high temperatures but might present
other adaptations to cope with steep thermal variations, such as behavioral responses (e.g. low

avoidance threshold) or molecular adaptations (Ravaux et al. 2003).

3.3. Hydrostatic pressure

Vent shrimp can handle hydrostatic pressure up to 400 bars at the deepest MAR sites (Ashadze,
4000 m depth). Restoring the natural pressure is essential for the long-term maintenance of most vent
animals in a good physiological state (Childress and Fisher 1992, Shillito et al. 2004, 2006, 2008).
Pressure impacts biological systems in several ways, for example by modifying cellular volumes,
molecular interactions, chemical reaction kinetics and gene expression patterns (Somero 1992b,
Pradillon and Gaill 2007, Mestre et al. 2009, Pradillon 2012). Evidence of a large range of tolerance to
pressure in the vent crab Bythograea thermydron (Mickel and Childress 1982, Airries and Childress
1994) suggests that vent species might present homeoviscous adaptations©95ARY) of their cellular

membranes.

4. Dispersal and colonization processes

Due to the ephemeral nature of hydrothermal vents, vent communities face risks of local
extinction and must have developed propagation strategies in the course of evolution. Because adults
and juveniles vent shrimp need to stay close to active vents to find food or to supplement their
symbiotic bacteria in reduced compounds, their migratory capacity is limited (Ponsard et al. 2013,
Teixeira et al. 2013). It is hypothesized that dispersion and colonization processes are performed at
larval stages and/or post-larval stages (Herring and Dixon 1998). In Alvinocarididae, the first larval
stage (Zoe |) (Figure 6A) is lecithotrophic(G1955ARY) 'with an important storage of lipids (Pond et al. 1997)
and poorly developed mouthparts (Hernandez-Avila et al. 2015). This stage is likely followed by a stage
feeding on particles of photosynthetic origin that sink in the aphotic zone (Cowen et al. 2001), which
could extend the stage duration and accordingly confer a high dispersal potential (Hernandez-Avila et

al. 2015).
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Over the MAR, strong convection currents near active vents might transport the larvae at the
level of the buoyant plume, at 200-300 m over the seafloor, and horizontal transport might be driven
by currents constrained in the axis of the ridge (Kim et al. 1994). The mechanisms that could be used
by the larvae to detect an active site to settle are unknown. However, the high abundance of shrimp
along the MAR and the evidence of a large-scale connectivity between sites (Teixeira et al. 2012, 2013)
indicate that vent shrimp are successful colonizers. Larval settlement may be driven by numerous
factors, such as co-specific odors, vibration, or chemical cues (Rittschof et al. 1998). For the latter,
Renninger and collaborators (1995) and Rittschof and collaborators (1998) proposed sulphide as a
settlement cue, and Cuomo and collaborators (1985) reported attraction to gels containing sulfide on
larvae of vent polychaete worms during in situ experiments. Chemosensory abilities of vent shrimp
larvae are unknown, but they possess olfactory aesthetasc®-9554"") sensilla on their antennules (Figure
6B) and numerous sensillal®t9A"Y) g the antennae (Figure 6C) (Hernandez-Avilla et al. 2015) for which

sensory functions could be hypothesized with an ultrastructural analysis.

A B

500 pm U
100 pm 100 pm

Figure 6 First larval stage of Mirocaris fortunata
Modified from Hernandez-Avila et al. 2015.

A. Right view. B. Antennule. Arrow, aesthetasc. C. Antenna.

5. Sensory abilities

As pointed out by Segonzac et al. (1993), the long-term occurrence of vent shrimp in the fairly
hostile hydrothermal environment must have been run in parallel to an evolution of the sensory
abilities to efficiently detect their habitat, from short- and long-distance, and to locate food sources.
Among the sensory modalities that could be involved in the detection of active vents, vision has
received the most attention since the eyes of vent shrimp are highly modified. Other senses have been

considered although not thoroughly investigated.
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5.1. Vision

The anatomy of the visual system of Alvinocarididae species from the MAR has been
extensively described (van Dover et al. 1989, O’Neill et al. 1995, Nuckley et al. 1996, Lakin et al. 1997,
Gaten et al. 1998a,b, Chamberlain et al. 2000). It was proposed that they possess highly sensitive
“eyes” adapted to perceive the radiation emitted by the very hot fluid (thermal radiation), which may
be a signal for vent shrimp to locate and/or avoid heat sources (Pelli and Chamberlain 1989, van Dover

et al. 1989, O’Neill et al. 1995, Nuckley et al. 1996).

In R. exoculata, van Dover et al. (1989) noticed that the pink organs beneath the dorsal
carapace (Figure 7B) were connected to the brain in a position similar to the optic nerves in shallow-
water species. Transverse sections of these organs revealed that they are actually highly modified
retina, for which the general anatomy is similar between R. exoculata, R. chacei and M. fortunata
(Figure 7A). These species lack crystalline cones, which focus the light to the photoreceptor units and
consequently allow the formation of images. The rhabdoms, which are organelles that receive the light
and transfer it to the retinal cells, are hypertrophied in R. exoculata, R. chacei and M. fortunata, but
poorly developed in A. markensis which may be totally blind (Lakin et al. 1997). A white tapetum
underlies the rhabdoms and might have a reflective function to maximize the absorption of light. The
number of pigments (identified as rhodopsin [van Dover et al. 1989], a common photosensitive
pigment in Arthropods) is higher in vent shrimps compared to shallow-water species (Nuckley et al.
1996). Altogether these transformations reduce the spatial resolution but greatly enhance the
sensitivity of the retina. The effective use of vision in vent shrimp is further supported by the presence

of optic neuropils/®955ARY) in the brain (Charmantier-Daures and Segonzac 1998).

Gaten et al. (1998a) highlighted a gradual transformation of the eyes in vent shrimp (Figure
7C), supporting the evolution sequence theory from the most epibenthic-like shrimp Alvinocaris to the
specialized Rimicaris. In an ancestral deep-sea shrimp, similar to a shallow-water shrimp, the eyes are
stalked and the brain optic neuropils are located in the eyestalks. In A. markensis, the eyestalks are
reduced and the optic neuropils have migrated on the posterior side of the brain. In M. fortunata
(Figure 7D) and R. chacei, the retina expends on the dorsal side. In R. exoculata the anterior eye
disappears while the dorsal eye is enlarged. In addition, this latter species exhibits the highest volume

density of rhabdoms (Gaten et al. 1998b).
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Alvinocaridid shrimp

Ancestral
deep-sea
shrimp

A. markensis

R. chacei

R. exoculata

@ Retina

@ Brain
() Optic neuropils

Figure 7 The "eyes" of Alvinocaridid shrimp

A. Diagram of the typical cellular organization of the retina of an Alvinocaridid shrimp (adapted for
photodetection in very dim light) compared with that of a shallow-water Palaemonid shrimp (adapted for pattern
vision in daylight) (from Chamberlain 2000). as, arhabdomeral segment; ax, photoreceptor axon; c, cornea; cc, cone cell;
ce, corneal epidermis; dpc, distal pigment cell; pc, screening pigment cell; pn, photoreceptor nucleus; rh, rhabdom; rpc,
reflecting pigment cell; rs, rhabdomeral segment; w, white diffusing cell; wn, nucleus of white diffusing cell.

B. Dorsal view of R. exoculata. The arrow indicates the retina (Credits: Wikimedia).

C. Schematic diagram showing the evolution of the dorsal eye of Rimicaris from the stalked compound eye of an
ancestral deep-sea shrimp (modified from Gaten et al. 1998a).

D. Dorsal view of M. fortunata. The arrow indicates the retina (Credits: Océanopolis).
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The hypothesis of thermal radiation detection by vent shrimp was first supported by the
observation of a very dim light at chimney exits with a wavelength of 450 to 550 nm, which fits to the
absorbance spectrum of the rhodopsin, the pigment identified in the retina of R. exoculata (van Dover
et al. 1989). However, Segonzac et al. (1993) reminded that temperature rapidly decreases when the
fluid dilutes in the seawater (from 300°C in the chimney to 35°C 20 cm over the chimney exit) and so
does the radiation intensity, and that the distance of effective visual detection is reduced by the light
attenuation in seawater. The visual sense of vent shrimp as proposed by van Dover et al. (1989) is thus
likely to fit only for a very short distance detection (likely less than one meter) of the hot fluid at the

chimney exits.

Recently, Phillips et al. (2016) suggested from in situ video footages that vent shrimp may
produce bioluminescent light, and that their visual system may hence allow the detection of this
bioluminescence. Although the existence of this bioluminescence signal is speculative for now, the
persistence of the visual system in vent shrimp and the hypertrophy of the rhabdoms definitely allow

the detection of any low-intensity light signals in the vent habitat.

5.2. Chemodetection

Localization of vents by chemotaxis has been considered for both short- (few meters) and long-
distance (tens of meters) detection. Sulfide, as an obvious signature for hydrothermal habitats, has
been proposed as a settlement cue (Rittschof et al. 1998). Renninger and collaborators (1995)
demonstrated that R. exoculata can detect sulfide via its antennae and reported observations
suggesting attraction to sulfide. The authors used for comparison a shallow-water species (Penaeus
aztecus) for which they recorded antennal responses to the basic pH of the sulfide solutions rather
than sulfide itself. They concluded that the sulfide response they found in R. exoculata might be an

adaptation of a widespread sulfide sensitivity in vent shrimp to the vent environment.

Nonetheless, sulfide rapidly disappears in the water column since it reacts with seawater,
other fluid constituents and chemoautotrophic bacteria (Mottl and McConachy 1990, Zhang and
Millero 1993), and is thus likely to be detectable only close (few meters) to the fluid emissions. In
contrast, methane (Charlou and Donval 1993, de Angelis et al. 1993), iron (German et al. 1993, Waeles
et al. 2017) and manganese (Aumond 2013) can disperse far (up to several kilometers) in the
hydrothermal plumes. Methane and iron have been proposed as other potential attractants for vent
shrimp (Segonzac et al. 1993, Renninger et al. 1995) but there is to date no experimental evidence of

their detection by vent animals.
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5.3. Other sensory modalities

Segonzac et al. (1993) proposed several additional hypotheses for the mechanisms that could

permit the orientation of vent shrimp in their habitat:

- Vent shrimp could detect thermal gradients occurring around active chimneys and use them
as an orientation cue. The authors reported in situ observations of shrimp that abruptly swim
downwards when encountering ascending warm fluid. More recently, attraction to higher
temperature (11°C in a 3°C seawater background) was demonstrated in R. exoculata (Ravaux
et al. 2009). Temperature could also be considered as a long-distance stimulus, since
temperature anomalies of one tenth degree occur in the spreading hydrothermal plumes
(Baker etal. 2016, Tao et al. 2017), which could fit to the thermosensitivity of crustaceans (Jury
and Watson 2000).

- Vent shrimp could detect the acoustic vibrations triggered by the continuous emission of
hydrothermal fluid. This “hearing” hypothesis is worth considering since crustaceans possess
antennal mechanoreceptors that are sensitive to hydrodynamic stimuli (Bleckman 1991, Lovell
et al. 2005, Tidau and Briffa 2016), and the acoustic signal of active vents might be slightly
superior to the sea background noise (Little 1988).

- Vent shrimp could memorize the vents topography by recording spatial microvariations of the
local magnetic field. Interestingly, the rhodopsin visual pigment identified in vent shrimp retina

is also sensitive to magnetic stimuli in migratory birds (Semm and Beason 1990).
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lll. Isobaric recovery and maintenance for in vivo studies of vent
fauna

The knowledge on the biology and ecology of deep vent fauna is limited by difficult and costly
access to the hydrothermal environment for scientific research. In addition, deep animals must cope
with an important and eventually lethal stress due to the decompression effects during sampling by
submersible (Childress et al. 1978), especially from depths exceeding 2000 m (Shillito et al. 2008).
Although in situ observations can be conducted (e.g. Bailey et al. 2007, Sarrazin et al. 2007, Cuvelier et
al. 2009), laboratory studies on live animals are more suitable to investigate physiology issues under

controlled conditions (Van Dover and Lutz 2004, Pradillon and Gaill 2007, Shillito et al. 2008, 2014).

Despite the constraints associated to sampling from depths, it is possible to maintain vent
animals alive at the surface with devices that keep or restore the in situ pressure. The development of
isobaric recovery devices now allows in vivo experiments with organisms that would not survive the
trauma of decompression, by minimizing the physical stress associated to sampling and by significantly
enhancing survival rates (Le Bris and Gaill 2007, Pradillon and Gaill 2007, Shillito et al. 2008).
Pressurized aquaria allow the maintenance of deep live specimens under controlled conditions, for
instance for direct observations or to investigate physiological and behavioral responses to
environmental perturbations (Pradillon et al. 2004, Kadar and Powell 2006, Miyake et al. 2007, Shillito
et al. 2014).

1. Isobaric recovery and transfer with PERISCOP and BALIST

The PERISCOP (Projet d’Enceinte de Récupération Isobare Servant a la Collecte d’Organismes
Profonds) (Shillito et al. 2008) device allows the recovery of deep animals at their in situ pressure, to
bring the specimens to the surface in a good physiological state. The system is composed of a stainless-
steel pressurized recovery device (Figure 8A,B) with an internal volume of 6.6 L, and an in situ PVC
sampling cell (“Periscopette”, Figure 8B). Once the fauna has been confined inside the sampling cell
(with the suction device of the submersible), the latter is stored inside the pressurized recovery device
(Figure 8B) which is then sealed. To maintain the pressure prevailing inside the cell (which can be
reduced by 30% during ascent by the metal expansion), the system also comprises a pressure

compensation unit (Figure 8A) which minimizes the pressure loss to 15%.
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The PERISCOP aperture is adapted to connect to an 8-L ship-based aquarium, BALIST (Biology
of Alvinella Isobaric Sampling and Transfer), which allows the transfer of freshly caught animals
without decompression and direct observation through a porthole (Figure 8C). BALIST can function at

up to 300 bars, from 2 to 100 °C with a continuous renew of the seawater.

Figure 8 The isobaric recovery device PERISCOP and the pressure aquarium BALIST

A. Isobaric recovery device PERISCOP with its pressure compensator (foreground) (Credits: G. Hamel).
B. Remotely operated arm inserting the Periscopette sampling cell inside the PERISCOP device (Credits: Ifremer).
C. Isobaric transfer from the PERISCOP to the pressure aquarium BALIST (Credits: AMEX).

2. Maintenance at in situ pressure in the IPOCAMP and VISIOCAMP aquaria

The IPOCAMP™ (Incubateur Pressurisé pour I'Observation et la Culture d’Animaux Marins
Profonds) (Shillito et al., 2014) aquarium allows to maintain vent fauna in a 18-L volume, at up to 300
bars, in close or open (20 L/h) circuit, ship-board or in a laboratory (

Figure 9A). The animal behavior can be video recorded with an endoscope through a small porthole (
Figure 9B). This device was used for several studies on deep sea animals, including on their thermal
biology (Ravaux et al. 2003, Cottin et al. 2010), their osmoregulatory (Martinez et al. 2001) and
respiratory (Chausson et al. 2004) adaptations, larval development (Pradillon et al. 2001, 2005),
symbiotic relationships (De Cian et al. 2003, Zbinden et al. 2008, Ponsard et al. 2013, Duperron and
Gros 2016), exotoxicology (Dixon et al. 2002, Company et al. 2004, 2006, Auguste et al. 2016) and

pressure tolerance of non-vent species (Thatje et al. 2010, Oliphant et al. 2011).
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Figure 9 The pressure incubators IPOCAMP and VISIOCAMP

A. View of the 18 L IPOCAMP aquarium which allows to maintain vent animals at pressures up to 300 bars. The
animal behavior can be recorded with an endoscope (B).

C. View of the lid of the VISIOCAMP aquarium which allows high quality video recordings of animal behavior (D)
at several magnifications (E), as well as introduction of small elements (e.g. food) through an isobaric line.

¢, camera; g, gyroscopic support for the camera; i-l, isobaric line; of, optical fibers.

(Credits: B. Shillito / AMEX).

VISIOCAMP is a recently upgraded IPOCAMP™, with a new lid that comprises a large porthole
to allow direct observation as well as video recording with a high definition camera, which greatly
enhances the image quality compared to an endoscope (

Figure 9C,D,E). In addition, the lid is equipped with an isobaric line that allows the introduction of small

elements (e.g. food, stimulus) without disrupting the pressure inside the aquarium.
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3. The AbyssBox project

The AbyssBox project is a collaboration between the AMEX team, the Ifremer and the
Oceanopolis public aquarium (Brest, France), aiming to the long-term maintenance and the public
exhibition of deep-sea hydrothermal fauna (Shillito et al. 2015). Since 2012, specimens of the vent
shrimp M. fortunata and the vent crab Segonzac mesatlantica are maintained alive at their in situ
pressure (180 bars, corresponding to the pressure at the Lucky Strike vent site) in the AbyssBox
aquarium, as a part of a permanent public exhibition. AbyssBox (Figure 10A) is a pressurized 16.5 L
aquarium designed to function permanently, with a flow-through system which circulates fresh
seawater (background temperature 10°C), an isobaric feeding line (Figure 10B), a large conical
viewport (Figure 10C) and a ring-shaped tube inside which circulates heated fluid (27°C) to create a
“hotspot” for the animals (Figure 10C) with respect to the background temperature. The exhibition is
sustained by a yearly sampling of specimens at the Lucky Strike vent site during the MOMARSAT cruises

operated by the Ifremer.

The AbyssBox is also available to the scientific community. It provides one of the most useful
tools for long-term maintenance and observation of vent species in conditions close to their natural
habitat, giving information on lifespan (Shillito et al. 2015) or intra- and interspecies interactions
(Matabos et al. 2015). Potential researches could also include studies of reproduction, larval

development, responses and adaptations to heavy metal exposition, homeoviscous adaptations...

Figure 10 The pressure AbyssBox
aquarium

A. Frontal view of the AbyssBox
at the Oceanopolis public
aquarium (Brest, France).

B. Isobaric line used to feed the
animals without disrupting the
pressure inside the aquarium.
C. View through the viewport of
the AbyssBox. A crab Segonzac
mesatlantica rests close to the
warm spot (arrow) of the
aquarium.

(Credits: V. Fournier)
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IV. Chemo- and thermosensory mechanisms in marine crustaceans

In this section (and in the other chapters), the cited literature refers to various crustacean

species. For better clarity, Crustacea classification is briefly presented hereafter.

Crustacea comprises almost 67 000 described species and forms a large and diverse arthropod
taxon which includes animals as crab, lobster, crayfish and shrimp. Molecular studies showed that the
crustacean group is paraphyletic: it comprises all animals other than hexapods in the Pancrustacea
clade (Regier et al. 2010) (Figure 11). Phylogenetic relationships are still discussed, but the Remipedia
and the Branchiopoda are more closely related to the Hexapoda than they are to Copepoda and

Malacostraca.

CHELICERATA

MYRIAPODA

Euarthropoda Crustacea —— COPEPODA

— MALACOSTRACA

Mandibulata

Pancrustacea BRANCHIOPODA

—— REMIPEDIA

—— HEXAPODA

Figure 11 Classification of Crustacea among Euarthropoda

Simplified phylogeny of one hypothesis on the classification of Crustacea among Euarthropoda.

Remipedia is a class of blind crustaceans that live in coastal caves. Branchiopoda comprises
several genera found in coastal regions, continental freshwater and salt lakes, and notably the model
species Daphnia pulex which is the first crustacean to have its genome sequenced (Cristescu et al.
2006). Copepoda is a group of small crustaceans found in the sea and nearly every freshwater habitats.
Malacostraca is the largest class of crustaceans, comprising about 40 000 living species that display a
great diversity of body forms, are abundant in all marine environments and have colonized freshwater
and terrestrial habitats. Among Malacostraca, Alvinocaridid vent shrimp are part of the Caridea, which

is a basal taxon of the Decapoda order (Figure 12).
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Figure 12 Phylogenetic relationships of malacostracan crustaceans
From Harzsch and Krieger 2018 (and references therein)

1. Chemodetection

Most functional studies on the chemosensory abilities of crustaceans focus on large
Eureptantia decapod crustaceans (Figure 12) (Ache 2002, Schmidt and Mellon 2011, Derby and
Weissburg 2014), including representatives of spiny lobster (Achelata), clawed lobster (Homarida),
crayfish (Astacida) and crab (Brachyura). Chemodetection has also been explored in terms of diversity
of lifestyles, habitats and morphology in other crustacean representatives such as hermit crab
(Anomala), mantis shrimp (Stomatopoda), penaeid shrimp (Dendrobranchiata), amphipod and isopod
(Peracarida). In contrast, studies on Caridea, which include Alvinocaridid vent shrimp, are scarce. Still,
the following sections describe general chemosensory mechanisms believed to be common to all

marine malacostracan, and possibly to all marine crustaceans. Adaptations linked to the colonization

of freshwater and terrestrial habitats are not presented.

1.1. Context

For most crustaceans, chemodetection* is the dominant sensory modality (Schmidt and
Mellon 2011). Marine crustaceans are surrounded by chemicals, and use their chemosensory senses
for diverse biological processes, such as the detection and selection of food and habitat (Koehl 2011,
Kamio and Derby 2017), the recognition of conspecifics (Thiel and Breithaup 2011), the localization of

sexual partners (Wyatt 2014), and the detection of preys and predators (Derby and Zimmer 2012).
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Chemodetection* is mediated by chemosensory sensilla present on all the body surface but
particularly concentrated on chemosensory organs such as the antennules, the antennae, the
mouthparts and the walking legs. The antennules (which comprises two flagella, one lateral and one
medial) and the antennae (Figure 13) are considered as major sensory organs in crustaceans. The
sensilla are innervated by chemosensory neurons that bear chemoreceptors on their dendrites. The
binding of a chemical stimulus to its cognate chemoreceptor triggers a cascade of electrical and
chemical events from the chemosensory neurons to the chemosensory centers within the brain, where

the signal is processed and integrated.

*In the literature, chemosensory mechanisms are usually designed as “chemoreception”, with “chemoreceptive”
organs, “chemoreceptive” sensilla, “chemoreceptor” neurons... Because of the confusion with the molecular
chemoreceptors, | chose to use the terms “chemodetection” and “chemosensory [...]” instead.

Figure 13 The antennules and the antennae

The antennules and the antennae are flagella composed of several annuli, associated to various sensory sensilla.
Allat, lateral antennule; A1 med, medial antennule; A2, antenna. (M. fortunata, credits: Océanopolis)

1.2. Two chemosensory pathways

Two different modes of chemodetection, linked to distinct chemosensory pathways, are
processed by crustaceans: « olfaction(Gt0SSARY) 5, and « distributed chemodetection(GOSSARY) 5, (Schmidt

and Mellon 2011, Derby and Weissburg 2014, Derby et al. 2016, Harzsch and Krieger 2018).

Olfaction, also called distance chemodetection, is mediated by the aesthetasc sensilla present
only on the lateral flagella of the antennules (Figure 14A,B) and which detect soluble molecules (water-
borne odors). These aesthetascs are innervated by olfactory sensory neurons!¢05ARY) (QSNs) (see 1.3.)

that project to the olfactory lobes(¢95ARY) i the deutocerebrum region of the brain (see 1.4.).
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Distributed chemodetection is mediated by bimodal©©$*RY) chemo- and mechanosensory
sensilla present on the antennules and the antennae, and also on the mouthparts (Garm and Watling
2013), the walking legs (Schmidt and Gnatzy 1984) and the body surface (Figure 14A,B). Bimodal
sensilla on the antennules project to the lateral antennular neuropils!®954"Y) in the deutocerebrum
region of the brain, and those on the antennae project to the antennal neuropils/©95ARY) in the
tritocerebrum region (see 1.4.). Their chemosensory neurons may primarily function as contact chemo-
mechanoreceptors (e.g. for taste; Mellon 2012, 2014) but certain types of bimodal sensilla may also

function as distance chemoreceptors (Steullet et al. 2001, 2002, Schmidt and Mellon 2011).

~"© Olfaction

0 Distributed
. Chemoreception

Antennules

\\/
3 Lateral

flagellum

Figure 14 Two modes of crustacean chemodetection
From Derby et al. 2016 (and references therein).

A-B. Location of aesthetascs (blue dots) mediating olfaction and bimodal chemo-/mechanosensory sensilla
(yellow dots) mediating distributed chemodetection on different body parts and appendages of the spiny lobster,
Panulirus argus. 1, lateral flagellum of the antennule; 2, medial flagellum of the antennule; 3, antenna; 4,
mouthpart appendages; 5, walking legs; 6, cephalothorax; 7, tail fan.

The functional difference between these two chemosensory pathways was hypothesized by
Schmidt and Mellon (2011) as follows: olfaction is linked to a detailed representation of the chemical
environment, by integrating various chemical signals of potential interest, with no reference to the
location of the stimuli and without generating any motor response. In contrast, distributed
chemodetection is linked to the representation of key chemical compounds (e.g. food odor sources,
pheromones) in a somatotopic context, through the coupling with mechanosensory neurons which
allows the spatial localization of chemical stimuli and the triggering of target motor responses.
Although each of these pathways is sufficient to locate food odor sources, they are complementary for

odor discrimination in a chemical background (Steullet et al. 2000, 2002).

31



Chapter | - Background

1.3. Detection of chemicals

1.3.1. Chemoreceptors

Chemodetection is primarily mediated by proteins expressed in the membranes of the
chemosensory neurons (i.e. chemoreceptors) or around them. Evolution has resulted in unique
expansions of specific genes families and repurposing of them for chemodetection in various clades,
including crustaceans (Derby et al. 2016). Chemosensory-related genes have been barely explored in
crustaceans, especially in comparison to insects, mainly because few crustacean species have their
genome sequenced. However, transcriptomics technologies have yield to a partial identification of
proteins involved in crustacean chemodetection. Chemosensory-related proteins known to be
expressed in Crustacea and Arthropoda are indicated in Figure 15A. The sequenced genome of the
branchiopod Daphnia pulex contains several genes coding for chemosensory protein families also
present in insects (Penalva-Arana et al. 2009): lonotropic Receptors (IRs), Gustatory Receptors (GRs)
and Chemosensory Proteins (CSPs). Eyun et al. (2017) identified IRs, GRs and CSPs in several copepod
species, and CSPs in two dendrobranchiata and peracarida species. In decapods, only IRs were
identified, in Achelata (Corey et al. 2013), Astacidea (McGrath et al. 2006, McClintock et al. 2006) and
Anomura (Groh et al. 2014, Groh-Lunow et al. 2015). In insects, IRs, GRs and CSPs are known to be
involved in chemodetection, but another class of chemoreceptors mediates olfaction: the Olfactory
Receptors (ORs). ORs have never been reported in non-insect taxa, which suggests that olfaction in
other groups, such as Crustacea, might be mediated by different mechanisms and other families of

sensory proteins.

IRs are ion channels that are gated by ligands and represent an ancestral protostome
chemosensory receptor family, evolving from ionotropic glutamate receptors (Croset et al. 2010). They
function as heteromeric receptors, with co-receptor IR subunits that associate with other IR subunits
that determine the specificity to the ligand (Croset et al. 2010) (Figure 15B). Corey et al. (2013) showed
that the highly conserved subunits IR25a and IR93a are expressed in the antennules of Panulirus argus.
So far, IRs are the only type of chemoreceptor molecules identified in the antennules (the main
olfactory organs) of decapod crustaceans, and are considered as the putative crustacean olfactory
receptors. In insects however, IRs also mediate other sensory modalities such as thermosensation and
hygrosensation (Knecht et al. 2016). GRs are ionotropic 7-transmembrane receptors (Figure 15C). GRs
are known to be expressed in gustatory neurons in the legs, mouthparts, wing margins, ovipositor and
antennae of insects (Benton 2015, Robertson 2015). GRs have not been identified in decapod
crustaceans yet but evidence from myriapods and chelicerates suggest that the presence of GRs is an

ancestral arthropod trait (Derby et al. 2016, Eyun et al. 2017). CSPs are proteins present in the lymph
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surrounding the chemoreceptors where they serve as carrier molecules for the ligands (Pelosi et al.
2014). Transient Receptor Potential (TRP) channels have also been reported to play a role in
chemodetection in insects (Kang et al. 2010, Kim et al. 2010, Zhang et al. 2013) and might be expressed
in crustaceans. Even if TRP genes have not yet been identified for crustacean chemodetection, OSNs
of spiny lobster express channels that have some physiological properties in common with TRP

channels (Bobkov et al. 2010).
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Figure 15 State of knowledge on chemosensory proteins in Crustacea and beyond
Modified from Derby et al. 2016, with additional data from Eyun et al. 2017 for CSPs.

A. Arthropod phylogeny and the chemosensory proteins known to be expressed in each clade. CSP,
chemosensory protein; GR, gustatory receptor; IR, ionotropic receptor; OR, odorant receptor; TRP, transient
receptor potential channel. Asterisks indicate proteins identified in Crustacea.

B. Schematized molecular structure of IRs. IRs derive from iGluRs that form heterotetrameric ion channels, with
each monomer having 3 major domains: amino terminal domain, ligand binding domain, and ion channel domain.
IR25a and IR8a are the only IRs that possess all 3 major domains (right sketch), whereas the other IRs only have
the ligand binding domain and the ion channel domain (left sketch). A functional IR is a heteromeric complex
with an IR co-receptor (e.g. IR25a, IR8a) associated with another, ligand specific IR subunit.

C. Schematized molecular structure of ORs and GRs. ORs and GRs are 7-transmembrane chemoreceptors, with
an extracellular carboxyl terminal and an intracellular amino terminal.
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1.3.2. Chemosensory sensilla and neurons

As previously described, two chemosensory pathways are associated to two types of
chemosensory sensilla in crustaceans: the unimodal olfactory aesthetasc sensilla, and the bimodal

chemo- and mechanosensory sensilla.

The aesthetasc sensilla are specialized in olfaction. They are exclusively present on the lateral
flagella of the antennules (Figure 14B) and are characterized by a thin permeable cuticle. They are
innervated by OSNs, for which the somata are arranged in cluster beneath the aesthetascs. The
number of OSNs associated with individual aesthetasc display taxon-specific variation across the
Malacostraca over a range of about 100-400 (Harzsch and Krieger 2018). Each OSN dendrite is divided
into one inner dendritic segment (IDS) that project into the aesthetasc sensillum, where it divides
dichotomously in outer dendritic sgments (ODS), which bear the olfactory receptors. The region where
the IDSs divide into ODSs is called the transitional zone (Figure 16). Every aesthetasc is associated with
an identical set of heterogeneous OSNs (i.e. characterized by different olfactory receptors)

representing the entire odor range the animal can detect (Steullet et al. 2000, Mellon 2007).

Bimodal sensilla are innervated by both chemo- and mechanosensory neurons. They are
present on the antennal appendages, the mouthparts, the walking legs, and all the body surface
(Garm et al. 2003, 2005, Garm and Watling 2013, Ache 1982, Altner et al. 1983, Schmidt and Gnatzy
1984) (Figure 14A,B). Unlike aesthetascs, these sensilla display at least one terminal pore in their
cuticle (Mellon 2012, 2014), through which chemicals must penetrate to reach the dendrites of the
chemosensory neurons. Bimodal sensilla display a variety of morphology and innervation
configurations, and overall their precise respective functions are not well understood. They are
considered primary to mediate chemodetection by contact (Mellon 2007, 2012) and specific
behaviors such as grooming(°$ARY) (Schmidt and Derby 2005). Studies on lobster suggest that some
bimodal sensilla could also detect distant chemical sources (Steullet et al. 2001, 2002, Schmidt and

Mellon 2011).

1.3.3. Flicking of the antennules

In crustaceans, chemical ligands must cross the aesthetasc cuticle or penetrate the pore of
bimodal sensilla to bind their cognate receptors. This occurs by slow molecular diffusion (Atema and
Steinbach 2007, Koehl 2011, Mellon and Reidenbach 2012) but is greatly enhanced by the
flicking!®'O5SARY) of the antennules. Flicking corresponds to the quick depression of the lateral

antennules from their normal posture, and they return at slower speed (Mellon 2007). The slow return
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stroke traps the water in the aesthetasc arrays, and the downward stroke replaces the water sample.
Each flick thus represents a sniff probing the odor plume by taking discrete samples, giving
spatiotemporal information critical for orientation (Koehl 2011, Mead 2002). The frequency of
antennules flicking and the resultant intermittent odor sampling might determine the temporal

resolution with which the olfactory system extracts information from the environment (Harzsch and

zone inner dendritic segments give rise to two ciliary segments,

Krieger 2018).
Figure 16 Sketch of an aesthetasc sensilla innervated by
olfactory sensory neurons
ods Only two out of approximately 100 to 400 bipolar olfactory
) sensory neurons that innervate each aesthetasc are
c f ‘UH/ \) ] shown, and for each neuron only one cilium branching is
| — i 35}”}:(\9 transitional shown. The transitional zone refers to the zone where the

each starting to divide dichotomously in outer dendritic
ids segments. Axon (a); accessory cell (ac); basal bodies (bb);

----- cuticle (c); ciliary segment (cs); inner dendritic segment
’7 : (ids); outer dendritic segment (ods); ciliary rootlet (r);
) _— : N N lumen (l); sensory cell somata (sc). Not to scale.

1.4. Central integration of the chemical stimulus

1.4.1. Overview of the central nervous system

The brain of crustaceans contains several neuropils categorized in three regions, the proto-,
deuto- and tritocerebrum, in addition to the optic neuropils. The ground pattern of malacostracan

brain is sketched in Figure 17.
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Figure 17 Ground pattern of the malacostracan brain
Modified from Harzsch and Krieger 2018, therein modified after Kenning et al. 2013.

Silhouette of the brain and antennal nerves are omitted.

Abbreviations: (1)—(11), cell clusters 1-10; AMPN, anterior medial protocerebral neuropil; AnN, antenna 2
neuropil; CB, central body; HN, hemiellipsoid body neuropils; La, lamina; LAN, lateral antenna | neuropil; LoP,
lobula plate; MAN, median antenna 1 neuropil; Me, medulla; MT, medulla terminalis; og, olfactory glomerulus;
OGT, olfactory globular tract; OL, olfactory lobe; PMPN, posterior medial protocerebral neuropil; TN,
tegumentary neuropil.

A neuropil is a region of dense synaptic contact, in which information enters via afferent fibers
(input) and leaves via efferent fibers (ouput). The first-order neuropils receive direct inputs from the
sensory neurons in the peripheral nervous system(©954RY) (e o the sensory organs, like the antennal
appendages). They are associated to local interneurons that make connections within the neuropil,
and to projection neurons that make connections with higher-order sensory neuropils (see Figure 18).
The higher-order neuropils receive information from the first-order neuropils but not directly from the

peripheral nervous system. For example, the olfactory lobes, the antennal and lateral antennular
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neuropils (see descriptions hereafter) are first-order neuropils, since they receive direct inputs from
the sensilla located on the antennal appendages. The hemiellipsoid bodies!®:°ARY) gnd the medulla
terminalis(®t9SSARY) (see descriptions hereafter) are higher-order neuropils, because they receive only

inputs from other neuropils and are so called higher-integrative centers.

The optic neuropils, in which the visual inputs from the eyes are processed, consist in a series
of nested columnar neuropils named the lamina, the medulla, the lobula and the lobula plate. They

are located under the retina in the eyestalks (when present).

The protocerebrum is subdivided in lateral and medial protocerebrum. The Iateral
protocerebrum comprises two neuropils, the hemiellipsoid bodies and the medulla terminalis, both
closely associated, sometimes barely demarcated, and usually located in the eyestalks close to the
optic neuropils. They are centers of multimodal integration, further detailed below (see section 1.4.3.).
The medial protocerebrum comprises neuropils referred as the central complex. The central position
of these neuropils suggests a role in coordination of sensory inputs (Kenning et al. 2013), and functions

in motor control of the appendages have also been proposed (Strausfeld and Andrew 2011).

The deutocerebrum comprises several neuropils that process the mechanosensory, olfactory
and non-olfactory chemosensory information delivered by the antennules: the lateral antennular
neuropils (LANs), the median antennular neuropils (MANs) and the olfactory lobes (OLs). The LANs
receive afferents from the mechano- and chemosensory neurons innervating the bimodal sensilla
(Blaustein et al. 1988, Schmidt and Ache 1996). They are hemispheric neuropils connected by a
commissure. The MANs are diffusely organized neuropils located between the LANs, and receive
primary afferents from the statocysts/®95*RY) (Yoshino et al. 1983). The OLs are paired, roundish
neuropils that receive afferents from the OSNs that innervate the aesthetascs, and are further detailed

below (see section 1.4.2.).

The input that enters into the OLs is relayed to different groups of local inter- and projection
neurons, the latter comprising the olfactory globular tract that carries the information to the higher-
order neuropils, i.e. the hemiellipsoid bodies and the medulla terminalis in the lateral protocerebrum

(Sandeman et al. 1992, Krieger et al. 2012).

The tritocerebrum flanks the oesophagus and comprises the antennal neuropils (AnNs) and
the tegumentary neuropils, both processing mechanosensory information delivered by the antennal
nerves and the tegumentary nerves (Sandeman et al. 1992). The tegumentary nerves carry
mechanosensory information from the carapace. The antennal nerves carry mechano- and

chemosensory information from the neurons innervating the bimodal sensilla of the antennae.
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1.4.2. First-order chemosensory centers (OLs, LANs, AnNs)

The OLs are the site of first order processing of aesthetasc chemosensory information (Mellon
et al. 1992, Sandeman et al. 1992, Schachtner et al. 2005, Schmidt and Mellon 2011). They comprise
multiple and distinct synaptic fields called the olfactory glomeruli, which seem to function as the
fundamental processing units of the olfactory system where the afferents, local interneurons and
projection neurons make synaptic contacts (Harzsch and Krieger 2018). These glomeruli are radially
arranged around the periphery of a core of non-synaptic fibers, and are subdivided into a cap and a
base region (and eventually a subcap region), resulting of a regionalized arrangement of local olfactory
inter- and projection neuron synapses (Schachtner et al. 2005). These subdivisions of olfactory
glomeruli are most likely functionally relevant (Schmidt and Ache 1996, 1997). Each glomerulus shares
the same architecture, and possible functional differences between them have not yet been
recognized (Harzsch and Krieger 2018). The axons of the OSNs innervating one aesthetasc target most
if not all olfactory glomeruli (Sandeman and Denburg 1976, Schmidt and Ache 1996, Tuchina et al.
2015). The LANs and the AnNs are also first-order chemosensory centers that receive direct inputs
from the bimodal sensilla on the antennules and the antennae respectively. The OLs are considered to
code the odor quality, while the LANs and the AnNs contribute to odor tracking (Harzsch and Krieger

2018).

1.4.3. Higher-order integrative centers (hemiellipsoid bodies and medulla terminalis)

The hemiellipsoid bodies and the medulla terminalis are two neuropils located in the lateral
protocerebrum, usually in the eyestalks. They are higher integrative centers that process information
from various sensory modalities, receiving inputs from first-order neurons but not from any peripheral
sensory afferents (Sandeman et al. 2014). Sandeman and collaborators (2014) suggested that in light
of their high level of complexity and the large amount of brain space devoted to them, these neuropils
functions go beyond simple reflexive behavior and may involve more sophisticated processes, for
instance related to orientation within the environment during homing or migration, recognition of
suitable mating partners, and social interactions. There is not much information available on the
morphology and the functional significance of the medulla terminalis, in contrast to the hemiellipsoid

bodies that have been described and thoroughly investigated in various malacostracan crustaceans.

The hemiellipsoid bodies vary greatly in both size and anatomy (Blaustein et al. 1988,
Sandeman et al. 1993, Strausfeld 1998), with a common subdivision in distinct layers (at least a
peripheral cap and a central core region) (Sullivan and Beltz 2001a, 2005). They receive inputs from

the olfactory lobes via the olfactory globular tract and from the optic neuropils, for which the
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information is relayed in the dense multilayered network (Brown and Wolff 2012, Strausfeld and
Andrew 2011, Wolff et al. 2012). These inputs suggest a higher order integration of the corresponding
stimuli. In addition, these neuropils might play an important role in olfactoryy learning (Mellon and

Alones 1997) and general memory processes (Maza et al. 2016).

1.5. Assumptions on olfactory abilities from comparative studies

The behavioral response to a stimulus is the most integrated response and the most
representative evidence of the sensory abilities of an animal. However, behavior experiments are
delicate to conduct, and results can be complex to interpret since many uncontrolled factors may affect
animal behaviors (Amdam and Hovland 2011). In crustaceans, a bioassay designed for one species is
not necessarily ecologically suitable for another species (Kenning et al. 2015), and direct comparisons
may be not relevant. Nonetheless, investigations at other levels (e.g. structural, molecular, and
physiological) can provide cues on sensory abilities in a comparative context. In crustaceans olfaction
has been extensively studied in various taxa, with functional studies but also with structural
descriptions of the olfactory systems and comparison of numerical aspects that may be linked to
olfactory efficiency, lifestyle or habitat. A non-exhaustive list of parameters frequently used in the
literature to infer on crustacean olfactory abilities is presented hereafter. They will be examined in the
following chapters to discuss on the olfactory abilities of the vent shrimp M. fortunata compared to

the shallow-water species Palaemon elegans.

- The aesthetasc dimensions and cuticle thickness may influence the sampling efficiency of an
odor plume. Longer and larger aesthetascs are associated to a larger chemoreceptive surface (Nelson
etal. 2013), and the thinner portion of the aesthetasc cuticle likely defines the portion of the sensillum
permeable to soluble odorants (Tierney et al. 1986, Derby et al. 1997). The distribution of the
aesthetascs may also impact the spatial resolution of the chemical environment, e.g. crustaceans with
small aesthetasc spans may be unable to detect asymmetries in odor concentrations as a source of

navigational information, as crustaceans with a large array of aesthetascs do (Koehl 2011).

- The number of aesthetascs is linked to the sensitivity, whereas the number of OSNs and ODSs
are associated to both sensitivity and discrimination of the chemical environment. Since each
individual aesthetasc houses identical sets of OSNs (Steullet et al. 2000), a multiplication of aesthetascs
raises primarily the sensitivity but does not promote the diversity of detectable odorants (Beltz et al.
2003). Similarly, an increasing number of identical OSNs (associated to the olfactory receptors)

increases the sensitivity, while the number of OSNs expressing different olfactory receptors is linked
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to the odorant discrimination potential (Derby and Weissburg 2014). The number of ODSs is

representative of to the total area of dendritic membranes within are expressed olfactory receptors.

- The diversity of chemoreceptors and their levels and patterns of expression are the basis of
the chemosensory abilities. The repertoire of chemoreceptors reflects the diversity of molecules
perceived by the animal, and a higher density of receptors that detect the same stimulus may reduce

noise while maintaining the resolution of the system (Galizia 2014).

- Modifications of the central nervous system occur in connection with the lifestyle of a species.
There is a balance between the performance and the energetic costs associated to a sensory system,
meaning that one system will be reduced during evolution if there is no need to maintain its
performance. This is for example the case for the visual sensory system that is greatly reduced in cave
species (Niven and Laughlin 2008). Also, the reduction of one sensory modality can be balanced by the
preponderance of another modality (Sandeman et al. 2014). For instance, in blind crustacean
Remipedia cave species, the eyes and optic neuropils are absent whereas the central olfactory system
is greatly developed (Fanenbruck et al. 2004, Fanenbruck and Harzsch 2005, Stemme and Harzsch
2016). Another example are shrimp of the genus Penaeus for which the olfactory system is poorly
developed, in contrast to sophisticated antennal neuropils that process mechanosensory input from
the antennae, which may play a role in efficient predator avoidance via the detection of hydrodynamic
stimuli (Meth et al. 2017, Sandeman et al. 1993). Hence, noticeable size dissimilarities between

different neuropils and different species might be linked to their ecology and lifestyle.

- The volume of the olfactory lobes and the organization of the olfactory glomeruli might be
linked to the power of odor discrimination and quality coding. The volume of the olfactory lobes is
correlated to the amount of olfactory input and thus the repertoire of chemicals detected by the
animal (Beltz et al. 2003). The level of subdivision of the olfactory glomeruli (i.e. cap and base versus
cap, subcap and base) may be linked to the integration performance of the olfactory system (Harzsch
and Krieger 2018). Also, the number of olfactory glomeruli exhibits great variation among species and
is not correlated to the olfactory neuropils volume, the habitat or the lifestyle (Beltz et al. 2003) but is

one of the numerical aspects commonly used to describe the chemosensory systems of crustaceans.

- At functional level, electrophysiology allows to test the detection of chemicals and to
determine parameters such as response spectra and thresholds, which can vary between single
neurons, or species. Typically, the functionality of OSNs is studied with patch-clamp!€955ARY) recording
from single OSNs to obtain a representative response of one cell (Doolin et al. 2001, Ukhanov et al.
2011), but this method is inefficient to obtain population cell data. In insects, odor response patterns

can be obtained from single sensilla (using single sensillum recording(®:%*"Y)) or from whole olfactory
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organs (using electroantennography [EAG]). Odorant activation can also be monitored using calcium
imaging(GO%SARY) hoth at the central and peripheral levels, which Ukhanov et al. (2011) successfully
performed on lobster OSNs. Such methods (except EAG, see Chapter 1V) are still to be optimized for

small crustaceans.

As a synthesis, the trajectory of a chemical stimulus integration via the olfactory pathway is sketched
in Figure 18.

2. Thermodetection

The physiological basis of thermodetection is one of the least investigated areas of crustacean
neurobiology. Barber (1961) indicated that crustaceans are behaviorally competent to detect thermal
discontinuities, select preferred thermal zones in their environment and exhibit temperature
acclimation, implying that thermosensory mechanisms must mediate such responses. In their review
of thermal behavior of crustaceans, Lagerspetz and Vainio (2006) indicated that crustaceans seem to
detect fine temperature variations, in the range 0.2-2°C, and that thermosensitivity is mediated by the
peripheral nervous system. Puri and Faulkes (2015) demonstrated that crayfish antennae are
responsive to high temperature (42,8°C) and suggested that the antennae might contain sensory

neurons specialized in nociception rather than in general thermodetection.

Specific thermoreceptors, or putative multimodal thermoreceptors, have not been identified
in crustacean yet (Lagerspetz and Vainio 2006). In insects, thermodetection is known to be mediated
in part by TRP channels, especially by proteins from the TRPA subfamily (e.g. TRPA1, painless and
pyrexia) that each detect different ranges of temperature (Lee et al. 2005, Sokabe and Tominaga 2009).
Several insect species have four or five TRPA genes, but the crustacean D. pulex has only one TRPA
gene (Matsuura et al. 2009). In Drosophila melanogaster, one part of the antennae, the arista, contains
thermosensory neurons expressing TRP channels (Gallio et al. 2011), but neurons expressing pyrexia
are distributed throughout the fly body (Lee et al. 2005), indicating that temperature may serve not

only as a stimulus for specific end organs but is likely widely detected.
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Figure 18 Diagram of the olfactory pathway

Legend next page.

42



Chapter | - Background

€«

A. Chemical stimuli are detected by OSNs housed in the aesthetasc sensilla located on the lateral flagellum of the
antennules. Odor molecules cross the thin aesthetasc cuticle to bind to their cognate chemoreceptors located
within the membranes of ODSs. This binding generates an electrical signal (the receptor potential) transmitted
to the OSN somata, where it triggers the firing of action potentials that propagate within the OSN axons.

B. OSN axons gather to form the antennular nerve, and project into the brain in the OLs, organized in olfactory
glomeruli (B’. Within the glomeruli, regionalized in cap, [subcap] and base regions, synapses from local
interneurons make various connections between glomeruli and regions to process the olfactory information.
Efferent fibers from projection neurons, connected to the base region of the glomeruli, bundle into the OGT).
The OGT emanates from the OLs and projects to the HB and the MT, where the olfactory signal is processed likely
in respect with signals from other sensory modalities.

C. Schematic view of neuropils organization in a crustacean brain (optic neuropils omitted).

AnN, antennal neuropil; CC, central complex; HB, hemiellipsoid bodies; IDSs, inner dendritic segments; LAN,
lateral antennular neuropil; MT, medulla terminalis; OGT, olfactory globular tract; OL, olfactory lobes; OSNs,
olfactory sensory neurons; Tr, transitional zone.
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V. Models used in the present study

1. The vent species Mirocaris fortunata

1.1. Selection criteria

M. fortunata (Martin and Christiansen 1995) (Figure 5F) was selected as a hydrothermal species
model for this thesis project. First, this species is widely distributed along the Mid-Atlantic Ridge (MAR),
from the shallowest vent sites (e.g. Menez Gwen, 850 m depth) to the deepest ones (e.g. Ashadze,
4080 m depth). Next, M. fortunata presents the considerable advantage to survive at atmospheric
pressure when sampled at depths that do not exceed 2000 m, as the Menez Gwen and Lucky Strike
sites (Gebruk et al. 2000, Shillito et al. 2015). This species can thus be maintained at atmospheric
pressure in classic aquaria and be used for in vivo experiments such as electrophysiology and
behavioral tests in the same conditions as a shallow-water species. Because this species is a secondary
consumer, it can be fed with mussels or shrimp food products and hence be maintained for several
months in the laboratory. Thanks to a collaboration with the Oceanopolis aquarium, specimens of M.
fortunata are yearly collected during the MOMARSAT cruises to sustain the AbyssBox exhibition
(Shillito et al. 2015 and see section 111.3.) and are available for experiments conducted by the AMEX

team.

Site Coordinates Depth (m)

45°28.998'N,

Moytirra  52.c1 soow 3000
ol vaow 840865
e 16001720
Rainbow 2.0 000t 2270-2320
ot Bl s0wa100
TAG  uocopwy 34363670
Snake Pit  a.oaooolr 3044-3100
Logatchev  ypac ooy 2925-3050
Ashadze o 00lW 4080
Turtle Pits 2::;32173\/ 29222998

Figure 19 Distribution of M. fortunata along the Mid-Atlantic Ridge
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1.2. Distribution

M. fortunata is an endemic species of vents at the MAR, where it occurs both on north and
south portions, from 840 to 4000 m depth, and was reported at ten vent sites, thus having the widest
geographic distribution among Alvinocarididae (Komai and Segonzac 2003, Lunina and Vereshchaka
2014) (Figure 19). It is the dominant Alvinocaridid species at the Lucky Strike and the Menez Gwen
sites, and is found in variable abundances (50-2800 individuals per square meter) at the Rainbow site

(Desbruyeéres et al. 2000). Only few specimens are reported at vent sites exceeding 3000 m depth.

1.3. Gross morphology

M. fortunata is part of the clade Mirocaridinae (which comprises two genera: Nautilocaris and
Mirocaris [Figure 4B]) supported by the following synapomorphies: strap-like epipods terminating in a
hook occur on the fourth pereopod (walking appendages), and the appendix interna is much reduced
in second to fourth pleopods (swimming appendages) (Vereshchaka et al. 2015). The size of adult
specimens of M. fortunata ranges from 1.2 to 3.3 cm in total length (Martin and Christiansen 1995).
As species of the genus Rimicaris and Chorocaris, M. fortunata has a degenerated rostrum, reduced
external spines and a dorsal organ homologous to the “dorsal eye” found in R. exoculata but smaller
and restricted to postorbital region (Figure 20). In addition, M. fortunata is distinguishable from other

Alvinocardidae species by its completely toothless rostrum (Komai and Segonzac 2003).

Cephalothorax Abdomen

T 1T 1

dorsalorgan

Allat

Almed

Figure 20 Morphology of M. fortunata

The mouthparts maxillipeds, maxillae and mandibles are not shown. The antennule and the antenna are not to
scale. Allat, lateral antennule; Almed, medial antennule; A2, antennae; Mxp, maxillipeds; PI1-5, pleopods 1-5;
Pr1-5, pereopods 1-5. Scale bar =3 mm.
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1.4. Trophic behavior

M. fortunata is mainly a secondary consumer, scavenging on tissues of mussels, shrimp and
other invertebrates when available, and it also grazes on bacterial mats (Gebruk et al. 2000,

Desbruyeres et al. 2001).

1.5. Habitat and chemical and thermal environment

M. fortunata has a broad distribution across the vent-fluid dilution gradient (Desbruyéres et
al. 2001, Ravaux et al. 2007), but is usually found at the periphery of the main chimneys, in zones of
high biomass such as mussel assemblages (Vinogradov and Vereshchaka 1995, Gebruk et al. 1997,
2000, Desbruyéres et al. 2001). Mean values from in situ measurements of temperature, pH and
chemical concentrations in the habitats of M. fortunata were previously given in Table 2. A more
detailed data set is presented in Table 3 with measurements in M. fortunata habitats and close diffuse
vents at the Rainbow and the Lucky Strike vent sites. Overall, the habitat of M. fortunata is relatively
warm (from 6.8 to 13.7 °C) and slightly acid (pH range 6.01 to 7.3), with large variations of sulfide (2.4

to 38.1 umol.LY) and methane (0 to 6.5 pmol.L}) concentrations.

Table 3 Temperature, pH and chemical concentrations in M. fortunata habitats and close diffusers

Results are given as mean = SD (n number of replicates).

Site Sample Temp. (°C) pH S (M) CHa (M) Fe (M) Cu (uM) References
Rainbow  Diffuser 47.5+3.5(2) 5.8+0.4(2) 12.8+13.4(2) 112.4+31.4 - - Desbruyéres et al.
(PP29) (2) 2001
Mirocaris 11.2+4(5) 7.1+03(5) 7.2%87(5) 6.5:+4.3(5) - - Desbruyeres et al.
2001
Lucky Strike Diffuser 29.3+29.9(5) 6.4+1(5) 18.8+30.6(5) 61.9+115.2 - - Desbruyéres et al.
(Eiffel Tower) (5) 2001
Mirocaris 6.8+1.3(11) 7.3+0.4(11) 2.4+2.4(11) 0.8+1(11) - - Desbruyéres et al.
2001
7.49+1.54 (13- 6.01+0.22 (2- 38.31+11.94 3.53+2.67 1.62+1.96 Sarrazinet al. 2015
19) 4) (13-19) (13-19) (2-4) '
Lucky Strike  Diffuser 9.2£4(2) 6.6+0.6(2) 23%3.1(2) 03£0.3(2) - - Desbruyeresetal.
(Bairro Alto) . 2001
Mirocaris 9.5£3.4(6) 6.9+0.4(6) 19.9+14.7(6) 0.2%£0.2(6) - - Desbruyeresetal.
2001
Lucky Strike Diffuser 85.0+ 63.6(2) 5.3+1.1(2) 155.7+147.5 4.8+6.4(2) - - Desbruyéres et al.
(Elisabeth (2) 2001
PP24)  Mirocaris 13.7(1) 6.31(1) 2.78(1) 0(1) - . Desbruyéres et al.

2001
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2. The shallow-water species Palaemon elegans

2.1. Selection criteria

Palaemon elegans (Rathke 1837) was selected as a comparative shallow-water species model.
The Palaemonidae family has a close taxonomic relationship to the vent Alvinocarididae (Figure 4A)
(Tokuda et al. 2006, Sun et al. 2018), they are approximatively in the same size range (adults are slightly
larger than M. fortunata), easily breed and maintained in laboratory, and they tolerate a similar
thermal range as vent species, with daily thermal fluctuations ranging from 8 to 25°C in intertidal
environments (Bates et al. 2010) and temperatures superior to 30°Cin summer during low tide (Ravaux
et al. 2016). Both environments display an unstable temperature regime, although changes in the
intertidal habitat are not as acute as in the vent environment (Bates et al. 2010). For these reasons,
physiological comparisons between Palaemonidae and Alvinocarididae appear relevant, and the
palaemonid species Palaemonetes varians has previously been used as a model species for comparison
with deep hydrothermal vent shrimp (Gonzalez-Rey et al. 2007, 2008, Cottin et al. 2010, Oliphant et
al. 2011, Ravaux et al. 2012, Smith et al. 2013). For this thesis project, specimens of P. elegans were

kindly sampled twice a year and provided to the AMEX team by Nicolas Rabet (UMR 7208 BOREA).

2.2. Distribution, feeding habits and gross morphology

P. elegans is commonly found on the rocky foreshore of the French coast, and is more generally
present on the coastal regions of the Atlantic, the Baltic, the Mediterranean, the Black Sea, the Caspian
Sea and the Azores (Neal 2008). It inhabits intertidal areas, lagoons and estuaries, forming abundant
populations in vegetated places (Dalla Via 1985). This species is an opportunist feeder, omnivorous
and necrophageous, feeding on algae, small invertebrates, organic detritus and dead animals. P.
elegans has the typical morphology of a benthic caridean shrimp, with an elongated and serrated
rostrum and stalked eyes (Figure 21A,B). It can reach 6.3 cm in total length and its carapace is
transparent with variable pigmentation (Figure 21B) as a camouflage strategy. Notably, the lateral
antennule is divided into a long, thin external ramus and a short internal ramus, the latter bearing the

olfactory aesthetasc sensilla.
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A rostrum

Allat R|nt / 7
Allat Rext /

Almed

A2

Figure 21 Morphology of P. elegans

A. Left view sketch. Antennules and antennae are not to scale. Allat Rint, intern ramus of the lateral antennule;
Allat Rext, extern ramus of the lateral antennule; Almed, medial antennule; A2, antenna. Scale bar = 1cm.
B. Right view photography (Credits: R. Pillon).
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Materials and Methods

I. Sampling, acclimatization and maintenance
1. Hydrothermal shrimp
2. Coastal shrimp

Il. Imaging approaches
1. Photonic microscopy
2. Scanning Electron Microscopy
3. Transmission Electron Microscopy
4. Epifluorescent and confocal microscopy
5. X-ray micro-computed tomography

Ill. Experiments on live animals
1. Electroantennography
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1.2. Biological preparation

1.3. Recordings, stimulus delivery and analysis

1.4. Chemicals
* Positive and negative controls
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* Hydrothermal fluid chemical stimuli and pH controls
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2. Behavior experiments

2.1. Experiments at atmospheric pressure on P. elegans and M. fortunata
2.1.1. Attraction tests to food odor sources and sulfide
* Two-choice experiments on single individual...
* Multiple-choice experiments on single individual...
* Two-choice experiments on multiple individuals...
2.1.2. Attraction test to warm temperature

2.2. Experiments at in situ pressure on M. fortunata and R. exoculata
* Preliminary experiment in the IPOCAMP...
* Experiments in the VISIOCAMP...

IV. Molecular biology

1. RNA extraction and reverse transcription
2. Sequencing and mRNA expression using RT-PCR
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I. Sampling, acclimatization and maintenance

1. Hydrothermal shrimp

Vent shrimp were sampled with a vacuum device controlled by the hydraulics arms of the

Victor 6000 (Remote Operated Vehicle [ROV]) or Nautile 6000 (Human Operated Vehicle [HOV])

submersibles. Cruises and sites from the Mid-Atlantic Ridge where specimens of Mirocaris fortunata,

Rimicaris exoculata, Rimicaris chacei and Alvinocaris markensis were sampled are summarized in Table

4.

Table 4 Cruises and sampling origin of vent shrimp used for the experiments

Vessel

Cruise, year /submersible Chief scientist Sites Species Experiments
MOMARSAT 2011 Pourquoi Pas? M. Cannat Lucky Strike M. fortunata Imaging (A)
/ ROV Victor Molecular biology
MOMARSAT 2012 Thalassa / ROV M. Cannat and Lucky Strike M. fortunata Imaging (A)
Victor P-M. Sarradin Molecular biology
BIOBAZ 2013 Pourquoi Pas? F. Lallier Lucky Strike M. fortunata Imaging (A)
/ ROV Victor Molecular biology
Menez Gwen M. fortunata Behavior
Molecular biology
Rainbow R. exoculata, R. Molecular biology
chacei, A. markensis
MOMARSAT 2014 Pourquoi Pas? M. Cannat Lucky Strike M. fortunata Behavior
/ ROV Victor
BICOSE 2014 Pourquoi Pas? M-A. Cambon- TAG, Snake Pit M. fortunata, R. Molecular biology
/ ROV Victor Bonavita exoculata, R. chacei,
A. markensis
MOMARSAT 2016 Pourquoi Pas? M. Cannat Lucky Strike M. fortunata EAG
/ ROV Victor Behavior
MOMARSAT 2017 Pourquoi Pas? M. Cannat Lucky Strike M. fortunata Behavior
/ ROV Victor
BICOSE 2018 Pourquoi Pas? M-A. Cambon- TAG R. exoculata Behavior
/ HOV Nautile Bonavita Snake Pit M. fortunata Behavior
Imaging (B)

A, antennal appendages; B, brain; EAG, electroantennography.
*Lucky Strike (37°18’N,32°16’'W) 1700 m depth; Menez Gwen (37°85’'N,31°51’W) 800 m depth; Rainbow
(36°13'N,33°54’W) 2260 m depth; TAG (26°8’N,44°49’W) 3600 m depth; Snake Pit (23°22’N,44°57°W) 3500 m

depth.
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For in vivo studies, isobaric recovery with the PERISCOP device (see Chapter | — section Ill.1.)
was used during the BICOSE 2018 cruise to sample M. fortunata and R. exoculata specimens from the
TAG (3600 m depth) and Snake Pit (3500 m depth) sites, prior to behavior experiments in the
VISIOCAMP aquarium (see Chapter | — section Ill.2.). For behavior and electrophysiology experiments
at atmospheric pressure (see this chapter, section Ill.), specimens of M. fortunata were collected from
the Lucky Strike site (1700 m depth) without isobaric recovery and maintained on board in 5to 10 L
seawater aquaria at 5-9 °C, at atmospheric pressure. This species tolerates relatively well the variations
of pressure and temperature during the ascent, from sites that do not exceed 2000 m depth (Shillito
et al. 2015). At the end of the cruise, surviving specimens were transferred to the Oceanopolis
aquarium (Brest, France) and acclimated for at least two weeks in 80 L open circuit aquaria with
oxygenated seawater at 9°C, in dark conditions (except during feeding). Each aquarium contained up
to ~50 individuals. Shrimps were fed first with mussels, and progressively with a nutritive powder for

crustaceans (LiptoAqua, Madrid, Spain).

After acclimatization, shrimps were maintained in their rearing tanks for behavior experiments
at the Oceanopolis aquarium, or transferred to the AMEX laboratory (Paris, France) in a 175-L aquarium
containing up to 40 individuals, with artificial oxygenated seawater (Red Sea Salt, Red Sea, Houston,
TX, USA) at 9°C, in dark conditions, and fed twice a week. For both locations, a 50 W thermostat heater

set to 25°C was placed in each aquarium to serve as a hot spot for the shrimps.

2. Coastal shrimp

Specimens of Palaemon elegans were collected from Saint-Malo Bay, France, by Nicolas Rabet
(UMR 7208 BOREA) in 2016, 2017 and 2018 using a shrimp hand net. They were acclimated at the
AMEX laboratory for at least two weeks and housed communally in a 175-L aquarium with oxygenated
artificial seawater at room temperature (20+£1°C) under a 12:12 light:dark cycle, and fed three times a

week with shrimp food pellets (Novo Prawn, JBL, Neuhofen, Germany).
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Procedures, species and origin of the samples used for the imaging are summarized in Table 5. Samples

preparation, protocols and equipment configurations are detailed hereinafter into table format.

Table 5 Summary of procedures, species and origin of the samples used for imaging

Samples Procedures Species Sites Sampling
Lateral SEM, TEM M. fortunata Lucky Strike Momarsat 2011,
antennule, (37°18'N,32°16'W)  2012; Biobaz 2013
antenna P. elegans Baie de St Malo 2012

(48°38’N,2°0'W)
R. exoculata Rainbow Biobaz 2013
(36°14'N,33°54'W)

Brain Immunohisto- M. fortunata Snake Pit Bicose 2018
chemistry, X-ray (23°922'N,44°57'W)
micro-computed P elegans Baiede StMalo 2017
tomography (48°38’N,2°0'W)

Baie de St 2018
Coulomb

(48°41'N,1°57'W)
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1. Photonic microscopy

SAMPLES PREPARATION

Fixation

Glutaraldehyde 2.5 %
35 mL filtered seawater (0.2 um) + 10 mL distilled water + 5 mL glutaraldehyde 25%

Fixative

Seawater / Sodium azide NaNs

Rinsing solution )
50 mL filtered seawater (0.2 um) + 0.04 NaN3

Samples were fixed for 4-16 h at 4°C.
The fixative was then replaced by rinsing solution until the post-fixation step.

Post-fixation

Post-fixative solution 1 volume osmium 4% : 3 volumes distilled water

3 rinses with distilled water — 3x 10 min
1 bath in post-fixative solution at ambient temperature — 45 min
3 rinses with distilled water — 3x 10 min

Dehydration

Successive baths in ethanol (50°-70°-95°-100°-100°) - 10 min each
1 bath in ethanol 99% / propylene oxide — 10 min
1 bath in propylene oxide — 10 min

Embedding

Epon8126¢g
+ Dodecenyl succinic anydride DDSA 2.25 g
+ Methyl nadic anhydre MNA 3.75 g
+ Benzyldimethylamine BDMA 0.35 g

Epoxy resin

1 bath in % epon / % propylene oxide — % day
1 bath in % epon / % propylene oxide — % day
1 bath in % epon / % propylene oxide — % day
1 bath in pure epon -1 h a 50°C under vacuum
Embedding in pure epon —48 h at 60°C

SECTIONING

Embedded samples were cross-sectioned (500-600 nm) with an ultramicrotome (Leica, Ultracut R).
Sections were dropped off on glass slides.

STAINING

Staining solution Toluidine blue 1 g + azur blue 1 g + saccharose 1 g + sodium borate 1 g

Sections were stained on glass sides over a heating plate.

OBSERVATION

Sections were observed under a photonic microscope Olympus BX61 and images were recorded
with ImagePro Plus software, with the help of Muriel Jager at the IBPS, Paris, France.
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2. Scanning Electron Microscopy (SEM)

SAMPLES PREPARATION

Fixation

Glutaraldehyde 2.5 %
35 mL filtered seawater (0.2 um) + 10 mL distilled water + 5 mL glutaraldehyde 25%

Fixative

Seawater / Sodium azide NaNs

Rinsing solution )
50 mL filtered seawater (0.2 um) + 0.04 NaNs

Samples were fixed for 4-16 h at 4°C.
The fixative was then replaced by rinsing solution until the post-fixation step.

Post-fixation

Post-fixative solution 1 volume osmium 4% : 3 volumes distilled water

3 rinses with distilled water — 3x 10 min
1 bath in post-fixative solution at ambient temperature — 45 min
3 rinses with distilled water — 3x 10 min

Dehydration

Successive baths in ethanol (50°-70°-95°-99°-99°) - 10 min each

Critical Point Drying

Samples dehydration was completed with critical point drying (CPD7501, Quorum Technologies)

METALLIZATION

Samples were metallized with platinum in a Scancoat six Edwards sputter-unit and carbonated (to
evacuate charges that could accumulate in non-conductive samples that would consequently be
destroyed)

OBSERVATION

Samples were viewed with a scanning electron microscope Hitachi SU3500 operating at 20 kV,
with the help of Geraldine Toutirais at the MNHN, Paris, France.
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3. Transmission Electron Microscopy (TEM)

SAMPLES PREPARATION
Fixation

Glutaraldehyde 2.5 %
35 mL filtered seawater (0.2 um) + 10 mL distilled water + 5 mL glutaraldehyde 25%

Fixative

Seawater / Sodium azide NaNs
50 mL filtered seawater (0.2 um) + 0.04 NaNs

Rinsing solution

Samples were fixed for 4-16 h at 4°C.
The fixative was then replaced by rinsing solution until the post-fixation step.

Post-fixation

Post-fixative solution 1 volume osmium 4% : 3 volumes distilled water

3 rinses with distilled water — 3x 10 min
1 bath in post-fixative solution at ambient temperature — 45 min
3 rinses with distilled water — 3x 10 min

Dehydration

Successive baths in ethanol (50°-70°-95°-99°-99°) - 10 min each
1 bath in ethanol 99% / propylene oxide — 10 min
1 bath in propylene oxide — 10 min

Embedding

Epon8126 g
+ Dodecenyl succinic anydride DDSA 2.25 g
+ Methyl nadic anhydre MNA 3.75 g
+ BDMAO0.35¢g

1 bath in % epon / % propylene oxide — % day
1 bath in % epon / % propylene oxide — % day
1 bath in % epon / % propylene oxide — % day
1 bath in pure epon -1 h a 50°C under vacuum
Embedding in pure epon —48 h at 60°C

Epoxy resin

SECTIONING
Embedded samples were sectionned (70-80 nm) with an ultramicrotome (Leica, Ultracut R).

Sections were dropped on copper grids (150, 200 or 300 mesh) eventually covered with formvar
(Agar Scientific and Athene)

CONTRAST
Contrasting agent Saturated uranyl acetate (filtered 0.2 um)

Grids were dropped off (sample side) on the contrasting agent on a heating device at 60°C for 15-

20 min protected from the light (uranyl acetate solutions are photolabile). Grids were than washed

by 20 consecutive immersions in 3 beakers of distilled water (filtered 0.2 um), and dried on filter
paper (blank side)

OBSERVATION

Grids were viewed with a transmission electron microscope Hitachi H7100 operating at 75 kV, with
the help of Chakib Djebiat at the MNHN, Paris, France.
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4. Epifluorescent and confocal microscopy

SAMPLES PREPARATION
Fixation
Fixative Formaldehyde 4% prepared with Phosphate Buffered Saline (PBS) 0.1 M
Rinsing solution PBS0.1MpH7.4

Samples were fixed for 24-48 h at 4°C.
The fixative was then replaced by rinsing solution until the dissection step.

Dissection

Brains were dissected in PBS under a binocular microscope
Embedding

Dissected brains were embedded in low-gelling agarose 3 %

SECTIONING

Brains were sectioned (100 um) in the horizontal plane with a vibratome (Zeiss Hyrax V-50)

ANTIBODY STAINING

Pre-incubation

Brain sections were pre-incubated for 2x30 min in PBT (PBS + 0.3 % Triton-X100 + 1 % bovine
serum albumin) to improve antibody penetration.

Sections were then washed in PBS 0.1 M 6x30 min.

Primary antibody incubation

Monoclonal anti-SYNORF1 synapsin antibody (DSHB, 3C1 1; from mouse)

Polyclonal anti-A-allatostatin antiserum (A-type Dip-Allatostatin I; Jena Bioscience,
abd-062; from rabbit)

Primary
antisera*

Brain sections were incubated overnight in the primary antisera at room temperature. Sections
were then washed in PBS 0.1 M 6x30min.

Secondary antibody incubation
Alexa Flour 488 (goat, anti-rabbit)
Cy3 (goat, anti-mouse)
+ HOECHST 33258 (Sigma, 14530) as nuclear marker

Secondary
antisera

Brain sections were incubated overnight in the secondary antisera at room temperature. Sections
were then washed in PBS 0.1 M 6x30min.

*Antibody specificity is detailed below.

OBSERVATION

Sections were mounted in Mowiol 4-88 (Roth, No. 0713.2) and viewed with a Nikon Eclipse 90i
epifluorescent microscope and with a Leica TCS SP5II confocal laser-scanning microscope equipped
with DPSS, Diode- and Argon-lasers and operated by Leica “Application Suite Advanced
Fluorescence” software package (LASAF), with the help of Rebecca Meth at the Zoological Institute
and Museum, Greifswald, Germany. Digital images were processed with LIF and Fiji softwares.
Only the global picture enhancement features (brightness and contrast) were used.
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Antibody specificity (from Meth et al. 2017)
Syn apsin(GLOSSARY)

The monoclonal anti-SYNORF1 synapsin antibody (DSHB Hybridoma Product 3C11; anti SYNORF1 as
deposited to the DSHB by E. Buchner) was raised against a Drosophila melanogaster GST-synapsin
fusion protein and recognizes at least four synapsin isoforms (70, 74, 80 and 143 kDa) in western blots
of D. melanogaster head homogenates (Klagges et al. 1996). Similar to the fruit fly, the antibody
consistently labels brain structures in major subgroups of the malacostracan crustaceans (e.g. Beltz et
al. 2003; Harzsch et al. 1998, 1999; Krieger et al. 2012) in a pattern that is consistent with the
assumption that this antibody labels synaptic neuropils in crustaceans.

A-type Dip-allatostatin |

The A-type allatostatins/GL95ARY) represent a large family of neuropeptides that were first identified
from the cockroach Diploptera punctate. The polyclonal rabbit allatostatin antiserum was raised
against the D. punctata A-type Dip-allatostatin I, APSGAQRLYGFGL amide, coupled to bovine
thyroglobulin using glutaraldehyde (Vitzthum et al. 1996). It has previously been used to localize A-
type allatostatin-like peptides in crustacean and insect nervous systems (e.g. Kreissl et al. 2010,
Polanska et al. 2012). In the text, the term allatostatin immunoreactivity is used to indicate that the
antibody most likely binds to various related peptides within this peptide family.

5. X-ray micro-computed tomography

SAMPLES PREPARATION
Fixation

Fixative Bouin (Sigma)

Full samples remained in the fixative until the rinsing and dehydration step.

Rinsing and dehydration
Successive baths in ethanol (30°-50°-60°-70°-80°-90°-96°-99°-99°) — 30 min each

CONTRAST

Full samples were contrasted in iodine, rinsed in ethanol 99° 2x30 min and critical point dried to
enhance the contrast

OBSERVATION

Full samples were scanned dry (scan medium air) using a XRadia XCT-200 that use a 90 kV/8 W
tungsten x-ray source and switchable scintillator-objective lens units, with the help of Jakob
Krieger, Marie Hornig and Andy Sombke at the Cytology and Evolutionary Biology department,
Greisfwald, Germany.

3D reconstruction

Tomography projections were reconstituted using the reconstruction software provided by Xradia,
resulting in image stacks (DICOM format). The 3D volume reconstructions of the image stacks were
performed using the software AMIRA (VSG), with the help of Jakob Krieger at the Cytology and
Evolutionary Biology department, Greisfwald, Germany.
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lll. Experiments on live animals

1. Electroantennography (EAG)

1.1. Specimens

Specimens of M. fortunata and P. elegans were transferred to the INRA laboratory (Neuro-
Ethology of Olfaction team, Sensory Ecology department, iEES institute, Saint-Cyr, France) for the
electrophysiological experiments. Each species was housed communally in a 80 L-aquarium with
oxygenated artificial sea water (Red Sea Salt, Red Sea, Houston, TX, USA) under a natural light:dark
cycle. P. elegans specimens were kept at room temperature (21+1°C). M. fortunata specimens were
kept at 9+1°C with a 50 W thermostat heater (set to 25°C) to serve as a hot spot. The shrimps were
starved for at least 48 h to prevent any potential adaptation of their chemosensory neurons to food

odors. During starvation, P. elegans were isolated individually in 18 L-aquaria to prevent cannibalism.

>
A. Sketch of the biological preparation used to record EAG responses from antennal appendages. The shrimp is
held in a pipette cone, ventral face to the top, with the anterior region immerged in PS solution. PS is also
continuously perfused over the branchial cavity, while a second perfusion allows the evacuation of solution from
the bath. The recording electrode is inserted in the antennal appendage, and the reference electrode is inserted
between the abdomen and the telson. The stimulation device is inclined in order to stimulate the overall length
of the recorded organ. Not to scale. PS, Panulirus saline.
B. Perspective sketch of the lateral antennule (here of P. elegans), showing the insertion of the recording
electrode through the cuticle, between two rows of aesthetascs. When a chemical solution stimulates the
sensilla, it activates the innervating chemosensory neurons, which produce an electrical field potential, recorded
by the electrode. The neuron and axon clusters representation is speculative. Not to scale.
C. Functional diagram of the EAG set up. The stimulation protocol, defined under the Clampex software, is
transmitted by the acquisition board to the electrovalves. According to the procedure selected, an electrovalve
opens, which allows the passage of the stimulus from a pressurized reservoir to the biological preparation, via
the manifold. The biological electrical signal is recorded by the electrodes, amplified and digitized by the
acquisition board and the computer.
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Figure 22 Sketches of biological preparation, recording electrode connection and EAG set up
Legend previous page.
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1.2. Biological preparation

The EAG experimental design is sketched in Figure 22A and Figure 23. The shrimp was
restrained in a 1 mL or 5 mL pipette tip cut according to the shrimp size with the antennal appendages
and the posterior part of the abdomen out at each extremity of the cone. The shrimp was placed
ventral face to the top to have direct access to the ventral side of the antennule bearing the aethetascs.
The preparation was attached to a UM-3C micromanipulator (Narishige, London, UK) and angled at
approximately 45° so that the anterior part of the animal (i.e. antennal appendages) was submerged
in a Petri dish filled with Panulirus saline (PS, see composition in section 1.4) and the posterior part
(i.e. telson and abdomen) remained in air. A gravity-fed PS perfusion was inserted in the pipette tip
just over the cephalothorax, to irrigate the branchial cavity and keep the animal alive, and to renew
the PS bath solution. The antennules were immobilized with U shape tungsten hooks on a piece of
Styrofoam stuck on the bottom of the Petri dish. The preparation was visualized under a dissecting
microscope (M165C, Leica, Nanterre, France). For P. elegans, experiments were done at room

temperature (21+1°C). For M. fortunata, the PS perfusion was cooled to 9+1°C using frozen blocks.

>
A. Global view of the EAG apparatus within a Faraday cage. b, biological preparation; f, Faraday cage; m,
micromanipulateur (m;, recording electrode; m,, shrimp holder; ms, stimulator; ms, reference electrode); t,
magnetic table.
B. Devices around the biological preparation. a, amplifier headstage; b, biological preparation; m’, manifold (two
entries connected to the stimulation device); of, optic fibers.
C. Biological preparation and electrodes connection. a, amplifier headstage; cp, pipette cone; E, recording
electrode; Ef, reference electrode; m’, manifold exit; of, optic fibers; PS, Panulirus saline solution; p, PS perfusion
over the branchial cavity; s, shrimp; w, waste perfusion.
D. Pressurized stimulation device with 8 channels. Ev, electrovalves; g, gaz entry (air or nitrogen); m”,
manometer; R, pressurized reservoirs.
E. Immobilization of the lateral antennule of P. elegans for EAG recordings. E, recording electrode; th, tungsten
hook; rint, intern ramus of the lateral flagellum of the antennule; rex, extern ramus of the lateral flagellum of the
antennule; sty, styrofoam; sc, scaphocerite.
F. Connection of the recording electrode within the internal ramus of the lateral antennule of P. elegans. aes,
aesthetascs; E., recording electrode; riy, internal ramus of the lateral flagellum of the antennule; rex, external
ramus of the lateral flagellum of the antennule; sty, Styrofoam.
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Figure 23 EAG set up illustrations

Legend previous page.
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1.3. Recordings, stimulus delivery and analysis

Electrodes were pulled from GB150F-8P glass capillaries (Science Products, Hofheim,
Germany) using a P-97 puller (Sutter Instrument, USA). They had a tip diameter of 1 to 2.5 um and
were filled with PS. The reference electrode was introduced through the soft articular membrane
between the telson and the abdomen. The recording electrode was inserted with a NMM-25
micromanipulator (Narishige, London, UK) in the base, middle or apex region of the antennule bearing
the aesthetascs, between two aesthetasc rows (Figure 22B; Figure 23E,F), or in the proximal region of
the antenna. Signals were amplified (x100) and filtered (0.1-1000 Hz) using an EX1 amplifier with a
4002 headstage (Dagan, Minneapolis, USA), and digitized at 2 kHz by a 16-bit acquisition board
(Digidata 1440A) under Clampex 10.3 (Molecular Devices, Union City, USA) (Figure 22C). Data were
analyzed using Clampfit (Molecular Devices). Signals were low-pass filtered offline at 20 Hz with a

Gaussian low-pass filter. Data are given as mean + s.e.m.

To deliver chemical stimuli, a pressurized perfusion system with 8 channels (AutoMate
Scientific, Berkeley, CA) was used (Figure 23D). For stimulations with hydrothermal fluid compounds,
the perfusion system was pressurized with nitrogen gas to prevent the oxidation of the solutions within
the reservoirs. Each reservoir was connected to one entry of a MPP-8 multi-barrel manifold(Gt0S5ARY)
(Harvard Apparatus, Les Ulis, France). A segment (60 mm) of deactivated gas chromatography (GC)
column (0.25 mm internal diameter) was glued to the manifold exit. The manifold was mounted onto
a UM-3C micromanipulator and the tip of the stimulus GC column was positioned approximately 1.5

mm from the recorded flagellum in its longitudinal axis.

Stimuli were applied for 1 s at 5 psi (1.1 mL.min). Consecutive stimuli were delivered with at
least 2 min intervals to prevent chemosensory adaptation. To establish the dose-response relationship
for a food odor stimulus (positive control, see section 1.4), stimuli were applied in increasing
concentrations. To analyze the local and global response patterns, glass capillaries with two diameters
were used to stimulate wide and narrow portions of the antennule (0.86 mm and 100 um internal
diameter, respectively) perpendicular to the antennule axis. Responses to the positive control were
measured at the beginning and at the end of each stimulation series to ensure that the quality of
recording remained constant throughout the experiment. Recordings of low quality (i.e. amplitude of
responses to the positive control inferior to 0.3 and 0.08 mV for the antennule and the antenna,
respectively) were excluded from the analysis. When responses to the negative control had different

amplitudes at the beginning and at the end of an experiment, the average of the two values was used.
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1.4. Chemicals

Stimuli, concentrations and controls used for EAG are given in Table 6.

Table 6 Stimuli and concentrations tested with EAG on M. fortunata and P. elegans

Stimulus Concentrations, dilutions Use
Shrimp food extract 0.2 g.mL? Positive control
Panulirus saline (PS) - Negative control
PSpH6 - pH control for FeClz
PS pH 11 - pH control for NazS 14 mmol.L?
Mussel extract 0.5g.mL? Food odor stimulus
Crab extract 0.1g.mL? Food odor stimulus
Dead shrimp extract non diluted (75 mg.mL?); 1:10; 1:100 Food odor stimulus

0.04, 0.1, 0.4, 1, 4, 40, 300, 2000, 14000

NazS 1 Hydrothermal fluid stimulus
pmol.L

FeCl, 0.05, 0.1, 0.5, 1, 5, 60, 900, 10000 pmol.L'*  Hydrothermal fluid stimulus

MnCl, 0.05,0.1,0.5, 1, 5, 50, 500, 3500 pmol.L*? Hydrothermal fluid stimulus

e Positive and negative controls

A Panulirus saline (PS) solution (composition in mmol.L™: 486 NaCl, 5 KCl, 13.6 CaCl,, 9.8 MgCl,
and 10 Hepes, pH 7.8-7.9; Hamilton and Ache, 1983) was used as a negative control, and for the

preparation of stimuli. The osmotic pressure was adjusted to 1050 mOsm.L? with mannitol.

An aqueous extract of shrimp food pellets (Novo Prawn [NP]) was used as positive control in
all experiments, and for the determination of recording parameters. The pellets were dissolved for 48
h at room temperature at 0.1 or 0.2 g.mL in PS. The extracts were then centrifuged at 5900 g for 10,
15 and 20 min and the supernatants were collected after each centrifugation and filtered (0.45 um),

aliquoted and stored at -20°C until use.

¢ Food odor stimuli

Aqueous extracts of dead M. fortunata and P. elegans individuals were prepared, from dead
specimens kept in PS for 48 h at room temperature at approximately 75 mg.mL?. Extracts were then
centrifuged at 2000 g and the supernatant was filtered (0.45 um), aliquoted and stored at -20°C. Before
use, pH was adjusted to 7.8-7.9 and solutions were diluted 10 and 100 times. Aqueous extracts of

green crab Carcinus maenas and blue mussel Mytilus edulis individuals were prepared from fresh
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material at approximately 0.1 and 0.5 g.mL in PS, respectively, using the same protocol as described
above. Osmolarity (1050 mOsm.L? with mannitol) and pH (7.85 with NaOH) were adjusted for all

solutions.

e Hydrothermal fluid chemical stimuli and pH controls

For common chemical stimuli of the hydrothermal fluid (sulfide, iron and manganese), dose-
response relationships were established with concentrations (Figure 24) in the range of those that M.
fortunata is likely to encounter it its environment (sulfide, 5-38 umol.L}; iron, 0.2-2.5 umol.L? [Sarrazin
et al. 2015]; manganese, 0.004-4.8 umol.L™* [Aumond 2013]) to concentrations in the range of those of
the hydrothermal fluid at the Lucky Strike site (sulfide, 2-15 mmol.L™ [Renninger et al. 1995]; iron, 30-
863 pmol.L'Y; manganese, 50-450 pmol.L? [Charlou et al. 2000]). To minimize oxidation, all solutions
were prepared under a funnel connected to a nitrogen gas cylinder, with PS previously deoxygenated

by bubbling nitrogen for 5-10 min. All dilutions were made the day of use.

For the concentrations of M. fortunata close environment, stock solutions were prepared at 2
mmol.L? in deoxygenated PS, with pH adjusted to 2 for FeCl, (reference 372870, Sigma-Aldrich) and
MnCl; (reference M8054, Sigma-Aldrich) solutions, and to 9 for Na,S (reference 208043, Sigma-Aldrich)
solution. Stock solutions were diluted with deoxygenated PS. The concentrations 40 umol.L for Na,S
and 5 umol.L? for FeCl, and MnCl, correspond to the estimated concentrations in the environment of
M. fortunata (Sarrazin et al. 2015 for iron and sulfide, Aumond 2013 for manganese). For higher
concentrations, 4 concentrations were chosen on a logarithmic scale, the lowest corresponding to the
estimated concentration in the environment of M. fortunata, and the second highest corresponding
to the concentration measured in the pure fluid at the Lucky Strike vent site (Charlou et al. 2000).
Solutions were prepared in deoxygenated PS with serial dilutions from the highest concentration. For
FeCl; solutions, pH was adjusted to 6 to avoid iron precipitation. PS adjusted to pH 6 was used as a pH
control for FeCl; stimulation, and PS adjusted to pH 11 was used as a pH control for Na,S stimulation

series, to match the pH of the highest concentrated Na,S solution (14 mmol.L?).

1.5. Statistical analysis

One-way ANOVA with permutation test was used to test differences among amplitudes of EAG
responses to concentrations of each stimulus. For significant results, two-sided one-sample or two-
sample permutation test using Welsh t test was performed to investigate the difference with reference
values (0 or 1) or with the negative control for each condition/concentration. Data are given as means

+ s.e.m. Data analyses were carried out using RStudio v.1.0.136 software.
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Figure 24 Concentrations of hydrothermal fluid compounds tested with EAG

Concentrations of FeCl,, MnCl; and Na,S tested on M. fortunata and P. elegans with the EAG. Concentrations
include those measured in the habitat of M fortunata (yellow boxed numbers) and the the pure fluid at the Lucky
Strike site (red boxed numbers).

2. Behavior experiments

Species and origin of the samples used for behavior experiments are summarized in Table 7.

Table 7 Summary of behavior experiments, species and sampling origin

Pressure condition Stimuli Species Sites Sampling
Atmospheric Food odor M. fortunata Lucky Strike MOMARSAT
sources, sulfide (37°18'N,32°16'W) 2014,2017
P. elegans Baiede St Malo 2015, 2016, 2017

(48°38'N,2°0'W)

Temperature M. fortunata Lucky Strike MOMARSAT
(37°18'N,32°16'W) 2016
P. elegans Baie de St Malo 2016, 2017

(48°38'N,2°0'W)

In situ* Food odor M. fortunata Snake Pit BICOSE 2018
sources, sulfide (23°22'N,44°57'W) ;
R. exoculata TAG BICOSE 2018

(26°8'N,44°49' W)

M. fortunata Menez Gwen BIOBAZ 2013
(37°85'N,31°51'W)

*Experiments at in situ pressure on M. fortunata and R. exoculata were conducted on the vessel “Pourquoi Pas?”
(Ifremer) during the BICOSE 2018 cruise, for which the AMEX team (including Bruce Shillito, Magali Zbinden, Louis
Amand and ) was part of the scientific crew. The pressure devices VISIOCAMP, PERISCOP and BALIST were used
and are presented in Chapter I, section Ill. Preliminary experiments on M. fortunata were conducted during the
BIOBAZ 2013 cruise by Juliette Ravaux, Magali Zbinden and Bruce Shillito.
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2.1. Experiments at atmospheric pressure on P. elegans and M. fortunata

2.1.1. Attraction tests to food odor sources and sulfide

e Two-choice experiments on single individual of P. elegans and M. fortunata

For P. elegans, two-choice experiments were conducted in a plastic tank (32x18x18 cm). The
shrimps were starved at least for 48 h before the experiment. A shrimp was placed in the tank filled
with 8 L seawater at room temperature, and allowed to explore for 5 min before the beginning of the
trial. Two little bags made of compress tissue were then introduced just below the water surface, one
containing mussels without shell (food source) and the other only compress tissue (lure) (Figure 25A).
The shrimp was further observed for 10 min. After each trial, the tank was cleaned and refilled with
fresh seawater.

To examine the role of the antennules in food localization behavior, two ablations were tested:
lateral antennule or both medial and lateral antennule (Figure 25B). Ablated shrimps recovered for
one week prior to being tested. 20 shrimps were tested for each condition. Preliminary tests were
conducted under red light and dim light to reduce the visual cues, but the behavior was similar to that
observed under room light (fluorescent tube) (data not shown).

For M. fortunata, the same experiments were conducted at the Oceanopolis in a glass tank
(30x20x20 cm) filled with 8 L seawater at 10°C, as described above. No ablations were tested for M.
fortunata since no attraction to food-related odor was observed for non-ablated specimens (see

Chapter V).

Figure 25 Setup for two-choice experiments on single P. elegans and M. fortunata

A. Experimental setup. The shrimp was first placed in the tank for 5 min (P. elegans, room temperature; M.
fortunata, 10°C). The stimulus (S, food odor source) and the lure (L) were then immersed under the water surface
and the shrimp was observed for 10 min. B. Antennules ablations in P. elegans. Orange arrows, ablation of lateral
antennules; red arrows, ablation of both medial and lateral antennules. Al lat, lateral antennule; A1 med, medial
antennule; A2, antenna.
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® Multiple-choice experiments on single individual of P. elegans and M. fortunata

For P. elegans, multiple-choice experiments were conducted in a glass tank (50x30x35 cm)
filled with 8 L seawater at room temperature. 0.5 % Agarose gels were prepared with either seawater
(control gel), mussel extract (0.1 g.mL?) (food-related odor gel), Na,S (2 mmol.L?) (sulfide gel) or a
mixture of mussel extract and sulfide at the same concentrations (food-sulfide gel). 20 mL gels were
casted in the bottom of 50 mL black tubes (Falcon). For each trial, three control gel tubes and one
stimulus gel tube were introduced in the bottom of the tank at each corner, the opening of the tube
facing the center of the tank (Figure 26). The position of the stimulus was randomized in each trial. A
shrimp was placed in the tank and its behavior was video recorded from above with a camera (Canon

Legria camescope) for 30 min. After each trial, the tank was cleaned and refilled with fresh seawater.

For M. fortunata, the same experiments were conducted at the Oceanopolis aquarium in a
plastic tank (32.5x17.5x19 cm) filled with 8 L seawater at 10°C. The food-related odor gel was prepared
with shrimp food (0.1 g.mL?; Liptoaqua food pelets, Liptosa, Madrid, Spain). The two species were

starved for at least 48 h before the experiment.

N7
= & 4 A

Figure 26 Setup for multiple-choice experiments on single P. elegans and M. fortunata

Perspective (A) and from above (B) views of the experimental setup. The shrimp was placed in the tank (P.
elegans, room temperature; M. fortunata, 10°C) after the introduction of four tubes containing agarose gels
(three controls [C], one stimulus [S]) in each corner of the tank. The shrimp behavior was video recorded for 30
min from above.

e Two-choice experiments on multiple individuals of M. fortunata

Two-choice experiments were conducted at the Oceanopolis aquarium in rearing glass tanks
(40x40x40 cm) filled with 80 L seawater at 10°C and containing an aquaria heater set to 25°C. Each
tank contained several M. fortunata. 0.5 % Agarose gels were prepared with either seawater (control
gel), shrimp food extract (0.1 g.mL?; Liptoaqua food pelets, Liptosa, Madrid, Spain) (food-related odor
gel), Na,S (2 mmol.L?) (sulfide gel) or a mixture of food extract and sulfide at the same concentrations

(food-sulfide gel). The gels were casted in 20 mL cubic molds. For each replica, a control gel and a
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stimulus gel were introduced on each side of the tank (Figure 27). The position of the stimulus was
randomized for each replica. The heater used for rearing was left ON. The shrimp behavior was

observed for 30 min.

A B

A
m I

Figure 27 Setup for two-choice experiments on multiple M. fortunata

Perspective (A) and from above (B) views of the experimental setup. The experiments were conducted in 9°C
rearing tanks containing several individuals of M. fortunata with one thermostat heater (H). Two gels (one control
[C], one stimulus [S]) were introduced on each side of the tank. The shrimp were observed for 30 min.

2.1.2. Attraction test to warm temperatures

e Choice experiments between ON and OFF heaters on multiple individuals of P. elegans and
M. fortunata

Choice experiments were conducted in glass tanks (40x40x40 cm) filled with 80 L seawater at
9°C containing several M. fortunata and P. elegans, at the Oceanopolis aquarium. Seawater was
continuously renewed. Thermostat heaters were used as a hot spot stimulus. Each heater was covered
with foam fixed with 3 plastic collars, the position of which defined four zones (1-4) along the heater
(Figure 28A,C). Thermal gradient along the heater in the tank was measured with a temperature probe
at 20 points along the foam surface (Figure 28A). Positioning of the heaters close to the entrance of
new seawater or to the opposite side of the tank did not modified the thermal gradient (not shown).
Temperature gradient as well as mean temperature per zone is presented in Figure 28D.

For P. elegans, a batch of shrimps was placed in a tank and acclimated for 1 h with no heater.
Two heaters (one turned ON, one turned OFF) were then introduced in the tank on each lateral side,
in an upper position. The number of shrimps on each resistance was counted at different time intervals
for 180 min. For each consecutive 180 min trial, the heaters were inverted. For M. fortunata, two
batches of shrimps already present in their rearing tanks were tested, as described above. 6 and 4 trials
were conducted on M. fortunata and P. elegans respectively, and repeated on a second batch for each

species. Two trials were extended overnight.
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Figure 28 Setup for choice experiments between ON and OFF thermostat heaters on multiple P. elegans and
M. fortunata

A. Sketch of a thermostat heater covered by foam fixed with plastic collars that define 4 zones along the heater,
and points of measurements for establishing the thermal gradient.

B. Experimental setup. The experiments were conducted in 9°C rearing tanks containing several individuals of P.
elegans or M. fortunata. Two heaters (one turned ON, one turned OFF) were introduced and positioned on the
lateral sides of the upper region of the tank. Shrimp position over each heater was measured for 180 min and
eventually overnight. Arrows indicate the entrance and the exit of the renewing seawater system. SW, seawater.
C. View of a heater turned ON, with several individuals of M. fortunata. (Credits: D. Barthelemy / Océanopolis).
D. Thermal gradient along the foam surface, with mean (+ s.e.m.) temperature at each point of measurement
(indicated in A), and mean temperature (orange) for each zone.
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2.2. Experiments at in situ pressure on M. fortunata and R. exoculata

e Experiment in the IPOCAMP aquarium with multiple individuals of M. fortunata

An experiment at in situ pressure was conducted during the BIOBAZ (2013) cruise, in the
IPOCAMP aquarium, to test the attraction to sulfide. The shrimps were sampled from the Menez Gwen
site (800 m depth) and recovered in the IPOCAMP aquarium at 70 bars, 9°C for 1 h. Three successive
pulses of increasing concentrations of sulfide were applied by injecting 3 L of Na2S solutions at 25, 50
and 100 umol.L-1 via the recirculating seawater system entrance, with one hour interval between each
pulse (Figure 29). The shrimp behavior was video recorded during the whole experiment. The number
of shrimps in a 6 cm? surface around the pulse entrance was counted for 5 min prior and 10 min after

the beginning of each pulse.

Endoscope
— - — _ - | - -
] il | | el - T [ ] T
70 bars Goren oo Gron
9°C
”':ﬁ l--ﬁ o»:ﬁ
Qn . &" . &n . @" .
Q«
i
¥ > b 4 > S > T >
1h ; 1h ; 1h g 1h
Introduction shrimp Pulse Na,S 25 umol.L*? Pulse Na,S 50 umol.L? Pulse Na,S 50 umol.L?

Pressurization

Figure 29 Setup for preliminary experiment at in situ pressure on multiple M. fortunata

Experimental setup. Just after sampling, a batch of shrimps was placed in the IPOCAMP aquarium and maintained
at 70 bars, 9°C for 1 h before the beginning of the experiment. Pulses of increasing concentrations of sulfide were
injected from the bottom of the tank with 1 h interval. The shrimp behavior was video-recorded during the whole
experiment.
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e Experiments in the VISIOCAMP aquarium with multiple individuals of M. fortunata and R.
exoculata

Behavior experiments at in situ pressure were conducted during the BICOSE (2018) cruise, with
diverse stimuli: 0.3% agarose gels were prepared with either seawater (control gel), mussel extract
(food-related odor gel), or Na,S (2 mmol.L?) (sulfide gel). When prepared with no pH adjustement,
sulfide solutions are extremely basic (e.g. pH 11 for Na,S 2 mmol.L?) and the main sulfide species under
these pH conditions is bisulfide S*, which is poorly released. The release of sulfide under the Na,S form
(and H,S form in the vent habitat) is greatly enhanced when the pH is forced below the dissociation
constant (for H.S, pKA = 7.05), for example using acid. To test the release of sulfide in conditions closer
to the vent shrimp habitat, a gel was prepared with Na,S (2 mmol.L) at pH 4 (acid sulfide gel), and

another prepared with seawater adjusted to pH 4 (pH control gel), using HCI.

The gels were casted in metal tubes (to be heavy enough to sink) previously drilled in 50
positions (to allow the diffusion of chemicals outside the gel). The shrimps were sampled from the vent
sites (TAG, 3600 m depth; Snake Pit, 3500 m depth) with the PERISCOP device. On board, the PERISCOP
was opened, and the shrimps were separated in three batches. One batch was placed at 300 bars, 10°C
in the VISIOCAMP aquarium for the first replica experiment, and the two other batches were stored at
300 bars, 10°C in the BALIST aquarium for the second and third replica experiments. Two hours of
recovery followed the re-pressurization step. Then, using an isobaric line on the VISIOCAMP lid (which
allow the introduction of small elements without pressure variation [Shillito et al. 2015]), three agarose
gels (two controls, one stimulus) were introduced in the tank consecutively with 45 min interval (Figure
30). The two control gels were always introduced first. The shrimp behavior was video recorded using
a high-definition camera (AG-HCK10G HD camera head, AG-HMR10 portable recorded, Panasonic)

during the whole experiment.

The diffusion of sulfide from the gel was measured on board with the help of Christophe
Brandily (Ifremer). Briefly, one metal tube containing a sulfide gel prepared at 2 mmol.L was placed
in seawater in a 50 mL falcon tube. Sulfide concentration was measured in the surrounding seawater
2 and 3 hours after the gel introduction and was respectively 35 and 20 pmol.L. There is a decrease
of released sulfide overtime, consistent with its oxidation by seawater. In our behavior experiment,
the sulfide gel diffuses during 45 min; it is likely that in the tank, close to the gel, sulfide do not exceed

concentrations in the micromolar range.

71



Chapter Il — Materials & Methods

A Isobaric line | | ‘
Camera
1 E 1 E 1
- 1 y | 1
: | & :
1 1
1 1 R :
301005)(5:“5 ! )
v v Y &
N > S »
L > o > e ’ : P
2h i 45 min i 45 min 45 min
Shrimp introduction Introduction Introduction Introduction
Pressurization control gel n°1 control gel n°2 stimulus gel

Figure 30 Setup for experiments at in situ pressure on multiple M. fortunata and R. exoculata

A. Experimental setup. Just after sampling, a batch of shrimps was placed in the VISIOCAMP aquarium and
maintained at 300 bars, 10°C for 2 h before the beginning of the experiment. Two control gels and one stimulus
gel were then introduced in the tank through an isobaric line at 45 min interval. The shrimp behavior was video-
recorded during the whole experiment.

B. View inside the VISIOCAMP aquarium during the experiment, with several individuals of M. fortunata and
two control gels inside drilled metal tubes (arrows).
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IV. Molecular biology

1. RNA extraction and reverse transcription

Four hydrothermal species were used for molecular biology experiments (Rimicaris exoculata,
Rimicaris chacei, Mirocaris fortunata and Alvinocaris markensis). Cruises and sampling sites are
indicated in Table 8. The following organs were dissected: antennular medial and lateral flagella, the
antennae and abdominal muscles. The coastal species P. elegans was also included in the analysis, for
which the dissection included the following organs: antennular medial and lateral flagella (internal and
external ramus separated), the antennae, the mouthparts (mandibles and 2 pairs of maxillae), the first

and second walking legs and the eyestalks. All tissues were frozen in liquid nitrogen.

Table 8 Cruises and sites origin of the samples used for molecular biology

Sites Latitude Longitude Depth (m)  Cruise, year Ship/submersible Chief scientist

Menez Gwen 37°51'N 31°31'W 840 Biobaz, 2013 Pourquoi Pas? / ROV Victor F. Lallier
Lucky Strike 37°51'N 32°16'W 1700 Biobaz, 2013 Pourquoi Pas? / ROV Victor F. Lallier
Momarsat, 2011 Pourquoi Pas? / ROV Victor M. Cannat

Momarsat, 2012 Thalassa / ROV Victor M. Cannat and P. M. Sarradin
Rainbow 36°13'N 33°54'W 2260 Biobaz, 2013 Pourquoi Pas? / ROV Victor F. Lallier
TAG 26°08'N 44°49'W 3600 Bicose, 2014 Pourquoi Pas? / ROV Victor M. A. Cambon-Bonavita

Snake Pit 23°23'N 44°58'W 3480 Bicose, 2014 Pourquoi Pas? / ROV Victor M. A. Cambon-Bonavita

Frozen tissues were ground in TRIzol Reagent (Thermo Fisher Scientific) with a Minilys
homogenizer (Bertin Corp.). Total RNA was isolated according to the manufacturer’s protocol, and
quantified by spectrophotometry and electrophoresis in a 1.2% agarose gel under denaturing
conditions. RNA (500 ng) was DNAse treated to remove contamination using the TURBO DNAse kit
(Thermo Fisher Scientific) and then reverse transcribed to cDNA with the Superscript Il reverse
transcriptase kit (Thermo Fisher Scientific) using a oligo(DT);s primer according to the manufacturer’s

instructions.
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2. Sequencing and mRNA expression using RT-PCR

The cDNA fragments encoding IR25a were amplified by 2 rounds of polymerase chain reaction

(PCR). Oligonucleotide primers were designed from a multiple-sequence aligment of IR25a sequences

of crustaceans (Daphnia pulex, Croset et al. 2010; H. americanus AY098942, Hollins et al. 2003,

Lepeophtheirus salmonis PRINA280127, genome sequencing project), insects (Acyrthosiphon pisum,

Aedes aegypti, Anopheles gambiae, Apis mellifera, Bombyx mori, Culex quinquefasciatus, D.

melanogaster, Nasonia vitripennis, Pediculus humanus, Tribolium castaneum, Croset et al. 2010),

gastropod molluscs (Aplysia californica, Lottia gigantea, Croset et al. 2010), nematods (Caenorhabditis

briggsae XM_002643827, Stein et al. 2003, Caenorhabditis elegans NM_076040, The C. elegans

Sequencing Consortium) and an annelid (Capitella capitata, Croset et al. 2010). The nucleotide

sequences of generalist and specific primers, used for IR25a sequencing and localization in tissues

respectively, are listed in Table 9. The corresponding primers used for each species are listed in Table

10.

Table 9 Nucleotide sequences and specificity of primers used for IR25a sequencing and localization in tissues

Primer Specificity Sequence

Fw-IR25a-1 generalist TGGAACGGCATGATYAARSA

Fw-IR25a-2 generalist GAYTTCACSGTGCCTTACTA

Rv-IR25a-3 generalist TCCACCATCKCTCYTTSAGCG

Rv-IR25a-4 generalist ACGATRAASACACCACCGATGT

Fw-IR25a-5 Rimicaris exoculata TGACTGTACTAGAGCCTGAGGTGT

Rv-IR25a-8 Rimicaris exoculata AGCTTCCTCTGGTTCAAGAGCTTC
Fw-PE-IR25a-2 Palaemon elegans GAATGCCTCTGGTTCTGCATGACA
Rv-PE-IR25a-3 Palaemon elegans TCGAGAATTCCTCACCTACCATCTGC

R=A/G, Y=C/T, N=A/T/G/C, S=G/C, Fw, forward ; Rv, reverse

Table 10 Primers used for IR25a sequencing and localization in tissues of each shrimp species

Species

IR25a sequencing (PCR) Localization in tissues (RT-PCR)

Rimicaris exoculata

Rimicaris chacei
Mirocaris fortunata
Alvinocaris markensis

Palaemon elegans

Fw-IR25a-1 / Rv-IR25a-4
Fw-IR25a-2 / Rv-IR25a-3
Fw-IR25a-5 / Rv-IR25a-8
Fw-IR25a-5 / Rv-IR25a-8
Fw-IR25a-5 / Rv-IR25a-8
Fw-IR25a-1 / Rv-IR25a-4
Fw-IR25a-2 / Rv-IR25a-3

Fw-IR25a-5 / Rv-IR25a-8

Fw-IR25a-5 / Rv-IR25a-8
Fw-IR25a-5 / Rv-IR25a-8
Fw-IR25a-5 / Rv-IR25a-8

Fw-PE-IR25a-2 / Rv-PE-IR25a-3
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PCR amplification reactions were performed in a 20 uL volume containing 1 uL of cDNA
template, 2 ul of each primer [10 uM], 11.7 pL of H,0, 2 uL of PCR buffer [10x], 0.8 uL of MgCl, [50
mM], 0.4 pL of dNTP [10 mM] and 0.1 pL of BIOTAQ polymerase [5 U/uL] (Eurobio AbCys). The thermal
profile consisted of an initial denaturation (94°C, 3 min), followed by 35 cycles of denaturation (94 °C,
30 s), annealing (45 to 55°C, 45 s) and extension (72°C, 2 min), and a final extension (72°C, 10 min)
step. The PCR products were separated on a 1.5% agarose gel, purified with the GeneClean kit (MP
Biomedicals), and cloned into a pBluescript KS plasmid vector using the T4 DNA ligase (Thermo Fisher
Scientific). The ligation product was introduced in competent Escherichia coli cells (DH5alpha) that
were cultured at 37 °C overnight. The clone screening was performed through Pstl/Hindlll (Thermo
Fisher Scientific) digestion of plasmid DNA after plasmid extraction. Positive clones were sequenced
on both strands (GATC Biotech). The resulting nucleotide sequences were deposited in the GenBank
database under the accession numbers KU726988 (M. fortunata IR25a; consensus sequence from 6
clones), KU726987 (R. exoculata IR25a; consensus sequence from 3 clones), KU726989 (R. chacei
IR25a; consensus sequence from 4 clones), KU726990 (A. markensis IR25a; consensus sequence from
4 clones) and KU726984 (P. elegans IR25a; consensus sequence from 11 clones). Specific primers were
further designed to amplify IR25a sequences in diverse tissues of the 4 alvinocaridid species and the
palaemonid P. elegans (Table 10). PCR amplifications were performed using BIOTAQ polymerase
(Eurobio, AbCys) in a thermocycler (Eppendorf, Hamburg, Germany) with the following program: 94 °C
for 3 min, 35 cycles of (94 °C for 30's, 55 °C for 45 s, 72 °C for 2 min), and 72 °C for 10 min, with minor

modifications of annealing temperature for different primer pairs.
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Structure of chemosensory systems
in M. fortunata and P. elegans

l. Introduction

Il. Results and discussion
1. Description of antennal appendages morphology and anatomy
* General morphology of the antennal appendages
* Distribution of the aesthetascs on the lateral antennules
* Number of aesthetascs
* Dimensions of aesthetascs
* Diversity of non-aesthetasc setae
* Bacterial coverage on the antennal appendages of vent species
* Gross anatomy of the lateral antennules and the antennae
2. Ultrastructural analysis of aesthetasc cuticle and innervation
* Aesthetasc cuticle structure and thickness
* Pore-like structures in the aesthetasc cuticle of vent shrimp
* Number of olfactory sensory neurons
3. Structure of the chemosensory centers
* Brain general description
* Olfactory lobes and glomeruli subdivision
¢ Olfactory lobes volume and number of olfactory glomeruli
* Antennal and lateral antennular neuropils

* Hemiellipsoid bodies — Medulla terminalis complex

11l. Conclusions
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l. Introduction

The adaptive and functional relation of an organism to its habitat, environment and behavior
can be reflected in the structure of its sensory organs. For instance, shrimp that inhabit dark
hydrothermal vents present major transformations of their visual system to detect faint sources of
light, including a highly sensitive retina, loss of the eyestalks and image-forming optics (Van Dover et
al. 1989, Pelli and Chamberlain 1989, O’Neill et al. 1995, Nuckley et al. 1996, Lakin et al. 1997, Jinks et
al. 1998, Chamberlain 2000) and migration of the optic neuropils in a dorso-posterior position in the
brain (Charmantier-Daures and Segonzac 1998, Gaten et al. 1998b). In contrast to the visual system,
the chemosensory system in vent shrimp has been poorly studied (Renninger et al. 1995), even though
their environment is characterized by particular chemical conditions. As adaptations to detect their
habitat, vent shrimp may present structural specificities of their chemosensory system both at
peripheral and central levels, perhaps linked to highly efficient chemosensory abilities to take

advantage of the hydrothermal chemical scape.

The detection of chemicals starts at the peripheral level, for which the antennal appendages
are considered as major chemosensory organs. The lateral antennules bear olfactory aesthetasc
sensilla innervated by olfactory sensory neurons (OSNs) (Laverack 1964, Ache 1982, Griinert and Ache
1988, Hallberg et al. 1992, Mellon 2007, Hallberg and Skog 2011, Schmidt and Mellon 2011, Derby and
Weissburg 2014). Dendrites of OSNs from decapods exhibit a similar structure, with inner dendritic
segments (IDSs) that emanate from the somata, and divide into the aesthetasc shaft in outer dendritic
segments (ODSs) that bear the chemoreceptors (Ghiradella et al. 1968, Griinert and Ache 1988,
Hallberg et al. 1992, Mellon 2007, Hallberg and Skog 2011, Schmidt and Mellon 2011, Derby and
Weissburg 2014) (see Chapter |, Figure 16). Aesthetascs are also characterized by the absence of a
terminal pore, resulting in a necessarily thin cuticle to allow the passing of soluble odorant molecules
that must bind their cognate receptors located on the dendritic membranes of the OSNs (Blaustein et
al. 1993, Derby et al. 1997). Many structural features of the aesthetascs are associated to the olfactory
abilities of a species. The dimensions of the aesthetascs are likely to influence the sampling of an odor
plume, with longer aesthetascs associated to a larger chemoreceptive surface (Nelson et al. 2013).
Similarly, the aesthetasc cuticle thickness defines the portion of the sensillum permeable to odor
molecules (Derby et al. 1997). Because aesthetascs are associated to identical clusters of OSNs (Steullet
et al. 2000), a multiplication of these sensilla might raises the sensitivity to odorants (Beltz et al. 2003).
The number of IDSs and ODSs, subsequent to the number of olfactory receptors, could be linked to the
odorant discrimination performance (Ghiradella et al. 1968, Griinert and Ache 1988, Chittka and Niven

2009). Determination of these parameters (dimensions, number and cuticle thickness of aesthetascs,
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number of IDSs and ODSs) for vent shrimp could reveal potential hints for their olfactory abilities when
compared to a shallow-water shrimp species. Also, non-aesthetasc sensilla are located both on
antennular and antennal flagella, mouthparts, walking legs and on the body surface (Ache 1982, Garm
et al. 2003, Garm and Walting 2013). They are bimodal sensilla innervated by mecano- and
chemosensory neurons (Schmidt and Ache 1996, Cate and Derby 2001, Schmidt and Mellon 2011), and
exhibit a wide diversity of shapes, maybe linked to diverse chemosensory functions (Derby and Steullet
2001, Steullet et al. 2002, Horner et al. 2004, Schmidt and Derby 2005). Most of the knowledge on the
aesthetascs and bimodal sensilla results from studies on members of the Eureptantia (lobster, crayfish
and crab) (e.g. Tierney et al. 1986, Hallberg et al. 1992, Mellon 2007, Hallberg and Skog 2011, Schmidt
and Mellon 2011, Derby and Weissburg 2014), whereas only few studies are available on
representatives of caridean shrimp for which only the aesthetasc external morphology has been
described for few species (Hallberg et al. 1992, Mead 1998, Obermeier and Schmitz 2004, Zhang et al.
2008, Zhu et al. 2011, Solari et al. 2017).

The chemosensory neurons associated with the aesthetascs or bimodal sensilla innervate
distinct regions in the brain (Schachtner et al. 2005, Schmidt and Mellon 2011, Strausfeld and Andrew
2011, Loesel et al. 2013, Derby and Weissburg 2014, Harzsch and Krieger 2018) (see Chapter |, section
IV.1.4. and Figure 17). The axons of the OSNs target the olfactory lobes, whereas the axons of the
chemosensory neurons innervating non-aesthetasc sensilla target the lateral antennular neuropils. The
olfactory pathway is sketched in Figure 18 (Chapter I). The olfactory lobes consist in radially arranged
functional subunits called glomeruli. Central neurons connect the olfactory glomeruli with higher-
order neuropils, namely the hemiellipsoid bodies — medulla terminalis complex, which are multi-
modality integrative centers. During evolution, specific brain regions may have expanded relatively to
the rest of the brain, in correspondence with ecological specialization (Chittka and Niven 2009, Harzsch
and Krieger 2018). For instance, in blind cavernous crustaceans the olfactory lobes are well-developed,
whereas the optic neuropils are considerably reduced, suggesting an important role of olfaction for
these species (Stegner et al. 2015, Ramm and Scholtz 2017). Furthermore, changes in the organization
of a neuropil, e.g. an increased volume of the olfactory lobes, could indicate a varying ability to
discriminate the sensory input (Beltz et al. 2003). Few studies report the brain structure of Caridea
species (two Palaemonidae Macrobrachium species [Sandeman et al. 1993, Ammar et al. 2008] and
two Antarctic Pleyocyemata species [Bluhm et al. 2002]), which is close to the original decapod brain
ground plan. The brain of the hydrothermal shrimp Rimicaris exoculata and Rimicaris chacei have been
examined with regards to their optic neuropils (Charmantier-Daures and Segonzac 1998), but poor

attention has been devoted to their chemosensory centers.
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Morphometric quantifications of chemosensory structures, especially the olfactory system
(e.g. number and dimensions of aesthetascs, number of IDSs and ODSs, aesthetasc cuticle thickness,
volume of olfactory lobes, number of olfactory glomeruli), are used as rough estimates to infer on the
chemosensory performance of a species, and comparative data can be used as a basis to infer on
differences in chemosensory abilities between two species, as specific adaptations to habitat and
lifestyle (Ghiradella et al. 1968, Beltz et al. 2003, Sandeman et al. 2014, Krieger et al. 2015, Harzsch
and Krieger 2018). In this context, Magali Zbinden, Juliette Ravaux and | conducted a comparative
multi-level description of the antennal appendages, with a special attention given to the olfactory
system, in the vent shrimp Mirocaris fortunata and the coastal shrimp Palaemon elegans, to search for
structural differences between the two species. The morphology of the antennules, the antennae and
the associated sensilla was studied with Scanning Electron Microscopy. The aesthetascs cuticle
structure and innervation by OSNs was investigated with Transmission Electron Microscopy. | analyzed
brain architecture using immunohistochemistry and X-ray microcomputed tomography, with the help
of Steffen Harzsch?! and Jakob Krieger! during a one month stay at their laboratory. Altogether, these
approaches aim at providing a first global description of the chemosensory system, especially the
olfactory system, in the vent shrimp M. fortunata, for which anatomical dissimilarities with the
shallow-water shrimp P. elegans could suggest highly efficient or particular chemosensory abilities to

detect the hydrothermal chemical environment.

! Greifswald University (Germany), Zoological Institute and Museum, Cytology and Evolutionary Department
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Il. Results and discussion

Measurements and estimations of aesthetascs and olfactory lobes characteristics we
conducted on M. fortunata and P. elegans are summarized in Table 11, in comparison with data for

other marine decapod species.

>
Rough animal lengths are given for comparison. Total length is given for lobsters, hermit crabs and shrimp,
carapace width for crabs.

! Measurements were made from SEM images. Aesthetasc diameter was measured on n = 21 (M. fortunata) and
n = 14 (P. elegans) aesthetascs. Aesthetasc length was measured on n = 46 (M. fortunata) and n = 10 (P. elegans)
aesthetascs.

2 Measurements of cuticle thickness were made from TEM sections at various levels of n = 20 and n = 30
aesthetascs for M. fortunata (5 individuals) and P. elegans (4 individuals), respectively. Data are given as
maximum (for the “thick” cuticle”) and minimum (for the “thin” cuticle) values.

3 The number of IDSs per aesthetasc was estimated from counts in several 25 to 150 pm? portions of TEM sections
from the base of the sensilla, on n = 11 (M. fortunata, 3 individuals) and n = 13 (P. elegans, 2 individuals)
aesthetascs. Data are given as range.

4 The number of ODSs per aesthetasc was estimated from counts in several 4 to 30 pm? portions of TEM sections
of the sensilla judged to contain the highest number of ODS containing single microtubules, on n = 7 (M.
fortunata, 4 individuals) and n = 28 (P. elegans, 4 individuals) aesthetascs. Data are given as range.

> Measurements were made as explained in Beltz et al. 2003. To determine the volume of the olfactory neuropil
from the immunohistochemistry sections, the area of the synaptic signal in the olfactory lobes was measured
with Fiji software, and the areas for the serial sections were then added and multiplied by the section thickness
(100 um) to provide a total volume of the glomerular neuropil. Next, a mean value was obtained for the volume
of a single glomerulus. Because the glomeruli are neither conical nor cylindrical but a combination of these, the
volume was derived from calculating the average of the cylindrical and the conical volumes. The length and cross-
sectional areas of the glomeruli were measured directly on the synapsin-labelled tissue of n = 10 glomeruli for
each olfactory lobe. Finally, an estimate of the glomerular number for each olfactory lobe was obtained by
dividing the total glomerular volume by the volume of a single glomerulus. Measurements were made onn =5
(M. fortunata, 3 individuals) and n = 4 (P. elegans, 2 individuals) olfactory lobes. Data are given as range, for
olfactory neuropils on both sides of the brain.
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1. Description of antennal appendages morphology and anatomy

[Results for morphology published in Zbinden et al. 2017]

The aim of this section is to provide a comparative overview of the morphology and the
anatomy of major chemosensory organs, the antennules and the antennae, in M. fortunata and P.
elegans. We focus mainly on the lateral antennules that bear the aesthetascs to discuss on the
olfactory abilities of each species. The antennae that bear only bimodal sensilla are described as a non-

olfactory chemosensory organ for comparison.

e General morphology of the antennal appendages

In both M. fortunata and P. elegans, antennae and antennules consist of a peduncle and
segmented flagella (one for the antennae and two for the antennules: a lateral and a medial [Figure
31A,G]). In the three flagella, the diameter and the length of the annuli vary, being large and short at
the base and becoming thinner and longer towards the apex. In P. elegans, the lateral antennule is
divided in two rami after a short fused basal part: a long external one and a shorter internal one (1/3

of the long one).

e Distribution of the aesthetascs on the lateral antennules

In the most studied large decapods like lobster and crayfish, the aesthetascs are localized in
tufts on the distal part of the ventral side of the lateral antennules (Cate and Derby 2001, Guenther
and Atema 1998, McCall and Mead 2008, Tierney et al. 1986, Mellon 2012). This location at the tip of
the antennules may increase the spatial resolution of the chemical environment, but could also
increase the risk of damage during encounters with the environment or other animals. On the contrary,
we observed that the aesthetascs are localized on the basal two-third of the lateral antennules in M.
fortunata (latero-ventral position, Figure 31B,C), and on the basal part of the shorter rami of the lateral
antennules in P. elegans (in a ventral furrow [Figure 31G,H] as in other palaemonid species like P.
serratus and Macrobrachium rosenbergii [Hallberg et al. 1992]). The aesthetascs are thus less likely to

be lost or damaged, but this arrangement may decrease spatial resolution.
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Figure 31 Morphology of the antennal appendages of M. fortunata and P. elegans
Legend next page.
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A-C. M. fortunata antennule comprises two flagella, a lateral and a medial one (A), associated to several non-
aesthetasc setae (B,C), and the lateral flagellum bears the aesthetascs (C).

D-F. The lateral antennule (D), aesthetascs (E) and antenna (F) of M. fortunata are often covered by bacteria.
Non-aesthetasc setae also occur on the antenna (F).

G-H. P. elegans antennule comprises two flagella, a medial and a lateral one, the latter being divided into an
internal and an external rami (G). Each flagellum bears several non-aesthetasc setae, and the internal ramus of
the lateral flagellum bears the aeshteascs (H).

I. P. elegans antenna is also associated to several non-aesthetasc setae.

Allat, lateral flagellum of the antennule; Almed, medial flagellum of the antennule; aes, aesthetasc sensilla; b,
bacteria; Rint, intern ramus of the lateral antennule; Reyt, extern ramus of the lateral antennule; s, non-
aesthetasc setae; sb, basal segment of the antennule.

e Number of aesthetascs

Each aesthetasc is associated to functionally identical OSNs clusters (Steullet et al. 2000),
meaning that an increase of the aesthetasc number raises primarily the sensitivity to detectable
odorants (Beltz et al. 2003). We observed in M. fortunata one row of 3 to 4 aesthetascs on the distal
part of each annulus (Figure 31C), leading to a total number of approximately 60 aesthetascs per
ramus, or 120 aesthetascs per individual. In P. elegans we found two rows of 5 to 6 aesthetascs on
each annulus (one row at the distal part of the annulus and the other at the middle part) (Figure 31H),
except for the two or three basal and apical annuli which have a smaller number of aesthetascs, giving
a total number of approximatively 140 aesthetascs per ramus, or 280 aesthetascs per individual (Table
11). In other decapod species, the aesthetascs are usually organized in 2 successive rows (in the
different lobsters and crayfish cited above and also in Lysmata shrimp, Zhang et al. 2008) or in 2
juxtaposed rows in the short antennules of the crab Carcinus maenas (Fontaine et al. 1982).
Surprisingly, we observed only one row of aesthetascs on each annulus in M. fortunata. Nevertheless,
comparisons of the total number of aesthetascs in our shrimp models and in diverse decapod species
(Table 11) relative to the animal size indicated that this number is relatively similar among the shrimp
group and other decapods of similar size range (e.g. the crab C. maenas) (Table 11). Hence, M.

fortunata sensitivity to odorants is not likely to be enhanced regarding the number of aesthetascs.

e Dimensions of aesthetascs

Dimensions of aesthetascs might be linked the sampling efficiency of an odor plume, since
elongated and large aesthetascs present a large chemoreceptive surface, which improves the odor
capture (Nelson et al. 2013). We found that the dimensions of M. fortunata aesthetascs (up to 18.3
um in diameter and 290.3 um in length) are similar to those of P. elegans (up to 20.3 um in diameter

and 393 um in length) and rather small compared to other decapod species (Table 11). This, added to
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our previous observations of aesthetascs distribution, suggests that M. fortunata does not present

morphological features to promote an enhanced sampling of the odorant environment.

e Diversity of non-aesthetasc setae!®-°5*"") (presumably bimodal sensilla)

Most studies on chemodetection in crustaceans focus on the aesthetascs, however several
lines of evidence suggest that non-aesthetasc bimodal sensilla (innervated by mecano- and chemo-
sensory neurons [Schmidt and Mellon 2011]) also play a major role in chemosensory-driven behaviors
(Guenther and Atema 1998, Cate and Derby 2001, Schmidt and Mellon 2011). The wide variety of
morphologies of the bimodal sensilla may correspond to a multiplicity of perceived stimuli (Cate and
Derby 2001, Derby and Steullet 2001). We observed several types of non-aesthetasc setae on the two
flagella of the antennules and on the antennae in M. fortunata (Figure 31B,C,D,F, Figure 32A-C) and P.
elegans (Figure 31H,l, Figure 32D-G). Without evidence for their innervation by neurons, we cannot
strictly define these sensilla as bimodal sensilla, but it is probable they are, as shown for other decapod
species (Schmidt and Gnatzy 1984, Cate and Derby 2001, Schmidt and Mellon 2011, Garm and Watling
2013). We identified a higher diversity in setal types in P. elegans (5 setal types) than in M. fortunata
(3 setal types), but at this point of our knowledge it is difficult to explain the observed differences and

even more to speculate on the functions of these setae.

M. fortunata

P.elegans

Figure 32 Morphology of the non-aesthetasc setal types of M. fortunata and P. elegans

A-C. Apex of the three types of non-aesthetasc setae observed in M. fortunata.
D-G. Five types of non-aesthetasc setae observed in P. elegans. b, beaked scaly seta; s, simple short seta; tf,
twisted flat seta.
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e Bacterial coverage on the antennal appendages of vent species

We observed in M. fortunata a thick layer of bacteria often covering the antennal appendages,
and sometimes the whole surface of the aesthetascs (Figure 31D,E,F), as well as in other vent shrimp
species (more results in Zbinden et al. 2017, and Figure 5B for R. exoculata). Any bacterial coverage
has been observed for P. elegans. The presence of such a thick layer of bacteria over the antennal

appendages is thus likely a feature specific to hydrothermal shrimp.

Crustaceans living in aquatic environments are under constant exposure to a wide variety of
microbial fouling organisms, and are known to frequently groom their antennules in order to remove
the material that have accumulated on their surface (Bauer 1989, Barbato and Daniel. 1997). Barbato
and Daniel. (1997) stated that anything enhancing the level of microbial fouling is presumably
detrimental to the functional role of the antennules as a chemosensory organ. Experiments preventing
shrimp from grooming their antennules indeed lead to extensive structural damage of the aesthetascs
(Bauer 1978). In the vent species, we did not observe any structural damage that could be caused by
this fouling. If the bacterial colonization really impairs their chemosensory system, the occurrence of
the bacterial coverage can plead for a secondary role of this sense. We can also raise the hypothesis
that the bacteria have specific role for the shrimp, which could cultivate them in purpose. At
hydrothermal vents, bacteria associated to the local fauna are involved in their nutrition through
chemosynthesis, but also in detoxification (Zbinden et al. 2004, 2008, Durand et al. 2009, Jan et al.
2014). Identification of the different bacterial functional types present on each species is needed to

discuss on their potential role or impact on shrimp sensory detection.

e Gross anatomy of the lateral antennules and the antennae

In M. fortunata and P. elegans, the lumen of the lateral antennules and the antennae is mainly
filled with internal fluid, and contains the somata of sensory neurons, the axons of which group into
bundles to form the antennular or antennal nerves (Figure 33) that project to specific neuropils in the
brain. The somata of the sensory neurons that presumably innervate non-aesthetasc seate are located
on the inner side of the flagellum cuticle. In the lateral antennules, the somata of the OSNs that are
packed in clusters —one per aesthetasc— that occupy a large area of the extracellular space (Figure
33A,B). From our observation of a high abundance of OSNs in the lateral antennule, we expect that
this flagellum plays the main role in chemoreception rather than the antenna. Nonetheless, Voigt and
Atema (1992) demonstrated in Homarus americanus that, physiologically, the antenna is a major
chemosensory organ, with chemosensory neurons having a similar tuning spectrum to those of the
antennules. Therefore, the antenna had to be considered as the antennule for further

electrophysiology experiments (see Chapter IV).
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M. fortunata P. elegans
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Figure 33 Anatomy of the lateral antennule and antenna in M. fortunata and P. elegans

A-B. Cross sections of the lateral antennule of M. fortunata (A) and P. elegans (B).

C-D. Cross sections of the antenna of M. fortunata (C) and P. elegans (D).

Scale bars = 100 um. a, axons bundles; aes, aesthetasc; b, bacteria; c, cuticle; e, extracellular space; ssy, somata
of sensory neurons innervating non-aesthetasc sensilla; sosn, somata of olfactory sensory neurons innervating
the aesthetascs. Arrowheads, non-aesthetasc setae.

2. Ultrastructural analysis of aesthetasc cuticle and innervation

[Results published in Machon et al. 2018]

Although the general organization of aesthetascs and OSNs is analogous between decapod
species (see Chapter I, Figure 16), the aesthetasc cuticle thickness and the numbers of IDSs and ODSs
can vary (Ghiradella et al. 1968, Hallberg et al. 1992, Beltz et al. 2003, Mellon 2007). The cuticle
thickness relates to the permeability of the aesthetasc, and accordingly is linked to the ability to detect
soluble odorants (Derby et al. 1997). IDSs and ODSs refer respectively to the number of OSNs and

dendritic branches innervating a single aesthetasc, and are likely to be linked to odorant discrimination
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performance (Derby and Weissburg 2014). In the present approach, we investigated potential
specificities of M. fortunata chemosensory system regarding the aesthetasc cuticle structure and
innervation in comparison with the shallow-water species P. elegans and the existing data on other

crustacean species.

e Aesthetasc cuticle structure and thickness

Aesthetascs of marine decapods are characterized by a thin (0.4 to 4 um thick, Table 11),
poreless cuticle, unlike bimodal sensilla that have a pore at their tip (Garm et al. 2003) and a thick
cuticle (for example from 2 to 7 um thick for the distal part of an antennular bimodal sensilla in R.
exoculata; not shown). The aesthetasc cuticle, especially in the distal part, possibly functions as a
molecular sieve through which appropriate odorants move quickly to activate OSNs, as reported in
spiny lobster (Derby et al. 1997) and crayfish (Tierney et al. 1986). Therefore, the cuticle thickness and

structure along an aesthetasc might define the portion of the sensillum permeable to soluble odorants.

A sketch of an aesthetasc sensilla is presented in Figure 16 (Chapter I). The region of the
sensillum where the IDSs divide into ODSs is called the transitional zone. From the base to the
transitional zone, the aesthetasc cuticle is thick, from 0.8 to 1.8 um in M. fortunata and from 0.6 to 1.3
um in P. elegans. Just distal to the transitional zone, in P. elegans the cuticle becomes thin (0.6 to 0.3
um) on almost all the distal part of the sensilla (80% of the length), with the cuticle at the tip of the
aesthetasc thinning to 0.15 um. In M. fortunata the cuticle remains thick on the first half of the
aesthetasc length, and becomes thin on the distal half of the sensilla, from 0.8 to 0.15 um. For each
species, the thick cuticle has a lamellar structure (Figure 34A,B,F), which gradually becomes loose

(transitional cuticle, Figure 34C,G) when thinning, until becoming spongy (Figure 34D,E,H,1,J).

Comparison of aesthetascs from M. fortunata and P. elegans with other marine decapod
species reveals similarities in cuticle thickness in the basal region of aesthetascs among the caridean
shrimp group, marine crab and hermit crab (Table 11), as well as in its lamellar structure (Ghiradella et
al. 1968, Grinert and Ache 1988, Gleeson et al. 1996). In our shrimp species, the distal region of
aesthetascs has a thinner cuticle than described for other decapod species (Table 11), but similar to
the thickness of Daphnia aesthetasc cuticle (Hallberg et al. 1992), and identical between M. fortunata
and P. elegans. It is likely that the thin cuticle thickness is similar between species of similar size (e.g.
M. fortunata, P. elegans and P. adspersus). The differences in thin cuticle thickness observed between
our shrimp models and other species from the literature may results from different zones used for the
measurements (we present minimum values from measurements from the very tip of the sensilla,

whereas in the literature authors may have measured the distal part of the sensilla but not the very
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tip of the sensilla). Regarding the cuticle structure, the spongy non-lamellar cuticle most likely
corresponds to the odorant-permeable region. We found that a portion of 50 and 80 % of the
aesthetasc length has a thin and spongy cuticle in M. fortunata and P. elegans, respectively. Since the
two species have a similar aesthetasc length (Table 11), P. elegans aesthetascs appear to have a larger
surface area permeable to odorants than M. fortunata, suggesting a better sampling efficiency of the

environment for the coastal species.

Figure 34 Structure of aesthetasc cuticule in M. fortunata and P. elegans

Cross sections of aesthetasc cuticle of M. fortunata (A-E) and P. elegans (F-J) at different levels along the
sensillum, indicated on the central sketch (not to scale). For the two species, the cuticle is lamellar in the proximal
region of the aesthetasc (A,B,F), and is spongy in the apical region (D,E,H,l,)). The transition between the lamellar
and the spongy cuticle is gradual, and named transitional structure (C,G). The relative length of each structure
along the aesthetasc is illustrated on the side of the central sketch, as well as the relative thickness of the cuticle
and the occurrence of pore-like structures in M. fortunata.

Scale bars =1 um. b, bacterium; ¢, lamellar cuticle; c;, spongy cuticle; ¢, transitional cuticle; p, pore-like structure.

e Pore-like structures in the aesthetasc cuticle of vent shrimp

In M. fortunata, we observed pore-like structures occurring in the lamellar cuticle (Figure 34B,C
and Figure 35). They can reach approximatively 0.2 um in diameter, open to the inner side of the
aesthetasc and are separated from the outside by a cuticle layer that thins from 0.4 to 0.06 um. They
are present from the transitional zone to approximately 50 % of the aesthetasc length, when the cuticle
starts to thin, and are no longer present in the spongy part of the cuticle (Figure 34B). We also observed
these pore-like structures in the same region of the aesthetascs in the hydrothermal shrimp R.
exoculata (Figure 35), with a diameter slightly larger (up to 0.4 um). We did not observed any pore-like

structures in the aesthetascs of P. elegans.

Other types of pore-like structures have been described in the basal region of the aesthetasc
for some marine decapods. Pore canals perforate the lamellar cuticle of the basal tenth of the
aesthetascs in the hermit crab Pagurus hirsutiusculus (Ghiradella et al. 1968), proximal to the ciliary
segments of the transitional zone, and pore-like structures occur from the base to the transitional zone
in the lobster Panulirus argus, and contain extensions of the auxiliary cells (Griinert and Ache 1988).

However, in M. fortunata the pore-like structures only appear from and beyond the transitional zone,
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where the auxiliary cells end. In addition these pore-like structures are much more abundant than
those described in P. hirsutiusculus and P. argus, and are longer, crossing almost the entire thickness
of the cuticle. We propose these pore-like structures as a feature specific to hydrothermal shrimp.
Their function is unknown. Since the cuticle layer separating the inner side of the pore-like structures
with the outside is extremely thin, they could facilitate the passage of different odorant molecules (e.g.
with a higher molecular mass) that cannot cross normally the aesthetasc cuticle and thus enhance the

sampling of the environment in M. fortunata.

Figure 35 Pore-like structures in the cuticle of M. fortunata and R. exoculata aesthetascs

Cross sections of the aesthetascs middle region in M. fortunata (A) and R. exoculata (B), showing the lamellar
cuticle and bacterial coverage.
Scale bars =1 um. b, bacterium; c, cuticle; p, pore-like structure.

2>

Figure 36 Inner and outer dendritic segments of olfactory sensory neurons in M. fortunata and P. elegans

Cross sections of aesthetascs of M. fortunata (A-D) and P. elegans (E-H), from the base region (A,E), the
transitional zone (B,F), the medium region (C,G) and the apex region (D,H) of the sensilla. The central sketch
indicates the position of each section along the aesthetasc (not to scale). Scale bars = 1 um. ac, accessory cell; b,
bacterium; c, cuticle; cr, ciliary rootlet; IDS, inner dendritic segment; m, mitochondrium; ODS, outer dendritic
segment; ODS,nb, unbranched outer dendritic segment. Arrowheads, swelling of the outer dendritic segments.
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¢ Number of OSNs innervating the aesthetascs

We observed in M. fortunata and P. elegans the classical structural features of aesthetasc
innervation by OSNs (sketched in Figure 16, Chapter 1). IDSs, which emanate from the OSNs somata,
are surrounded by auxiliary cells (Figure 6E) and extend into the lumen of the aesthetasc, where they
terminate at various levels within the transitional zone (Figure 36B,F). They contain mitochondria,
microtubules, vesicles and a ciliary rootlet (Figure 36A,E). Each aesthetasc contains approximatively
from 90 to 223 and from 177 to 519 IDSs for M. fortunata and P. elegans, respectively, meaning it is
innervated by approximatively 90 to 223 and 177 to 519 OSNs for each species (Table 11). In the
transitional zone, the IDSs divide into ODSs surrounded only by lymph (Figure 36C,G). Swellings occur
along the entire length of the outer dendritic segments (Figure 36C,D,F,G,H), and have been previously
associated to chemosensory function (Griinert and Ache 1988). Only few ODSs extend to the tip of the
aesthetasc (Figure 36D,H). There is approximatively from 2545 to 5383 ODSs per aethetasc for M.
fortunata and from 1568 to 10637 ODSs per aesthetasc for P. elegans (Table 11).

An increased number of IDSs and ODSs may be associated to a higher sensitivity and a better
discrimination of the chemical environment (Derby and Weissburg 2014). The animal’s entire olfactory
range of detection is represented by the OSNs housed in each individual aesthetasc (Steullet et al.
2000, Beltz et al. 2003), each OSN having a specific odor response spectrum. The olfactory receptors
are most likely located on the membranes of the ODSs (Blaustein et al. 1993), for which a higher
number might reflects a larger chemoreceptive membrane surface. Our results show that the
estimated numbers of IDSs (reflecting the number of OSNs) per aesthetasc for M. fortunata and P.
elegans fit within the range of about 100-400 displayed by several Malacostracan taxons (Table 11;
Harzsch and Krieger 2018). The ranges number of OSNs and ODSs per aesthetascs of M. fortunata
overlap those of P. elegans, suggesting that the vent species is not likely to have an enhanced
chemosensitivity regarding this character. However, these data need to be completed by identifying

and quantifying the receptor proteins expressed by OSNs for each species.
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3. Structure of the chemosensory centers

Most of the knowledge on the basic structure of the central chemosensory systems comes
from studies on lobster and crayfish (e.g. Blaustein et al. 1988, Sandeman et al. 1992, 2014). But as
pointed by Eberhard and Wocislo (2011), “a significant limitation to understanding brain-behavior
relations is the dearth of comparative data resulting from the collective blinders imposed by the
“model system” approach...”. In the following, the brain architecture of M. fortunata and P. elegans
was investigated to complement the current knowledge on crustacean brain architecture, and to
eventually find neuroanatomic dissimilarities that could reflect a dominance of chemosensory inputs

processed in the brain of the vent species.

e Brain general description

The ground pattern of a crustacean brain is presented in Chapter |, section 1V.1.3. and Figure
17. The brains of M. fortunata and P. elegans are sub-divided into three successive regions, the proto-
, deuto- and tritocerebrum, in addition to the optic neuropils (Figure 37), as in other Malacostracan
crustaceans (Harzsch et al. 2012, Sandeman et al. 2014, Harzsch and Krieger 2018). The lateral
protocerebrum comprises the medulla terminalis and the hemiellipsoid bodies (both shown as a
complex). Usually, these neuropils and the optic neuropils are located in the eyestalks at distance from
the main brain. This is the case in the eyestalked species P. elegans (Figure 37B). In M. fortunata, the
eyestalks are absent, the medulla terminalis and the hemiellipsoid bodies are fused to the medial
protocerebrum, and the visual neuropils are located on a dorso-posterior position (Figure 37A), as
previously described in R. exoculata by Charmentier-Daures and Segonzac (1998). The antennular
nerve connects the antennules to the deutocerebrum, which comprises the olfactory lobes, the lateral
antennular neuropils and the medial antennular neuropils (the latter is not shown because we did not
identified it in our two species) (Figure 37). The axons of the aesthetasc OSNs project to the olfactory
lobes, whereas the axons of the sensory neurons innervating the bimodal sensilla on the antennules
project to the lateral antennular neuropils. The tritocerebrum is associated with the antennae, whose

nerves project to the antennal neuropil (Figure 37).

The present study focuses on the neuropils involved in chemodetection: the olfactory lobes,
the lateral antennular neuropils, the antennal neuropils and the higher integrative centers
hemiellipsoid bodies and medulla terminalis. Otherwise specified, the following descriptions apply for

both M. fortunata and P. elegans.
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Figure 37 Brain organization in M. fortunata and P. elegans

3D reconstituted brain and selected neuropils of M. fortunata (A) and P. elegans (B) from X-ray micro-computed
tomography scans, in ventral, dorsal and right views. In the legend box, non-represented neuropils are indicated
in grey and italic. Scale bars = 0.5 mm (approximative).
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e Olfactory lobes and glomeruli subdivision

The olfactory lobes are located laterally in the deutocerebrum (Figure 37 and Figure 38A,B).
Each olfactory lobe is composed of olfactory glomeruli arranged radially around its periphery (Figure
38C,D). They show a strong synapsin immunoreactivity, reflecting a high synaptic density, and are
innervated by local interneurons from an adjacent cell cluster that displays allatostatin
immunoreactivity (Figure 38), confirming their peptidergic nature. In addition, the allatostatin
immunoreactivity reveals a regionalization of the olfactory glomeruli along their long axis, with a cap,
a subcap (with allatostatin signal) and a base regions. Although the subdivision in cap and base regions
is well documented in most crustacean taxa (Schachtner et al. 2005, Schmidt and Mellon 2011,
Polanska et al. 2012, Harzsch and Krieger 2018), the occurrence of a subcap region was previously
observed only in “higher” Eureptantia decapods with elaborated olfactory systems (e.g. spiny lobster,
Wachowiak et al. 1997; hermit crab, Krieger et al. 2010; crayfish, Sandeman and Luff, 1973). Thus, the
subdivision of the olfactory glomeruli we observed in M. fortunata and in P. elegans might reflects an

efficient computing performance of the olfactory system as seen in some Eureptantia.

e Olfactory lobes volume and number of olfactory glomeruli

Harzsch and Krieger (2018) pointed out that comparative studies across the Malacostraca
reveal a significant divergence of the glomerular volume, which is linked to the computational power
of the olfactory system. Because morphometric analysis of neuronal structures have been considered
as rough estimates to infer one the sensory processing performance of a species (Krieger et al. 2015),
we estimated in M. fortunata and P. elegans the total olfactory neuropil volume, the mean glomerular
volume and the number of olfactory glomeruli (Table 11). Relative to the size of the two species, our
results show similar volumes for the total olfactory neuropil and mean glomerulus in M. fortunata and
P. elegans. The large range of glomerulus number obtained for M. fortunata does not allow
comparison between the two species for this parameter. Compared to other marine decapods species,
the values we obtained for the olfactory lobe volume in P. elegans and M. fortunata are high, especially
regarding the rough size of the animals. For example, our values are 5 to 10 times higher than for the
shrimp species Stenopus hispidus (Krieger et al. unpublished) of similar size, but are in the range of
those obtained for the big Homarus americanus (Guenther and Atema, 1988). Considering the number
of olfactory glomeruli, there is no correlation with the size of the animal, for example the small hermit
crabs Pagurus bernhardus and Petrolisthes coccineus possess several hundreds of olfactory glomeruli
(Tuchina et al. 2015, Beltz et al. 2003), in the range of the crab Cancer borealis (Beltz et al. 2003) which
is 10 times larger. Beltz and collaborators (2003) included in their analysis 17 crustacean species from

different habitats, and in general their study did not reveal any clear correlation between the
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glomerular number and the olfactory neuropil volume, the body size or the habitat. Nonetheless, the
authors suggested that animals with OSNs converging onto relatively few glomeruli can detect only
relatively few odors. Hence, our shrimp models exhibit a seemingly performant central olfactory
system, likely able to perceive a broad range of odorants. Overall, at this structural level, M. fortunata
does not present any differences that could reflect adaptations to the hydrothermal environment

when compared to P. elegans.

M. fortunata P. elegans

Figure 38 Olfactory lobes in M. fortunata and P. elegans

A-B. Horizontal sections of the median brain of M. fortunata (A) and P. elegans (B), showing the paired lateral
olfactory lobes (OL) and part of the median protocerebrum neuropil (MPN). The position of the sections is
indicated by right view sketches of the brains.

C-D. Higher magnification of the olfactory lobes of M. fortunata (C) and P. elegans (D), showing the subdivision
of the olfactory glomeruli in cap (c), subcap (sc) and base (b) regions.

Brains are triple-labeled for synapsin-immunoreactivity (red and purple), allatostatin-immunoreactivity (green)
and nuclear marker (blue).
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e Antennal and lateral antennular neuropils

The lateral antennular neuropils are U-shaped (Figure 37 and Figure 39A,B) and the antennal
neuropils have a cylindrical shape (Figure 37 and Figure 39B). Both the lateral antennular and antennal
neuropils show a strong synapsin immunoreactivity, as well as allatostatin immunoreactivity in a
transversely stratified pattern (Figure 39). This striation perpendicular to the long axis suggests a
somato- or spatiotopic representation of the chemo- and mechanosensory inputs from these
appendages (Sandeman et al. 2014), meaning that the sensilla array on each flagellum is represented
like a map along its length. Accordingly, the two species must rely on processing the combined
mechano- and chemosensory inputs provided by the antennules and the antennae to extract spatial

and temporal information from a chemical signal (Harzsch and Krieger 2018).

M. fortunata P. elegans

Figure 39 Antennal and lateral antennular neuropils in M. fortunata and P. elegans

Horizontal sections at the ventral level of the brain of M. fortunata (A) and P. elegans (B), showing the olfactory
lobes (OL), lateral antennular neuropil (LAN) and the antennal neuropil (AnN). The position of the sections is
indicated on right view sketches of the brains.

Brains are triple-labeled for synapsin-immunoreactivity (red), allatostatin-immunoreactivity (green) and nuclear
marker (blue).
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e Hemiellipsoid bodies — Medulla terminalis complex (HB-MT complex)

The hemiellipsoid bodies and the medulla terminalis are located in the lateral protocerebrum
close to the visual neuropils (Figure 37 and Figure 40). They receive the output pathway of the olfactory
lobes via the olfactory globular tract (Figure 37B, not shown for M. fortunata). Both the size of the HB-
MT complex and the amount of cells projecting into it might be related to the processing power of
sensory inputs in these higher integrative centers (Sandeman et al. 2014). For our specimens, in M.
fortunata, the hemiellipsoid bodies and the medulla terminalis complex (HB-MT complex) appears well
developed (Figure 37A and Figure 40A) and associated to massive cell clusters (Figure 37A and Figure
40C) compared to P. elegans (Figure 37B and Figure 40D). | obtained from tridimensional
reconstructions of the brain of M. fortunata and P. elegans the volumes of the HB-MT complex and
the associated cell clusters, for one specimen of each species. In M. fortunata, the volume of the HB-
MT complex was 32x10° pm3, and the volume of the associated cell clusters was 8x10° pm3. In P.
elegans, the volume of the HB-MT complex was 17x10° um3, and the volume of the associated cell
clusters was 3x10° um?. Relative to the size of each specimen used (cephalothorax length: 7.6 mm for
M. fortunata, 8 mm for P. elegans), the HB-MT complex and the associated cell clusters are respectively
two and three times more voluminous in M. fortunata than in P. elegans. In addition, in P. elegans the
structure of the HB-MT complex is less conspicuous than in M. fortunata (Figure 40), for which
preliminary observations from paraffin sections indicate a high degree of complexity in the
architecture of the HB-MT complex (not shown). These results and observations —although

preliminary— suggest that sensory processing in M. fortunata is more sophisticated than in P. elegans.

In terrestrial hermit crab, the hemiellipsoid bodies display an extremely complex organization,
reflecting a massive input from their sophisticated olfactory system (Harzsch and Hansson 2008, Wolff
et al. 2012). In contrast, in basal eumalacostracan taxa the hemiellipsoid bodies and the medulla
terminalis are unstructured and poorly developed neuropils, such as in Dendrobrachiata (Meth et al.
2017). Thus, size and complexity of these regions can reflect the level of olfactory input received.
Nonetheless, | previously showed that the olfactory lobes of M. fortunata are similar in structure to
those of P. elegans, hence it is not likely that the elaborated HB-MT complex is mainly devoted to
olfaction in the vent species. Because the HB-MT complex receives inputs from other neuropils than
the olfactory lobes, other sensory modalities are likely to be predominantly integrated therein.
Regarding the hydrothermal habitat, the evaluation of temperature gradients seems crucial for the
endemic vent species, and must be integrated somewhere, maybe in the higher integrative centers.
But the mechanisms of thermodetection are poorly known, especially in crustaceans, for which neither

specific receptors nor sensory center areas have been identified yet (Lagerspetz and Vainio 2006).
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Furthermore, the hemiellipsoid bodies of some crustacean species are frequently assimiled to
particular neuropils present in Hexapoda, namely the mushroom bodies, which are well-known as
learning and memory centers (Wolff et al. 2012, 2017, Kenning et al. 2013, Harzsch and Krieger 2018).
Wolff and collaborators (2017) pointed out that large hemiellipsoid bodies are found in
eumalacostracan groups that evidence memory of exact locations (cleaner shrimp [Limbaugh et al.
1961], land hermit crabs [Rotjan et al. 2010]) and eusociality (pistol shrimp [Duffy 1996]). The well-
developed hemiellipsoid bodies in M. fortunata could thus eventually be involved in memory

processes, particular navigational skills or social interactions.

M. fortunata P. elegans

Figure 40 Hemiellipsoid bodies and medulla terminalis in M. fortunata and P. elegans

Horizontal sections of the lateral protocerebrum of M. fortunata (A,C) and P. elegans (B,D), showing the
hemiellipsoid bodies neuropils (HB), the medulla terminalis (MT), the associated cell clusters (CC) and the visual
neuropils lobula (Lo), medulla (Me) and lamina (La). The position of the sections is indicated on right view
sketches of the brains. B, C and D show only one brain hemisphere.

Brains are triple-labeled for synapsin-immunoreactivity (red and purple), allatostatin-immunoreactivity (green)
and nuclear marker (blue).
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l1l. Conclusions

In this chapter, we described the structure of the chemosensory systems, with a strong focus
on the olfactory system, in the vent shrimp M. fortunata, in comparison with the shallow-water species
P. elegans to get insights into the vent species chemosensory abilities and potential adaptations of its

chemosensory system reflected by anatomical features.

Our results indicate that M. fortunata is equipped with all elements that are part of a functional
chemosensory system. Its antennules bear olfactory aesthetasc sensilla innervated by numerous
olfactory sensory neurons that project to the olfactory lobes in the brain. The antennules and the
antennae also bear presumably bimodal chemo- and mechanosensory sensilla of -yet- unknown

functions. There is accordingly no doubts that chemodetection is used by this species.

To infer on the shrimps olfactory abilities, numerical aspects of aesthetascs and olfactory lobes
characteristics in M. fortunata were measured and compared to the coastal shrimp P. elegans. We
found that the dimensions and number of aesthetascs and innervating olfactory sensory neurons of
M. fortunata fit within the ranges displayed by P. elegans and other marine decapod species, and that
the olfactory lobes are similar in size and structure between M. fortunata and P. elegans. These results
do not suggest any structural adaptation nor peculiar olfactory abilities of the vent species regarding
these characters. Nonetheless, some differences were noticed between the vent and coastal species.
At the peripheral level, we found that pore-like structures occurring in the aesthetasc cuticle and a
dense bacterial coverage of the antennal appendages are likely specific to vent shrimp species. At this
point of knowledge, the functional or adaptive significance of these features is unknown. Speculatively,
the pore-like structures occurring in the aesthetasc cuticle could enhance the permeability of the
cuticle to soluble odorants. The role of the bacterial coverage on the sensory appendages of vent
shrimp could be hypothesized from the identification of the bacterial types. For example, sulfide-
oxidizing bacteria are abundant in hydrothermal vent, and their occurrence on the antennal
appendages could detoxify the hydrogen sulfide prior to reach the olfactory dendrites. At the central
level, the higher integrative centers hemiellipsoid bodies and medulla terminalis are especially well-
developed in M. fortunata compared to P. elegans. Because we did not found striking anatomical
features in the olfactory system of M. fortunata, we can hypothesize that sensory modalities other
than olfaction may be predominantly processed in the higher integrative centers. Alternatively, these
elaborated neuropils could be involved in memory processes, navigation or social interactions in vent

species.
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Chemodetection of ecologically-relevant stimuli
by the antennal appendages of M. fortunata
and P. elegans

l. Introduction

Il. Development of an electroantennography (EAG) method on marine shrimp
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* Electrode placement and signal propagation
* Stimulatory pressure
* Time interval for consecutive stimulations
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1. Detection of food-related odors mixture
2. Detection of hydrothermal fluid chemicals
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* Responses to iron and manganese
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103



Chapter IV - Chemodetection

l. Introduction

Chemosensory abilities of vent shrimp have been poorly studied, despite their importance for
understanding how they detect their habitat, food sources or congeners. Because the vent shrimp M.
fortunata possesses aesthetascs innervated by olfactory sensory neurons (OSNs) and chemosensory
centers seemingly functional (see Chapter Ill) as in shallow water decapods, this species must exploits
its chemical environment. However, which chemicals are detected and used as orientation cues by M.
fortunata, and vent shrimp in general, is largely unknown. As for all animals, food sources are obvious
attractants (Gebruk et al. 2000). Regarding the hydrothermal environment, vent shrimp might be able
to sense the chemicals that are extensively released by active vents (Segonzac et al. 1993, Renninger
et al. 1995, Sarrazin et al. 1999). Vent shrimp might detect hydrothermal fluid chemicals in their
microhabitat, and maybe also at distance from active sites, when the buoyant plumes spread in the

water column.

In hydrothermal fluids, even if their composition varies from one site to another, sulfide,
manganese and iron are among the compounds commonly encountered (Radford-Knoery et al. 1998,
Charlou et al. 2000). Chemical gradients occur from the fluid emission point, and can be either steep
or gradual depending on the chemicals (Klevenz et al. 2011). For example, around the chimneys, sulfide
rapidly disappears from the water column after reacting with seawater and hydrothermal fluid
constituents (Mottl and McConachy 1990, Zhang and Millero 1993). Manganese is more stable (Cowen
et al. 1990) and can thus be detected at considerable distances from the fluid source (Radford-Knoery
et al. 1998). Iron is also detected at several hundreds of kilometers from the source (Aumond 2013,
Waeles et al. 2017) when partially stabilized by complexation with dissolved organic matter (Toner et
al. 2009). Thus, sulfide might potentially be used by the shrimp as a short-distance stimulus, while
manganese and iron could serve rather as long-distance stimuli. Only one study has so far addressed
the chemosensory abilities of hydrothermal shrimp, i.e. that of Renninger and collaborators (1995)
who recorded electrophysiological responses from the antenna of the vent shrimp R. exoculata upon
exposure to sulfide, and reported preliminary behavioral observations suggesting attraction to sulfide.
This would support the potential role of hydrothermal fluid components as orientation cues for vent
shrimp, which still has to be investigated for other components than sulfide, and also extended to
other vent species. Food sources are another potential attractant for vent shrimp, for example

invertebrate tissues for scavenger species as M. fortunata (Gebruk et al. 2000).

To test whether M. fortunata can detect food sources and hydrothermal fluid chemicals (such
as sulfide, manganese and iron) through its presumed main chemosensory organs, Phillipe Lucas?,

Magali Zbinden, Juliette Ravaux and | developed an electroantennography (EAG) method to record the
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global responses of the antennal appendages neurons to stimulation with environmental stimuli. The
coastal shrimp P. elegans was used for the development of the EAG, as well as for further comparison

of the responses to selected chemicals with the vent shrimp M. fortunata.

LiEES Paris, Sensory Ecology department, Neuroethology of Olfaction team
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Il. Development of an electroantennography (EAG) method on
marine shrimp

[Results published in Machon et al. 2016]

Responses of crustacean chemosensory neurons to odor stimuli are classically recorded either
extracellularly from their axons (Derby, 1989; Kamio et al., 2005) or intracellularly with the patch-
clamp method (Ache, 2002; Anderson and Ache, 1985; Bobkov et al., 2012). These methods are
invasive, time-consuming to establish on a new model, and require many replicates to get an overview
of an organ global sensitivity. Hydrothermal vent specimens are difficult to collect and maintain alive
and therefore are available in low numbers for experiments. The objective here was to develop a
method with a high rate of success, allowing the recording of global responses of the antennules and
antennae in marine shrimp. In insects, such a technique called electroantennography (EAG; Schneider,
1957) is commonly used to measure the global responses of antennal OSNs to odors. This technique is
for instance widely used for screening moth pheromones (Roelofs, 1984). In crustaceans, EAG
measurements were performed in aerial conditions on two terrestrial crabs, i.e. the giant robber crab
Birgus latro (Stensmyr et al., 2005) and the hermit crab Coenobita clypeatus (Krang et al., 2012), and
on one the marine hermit crab Pagurus berhnardus (Stensmyr et al., 2005). Two papers reported very
briefly EAG recordings, with no technical demonstration, from fresh water crustaceans: the
branchiopoda Daphnia spp. (Simbeya et al., 2012) and the crayfish Procambarus clarkii (Ameyaw-
Akumfi and Hazlett, 1975). Hence, an EAG method performed under natural (i.e. underwater)

conditions has so far never been developed for aquatic crustaceans.

We implemented a new EAG technique on a marine decapod while keeping both its antennal
appendages and the stimulus in its natural (marine) environment. This technique is derived from the
EAG on insects. Insect antennae have different shapes which impacts the positioning of the recording
electrode. In Lepidoptera, EAG is typically performed from whole insect preparations by cutting the tip
of the antenna and inserting it in a glass electrode filled with electrolyte, with the reference electrode
inserted in the insect body. Excised antennae can also be used but they have a shorter lifetime
(Martinez et al., 2014). These recording methods were unsuitable for our model shrimp species, since
sectioned tissues of the antennal appendages deteriorate in few minutes, and cutting the extremity of
one antenna or antennule induces a prominent outflow of antennal fluid. In Coleoptera, the recording
electrode is inserted in the antenna (Roelofs, 1984); this method is the less invasive and has
consequently been selected for the EAG on shrimp. Next, the main constraint for EAG in aquatic species

is the short circuit resulting from placing the two electrodes (reference and recording) in water. We
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used the air-water interface to prevent this short circuit, by putting the anterior part of the shrimp (i.e.
antennular appendages, one lateral flagellum being impaled by the recording electrode) in the bath
solution and the posterior part (i.e. telson and abdomen, connected to the reference electrode) in the

air.

1. Determination of recording parameters

We used a food odor stimulus (shrimp food extract) as a positive control (i.e. that is expected
to trigger a chemosensory response) and Panulirus saline (PS) as a negative control (i.e. that triggers
only a mechanosensory response), to determine the best conditions to record EAG responses on P.
elegans (i.e. position for the recording electrode, stimulatory pressure, time interval between two

consecutive stimulations).

e Electrode placement and signal propagation

To estimate if the electrode records responses from a large or small portion of the antennule
(i.e. how global are the responses), different portions of the lateral antennule were stimulated with a
food odor stimulus. Fast Green was used to visualize stimulated zones and it did not modified
responses to the food odor stimulus. When narrow stimuli were applied along the antennule while
recording from the basal region (Figure 41A,B), the electrode recorded responses from zones
stimulated far from the electrode location. Then, increasing lengths of the antennule were stimulated
by moving a larger stimulation capillary along the antennule while recording from the apex (Figure
41A,C) or the base regions (Figure 41A,D). For both electrode placements, the EAG amplitude increased
with the size of the stimulated area. Thus, there is a good propagation of the electrical signal
consecutive to the chemical stimulation, meaning that the activity from a large fraction of sensory
neurons can be recorded. To maximize the amplitude of recorded responses (i.e. to record the activity
of the largest number of sensory neurons), following experiments were done by stimulating the whole

length of the flagellum and placing the recording electrode in the middle region of the antennule.

The EAG response is assumed to represent the summation of receptor potentials(GtOSSARY) of
many synchronously activated chemosensory neurons (Schneider, 1957; Schneider, 1999; Nagai, 1983;
Mayer et al.,, 1984). As slow electrical events (e.g. receptor potentials) travel better than action
potentials due to low-pass filtering of the extracellular space (Bedard et al., 2004), our observation
that odor-evoked signals travelled far within the antennule supports that we do record summed

receptor potentials with our EAG method on shrimp.

107



Chapter IV - Chemodetection

A B )

0.6 ab
: S 05 ] ‘
Apex Medium Base E oa |
O 03 b ‘
S 02 ab ]
SO A0S0 L AN EE SO QG &8
CEEEE T 01| , rﬁ
AMLLBLHHIBEIHIMTIRIRIY S 0

- non B u B
N2 BULB

e
|

o
O

a

1.6 1.2 b b

S [ 10 |

o J E. b [ ] l

2 08| ab o 0.6 l
’—17 c 0.2{ a 1
0 0

1 22 Z3 Z4 Z5 Z1 22 Z3 4 75

Figure 41 EAG recordings allow monitoring responses from a large fraction of sensory neurons

A. Sketch of P. elegans aesthetascs bearing antennular flagellum with the different electrode placements at the
base, middle and apex regions. Not to scale.

B. EAG amplitudes recorded from the basal region to narrow stimuli at different zones along the antennule (Z1,
72,75, n=4; 73, Z4, n=5).

C. EAG amplitudes recorded from the apical region to wide stimuli at different zones along the antennule (Z1,
74,75, n=5; Z2, n=7; Z3, n=6).

D. EAG amplitudes recorded from the basal region with wide stimuli at different zones along the antennule (Z1,
72,73, n=7; Z4, n=6; Z5, n=4).

In B-D, EAGs were recorded in response to a food odor stimulus (0.2 g ml™? of shrimp food extract for 1 s in B,
0.5sin Cand D). The gray zone on the antennule sketch represents the aesthetascs bearing area. Means + s.e.m.
were compared with a one-way ANOVA with permutation test (B, p=0.04; C, p=0.002; D, p=0.01) and by multiple
comparisons with two-sample permutation t-tests; Benjamini—-Hochberg corrections were applied. Means with
different letters are significantly different (p<0.05).
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e Stimulatory pressure

In decapods, the antennule is equipped with unimodal olfactory aesthetascs housing OSNs,
and also with bimodal (chemo- and mechanosensory) non-aesthetasc sensilla, present in lower density
than aesthetascs (Cate and Derby, 2001; Hallberg et al., 1997; Obermeier and Schmitz, 2004; Steullet
et al., 2002). Hence, both neurons innervating the aesthetascs and the non-aesthetasc sensilla can
contribute to the recorded signal, i.e. the EAG traces represent the summation of chemical and
mechanical responses. To estimate the contribution of mechanosensory neurons in the responses
obtained, negative control stimuli (PS) were applied at increasing pressures (2 to 10 psi) (Figure 42A).
PS responses were pressure-dependent, with no significant response for the lowest pressure (2 psi)
and significant response for pressure values of 4 psi and more (Figure 42A,B) indicating that a stimulus
sent at these pressures on the flagellum can trigger the activation of mechanosensory neurons. The
response increase from 4 (-0.17 £ 0.04 mV, n=24) to 10 psi (-0.32 £ 0.09 mV, n = 25) was not significant
(one-way ANOVA with permutation test, p = 0.8) due to a high variability of the amplitude of responses
across recordings. We thus decided to adjust the pressure of all stimulations to 5 psi, to facilitate the
stimulus access to aesthetascs through their dense packing and to bimodal sensilla without eliciting

strong mechanical responses that would have impeded measuring correctly chemical responses.

¢ Time interval for consecutive stimulations

Responses of chemosensory neurons not only depend on the stimulus characteristics (quality,
guantity) but also on previous chemosensory experience via the process of adaptation (Kaissling et al.,
1987). When chemosensory neurons are adapted to a stimulus, responses to subsequent stimuli are
reduced. The recovery from adaptation is time-dependent. To determine the recovery time necessary
between consecutive stimuli to prevent measuring responses from adapted sensory neurons, we
measured EAG responses to pairs of identical stimuli (food odor stimulus) with increasing the inter-
stimulus time intervals (4 to 90 s) (Figure 42C,D). As the inter-stimulus interval was increased, the
average amplitude of the responses to the second stimulation increased towards that of the first
stimulation. Both amplitudes did not differ significantly when the time interval was at least 90 s. For

safety, in the following, we kept an interval of at least 2 min between consecutive stimuli.
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Figure 42 EAG responses to mechanical and consecutive chemical stimulations in P. elegans

A. Superimposed traces of EAG responses to Panulirus saline with increasing pressure, the upper trace
corresponding to 2 psi, and the others to 4, 6, 8 and 10 psi.

B. EAG pressure-response curve to Panulirus saline (n = 21 for 2 psi; n = 24 for 4 psi; n = 25 for 6, 8 and 10 psi).
C. Examples of EAG responses to two consecutive stimulations with a food odor stimulus (0.1 g.mL? of shrimp
food extract for 1 s at 5 psi) separated by 20, 60 and 90 s.

D. Amplitude of EAG responses to a food odor stimulus (same as in C) relative to the amplitude of EAG response
to a previous identical stimulation, as a function of the time between the two stimuli (n = 7 for 10, 60 and 90 s,
n=9for4and40s; n=11for 205s).

In A and C, bars indicate the stimulus delivery. Transient peaks (*) are valve opening artefacts. Means + s.e.m.
were compared with a one-way ANOVA with permutation test (B, p = 0.004; D, p < 10-15), and with one-sample
permutation t-tests to reference values (0 in B, 1 in D). *: P<0.05; **: P<0.01; ***: P<0.001.

2. EAG recording of chemosensory responses

All the responses to a food odor stimulus were positive deviations of the baseline (Figure 43A).
Increasing concentrations of the food odor stimulus (0.001 g.mL?! to 0.2 g.mL?) elicited dose-
dependent responses with a threshold between 0.001 and 0.003 g.mL? (Figure 43B) and amplitudes
reaching 2.6 mV for the highest concentration (0.2 g.mL?). The delay between the electrovalve opening
command and the beginning of the EAG response is 62 + 3 ms (n = 20). Antennules were also stimulated
with other food extracts made from green crabs, blue mussels and dead P. elegans individuals, and
responses had the same polarity as those for the shrimp food extracts (Figure 43C). A similar response

profile to dead shrimp extract was obtained for the hydrothermal species M. fortunata (Figure 43D).
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Figure 43 EAG responses to food odor stimuli in P. elegans and M. fortunata

A. Superimposed traces of EAG responses to dilutions of a shrimp food extract (0.001, 0.003, 0.01, 0.03, 0.05, 0.1
and 0.2 g.mL?).

B. EAG dose-response curve to dilutions of a shrimp food extract (n = 10 for 0.05 g.mL?; n = 11 for 0.001 and
0.003 g.mL%; n = 12 for control; n = 14 for 0.2 g.mL™; n = 16 for 0.01, 0.03 and 0.1 g.mL?). Means + SEM were
compared with a one-way ANOVA with permutation test (p < 10-15), and with two-sample permutation t-test to
control stimuli (PS). *: P<0.05; **: P<0.01; ***: P<0.001.

C. EAG responses to fresh mussel extract, fresh crab green extract and extract of dead P. elegans individuals.

D. EAG response to dead shrimp extract from M. fortunata.

In A, Cand D, bars indicate the stimulus delivery. Transient peaks are valve opening artefacts.

EAG responses to a food odor stimulus in P. elegans are reproducible, dose-dependent and
exhibit sensory adaptation, characteristics that confirm we indeed recorded chemosensory responses.
We could not reach the saturation level in the dose-response curve because we reached the saturating
concentration of the food extract. All chemical stimuli we tested (shrimp food extract, crab, mussel
and dead shrimp) elicited positive EAGs in P. elegans whereas insect EAGs are usually negative
(Roelofs, 1984). In contrast, mechanical stimuli elicited negative EAGs. Recordings from single
chemosensory neurons and single mechanoreceptor neurons could help clarifying why chemical and

mechanical responses have opposite polarities.
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EAG recordings from the antenna were also successful, on both P. elegans and M. fortunata.
Figure 44 gives the mean amplitude of the responses of the antenna and the antennule to positive
(Figure 44A) and negative (Figure 44B) controls. Antennular responses to a food odor stimulus have a
significantly higher amplitude in P. elegans than in M. fortunata. By contrast, the amplitude of the
antennal responses to a food odor stimulus were significantly higher in M. fortunata than in P. elegans.
In both cases, it is not possible to distinguish between if one organ is more responsive for one species,
or if the connection of the electrode is of superior quality (for example, in P. elegans the portion of the
antennule bearing the aesthetascs is relatively soft, making the electrode connection easier and thus
allowing frequent good quality —i.e. high amplitude— recordings). Same uncertainty takes place for
antennules responses to mechanical stimulations with PS, for which the absolute amplitudes were
significantly higher for P. elegans (-232+2 uV) than for M. fortunata (-80 + 10 uV). Antennal EAG
responses being always of smaller amplitude than those of the antennules might be explained by the
guantity of sensory neurons innervating each organ, the antennule housing numerous clusters of

chemosensory neurons that are absent in the antenna (see Chapter lll — II.1. Figure 33).
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Figure 44 EAG responses to chemical and mechanical stimulations in M. fortunata and P. elegans

Responses to (A) a chemical stimulation (shrimp food extract 0.2 g.mL?) and to (B) a mechanical stimulation
(Panulirus saline) recorded from the antennules and antennae (grey, M. fortunata; white, P. elegans), Antennule,
M. fortunata: n = 44, P. elegans: n = 58; antenna, M. fortunata: n = 13, P. elegans: n = 27. Means (£ s.e.m.) were
compared between the two species for each organ and stimulus with a two-sample permutation t-test. **P<0.01,
***P<0.005.
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l1l. Results and discussion

[Results published in Machon et al. 2018]

1. Detection of food-related odor mixtures

M. fortunata exhibits an opportunistic feeding behavior, scavenging on tissues of mussel,
shrimp and other invertebrates when available, as well as grazing bacteria on sulphide surfaces
(Gebruk et al. 2000, Colaco et al. 2002, De Busserolles et al. 2009). An extract of dead M. fortunata
was used as an environmental relevant food-odor stimulus to test whether the detection of food is
mediated by the antennule for this species. This stimulus elicited dose-dependent responses from the
antennule (Figure 46A), confirming its presumed role in food detection. An extract of dead P. elegans
also stimulated the antennule of P. elegans (Figure 46A). The responses thresholds were between
dilution 1:10 and non-diluted extract for M. fortunata and between dilutions 1:100 and 1:10 for P.
elegans, with amplitudes reaching respectively 70 and 250 pV. These results are consistent since P.
elegans and M. fortunata have a similar food profile, being secondary consumers. EAG responses toa
food odor stimulus previously obtained from both the antennule and the antenna (Figure 44) suggest

that the antenna is also involved in the chemodetection of food sources in both species.

EAG (mV)
04 - Figure 45 EAG responses to dead shrimp extracts in M.
fortunata and P. elegans
Responses to dead shrimp extracts recorded from the
0.2 4 antennules. M. fortunata: n =7, P. elegans: n = 8. Means (+
s.e.m.) were compared with a one-way ANOVA with
permutation tests (p<!%15) and with two-sample permutation
U . t-tests to control stimulus (Panulirus saline, PS). **p<0.01,
***p<0.005.
-0.2 - %
0.4 4
=o= Mirocarns fortunata
-0~ Palaemon elegans
-0.6 -

PS 1:1001:10 1
Diluted dead shrimp extract
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2. Detection of hydrothermal fluid chemicals

Chemicals and their concentrations were chosen regarding the chemical composition of the
hydrothermal fluids (Radford-Knoery et al. 1998, Charlou et al. 2000) and in the shrimp vicinity
(Aumond 2013, Sarrazin et al. 2015) at the Lucky Strike hydrothermal vent site, where M. fortunata
specimens were sampled. Each chemical presents different removal rates, associated to reaction with
seawater, other hydrothermal fluid constituents, dissolved organic matter, and to consumption by
chemoautotrophic bacteria. Sulfide removal rate is high and sulfide is thus considered as a short-
distance stimulus, detectable near hydrothermal fluid emission points, while manganese and iron are
more stable, detectable far from the source, thus are considered as long-distance stimuli (Radford-
Knoery et al. 1998, Aumond 2013, Waeles et al. 2017). To investigate if vent shrimp use such
hydrothermal fluid compounds as orientation cues for both near-field and distant perception of the
habitat, we tested the detection of selected chemicals by the antennular and antennal appendages of
M. fortunata, as well as those of the coastal shrimp P. elegans, to check for potential hydrothermal

shrimp specificity.

Each chemical was first tested on the antennules at concentrations that M. fortunata is likely
to encounter in its environment. For all the stimuli tested (Na,S: 0.04 to 40 pmol.L}; FeCl, and MnCl,:
0.05 to 5 pmol.L?) responses from the antennule of M. fortunata and P. elegans did not depend on
stimulus concentrations (Figure 46A,C,E), i.e. none elicited responses distinct from responses to the
negative control. Higher concentrations were used afterwards, up and beyond to the concentrations

measured in the pure fluid of the Lucky Strike site, for the antennules and antennae of both species.

>

EAG responses to increasing concentrations for Na,S, FeCl, and MnCl, in M. fortunata (black dots) and P. elegans
(white dots).

A. Responses to Na,S recorded from the antennules.

B. Responses to Na,S recorded from the antennae.

For A and B, pH control is set to 11 and corresponds to the pH of the 14000 pmol.L? Na,S solution.

C. Responses to FeCl, recorded from the antennules.

D. Responses to FeCl, recorded from the antennae.

For C and D, pH control is set to 6 and corresponds to the pH of the 5 to 10000 umol.L FeCl, solutions.

E. Responses to MnCl, recorded from the antennules.

F. Responses to MnCl, recorded from the antennae.

Under the x axis, white bars indicate concentrations that M. fortunata is likely to encounter in its environment,
and black bars indicate concentrations measured in the pure fluid at the Lucky Strike vent field. Means (+ s.e.m.)
were compared with a one-way ANOVA with permutation test (P<10-15 for sodium sulfide dose-responses) and
with a two-sample permutation t-test to control stimuli (Panulirus saline, PS). ¥*p<0.05, **p<0.01, ***p<0.001.
The n numbers of antennules and antennae tested for each species and for each condition are presented in Table
12.
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Figure 46 EAG responses to hydrothermal fluid compounds in M. fortunata and P. elegans
Legend previous page.
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Table 12 n of antennules and antennae tested for sulfide, iron and manganese in EAG

n
Stimulus Concentrations, controls Antennules Antennae
M. fortunata P.elegans M. fortunata P. elegans

PS (negative control) 9 12 4 8
PS pH 11 (pH control) 4 7 4 8
NazS 0.04,0.1,0.4, 1, 4 umol.L? 5 5 - -
40 pmol.L? 8 12 4 8
300, 2000, 14000 umoI.L'1 4 7 4 8
PS (negative control) 11 15 5 9
PS pH 6 (pH control) 6 10 5 9
FeCl2 0.05,0.1, 0.5, 1 pmol.L*? 5 5 - -
5 umol.L? 10 15 5 9
60, 900, 10000 pmol.L? 6 10 5 9
PS (negative control) 10 17 4 10
0.05,0.1, 0.5, 1 umol.L* 5 6 - -
MnCl
? 5 pmol.L 9 17 4 10
50, 500, 3500 pmol.L? 5 11 4 10

e Responses to sulfide

At higher concentrations, Na,S elicited dose-dependent responses from the antennules and
antennae of M. fortunata (Figure 46A,B and Figure 47). Thresholds were between 0.3 and 2 mmol.L?
for both antennal appendages. Thus sulfide is detected by bimodal sensilla on the antennae, but for
the antennules we cannot distinguish the role played by aesthetascs and bimodal sensilla in sulfide
detection. Renninger et al. (1995) recorded trains of action potentials from nerve fibers of the three
antennal appendages of the hydrothermal shrimp R. exoculata, and found that only the antennae
respond in a dose-dependent way to sulfide. This absence of concentration-dependent responses for
the antennule in R. exoculata might be due to technical limitations rather than no detection. Recording
from nerve fibers implies that only a fraction of axons are connected to the electrode opening, and
thus action potentials are recorded from only a minority of neurons. The EAG method overcomes this
problem since the electrode records neuron activation from almost the whole length of the flagellum
(as shown above, section Il.1. and Figure 41). Hence at least two hydrothermal shrimp species are
physiologically able to detect sulfide via their antennal appendages, supporting the hypothesis that
sulfide could serve as an effective orientation cue in the close hydrothermal environment. Yet because
the sulfide concentrations that triggered significant EAG responses were equivalent to those
encountered in the pure fluid, there is some doubt about the ecological relevance of the responses

obtained since M. fortunata inhabits diffuse vents with low sulfide concentrations (Cuvelier et al.
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2011), and R. exoculata lives closer to vent chimneys but still in fluid-diluted areas. However,
convergence of sensory inputs onto higher-level neurons occurs in the chemosensory pathway of
crustaceans (Mellon 2000), as in vertebrates and insects (Van Drongelen et al. 1978). This convergence
makes neurons in the central nervous system highly sensitive (Rospars et al. 2014). Hence, behavioral
responses to chemical stimuli can potentially be observed at concentrations that do no trigger EAG
responses, and questions regarding the relevance of the sulfide concentrations tested could be
addressed with behavior experiments. Antennules and antennae of the coastal shrimp P. elegans were
also responsive to sulfide, with thresholds between 0.3 and 2 mmol.L? for the antennules and 2 and
14 mmol.L? for the antennae. Sulfide detection is therefore not specific to vent species and is likely
not an adaptation to the hydrothermal environment. Again, behavior experiments are needed to
investigate if hydrothermal species present specific responses to sulfide, such as attraction behavior,

compared to coastal species.
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Figure 47 Dose-dependent EAG responses to sulfide in M. fortunata and P. elegans

Superimposed traces of EAG responses to Panulirus saline (PS) to increasing concentrations of Na,S (0.04, 0.3, 2,
14 mmol.L?) and to pH control solution (PS at pH 11) from the antennule (A, C) and the antenna (B, D) in M.
fortunata (A, B) and P. elegans (C, D). Horizontal bars indicate stimulus delivery. Transient peaks in A, B and D
are valve opening artifacts.
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e Responses to basic pH

P. elegans antenna was significantly responsive to a control pH 11 stimulus (Figure 46B), as
observed by Renninger and collaborators (1995) for the coastal shrimp Penaeus aztecus antenna
exposed to a pH 13 stimulus. But the response to pH 13 in P. aztecus was not significantly different
from the response to a pH 13 sulfide solution (1300 mmol.L2). In the present study, response of the
antenna in P. elegans to pH 11 significantly differs in amplitude from the response to pH 11 sulfide
solution (Na,S 14 mmol.L?), meaning there is detection of both sulfide and high pH by the antenna of
P. elegans. The confounded responses to sulfide and pH 13 stimulus in P. aztecus (Renninger et al.
1995) might be due to the low number of specimens tested (1<n<4), insufficient to bring out a
significant difference between these two stimuli. Responses to high pH stimuli could be specific to
coastal species, since neither M. fortunata antenna (this study) nor R. exoculata antenna (Renninger
et al. 1995) were significantly responsive to basic pH solutions. However, in shallow habitats extreme
pH are rarely encountered and may appear as ecologically irrelevant stimuli that should not evoke any
behavioral response (Puri and Faulkes 2010). Note that pH 11 stimulus was used in the present study
as a control for the highest concentrated sulfide solution, not as a pH stimulus. To investigate the
detection of pH variations as an orientation cue for hydrothermal shrimp, acid pH solutions should be
tested since in the Lucky Strike vent site hydrothermal fluid pH range from 3.84 to 6.45 (Charlou et al.
2000), and from 6.1 to 7.3 in the shrimp habitat (Desbruyeéres et al. 2001).

e Responses to iron and manganese

Detection of manganese and iron by a vent and a costal shrimp was tested here for the first
time, and the two stimuli did not trigger dose-dependent responses for the antennules and the
antennae at any concentration tested (Figure 46C,D,E,F). This suggests but does not definitely proves
that shrimp cannot detect these compounds since the sensitivity of the EAG method is limited. EAG
represents the summation of receptor potentials generated by many sensory neurons responding
simultaneously (Nagai 1985). Thus, if iron and manganese stimulate only a low number of
chemosensory neurons, the sensitivity of the EAG method is most likely not sufficient to detect a
response. However, the alternative that manganese and iron are actually not detectable by vent
shrimp raises questioning about the relative importance of chemodetection for these animals.
Manganese and iron are relevant stimuli for long-distance detection of hydrothermal fluids, which is a
fundamental issue regarding vent shrimp lifestyle. Because hydrothermal vents are dynamic and
ephemeral ecosystems, vent animals need to detect new venting sites to settle in, and the extremely
high abundances of shrimp on MAR sites (Polz et al. 1998, Martin and Haney 2005) suggest that they

are successful colonizers. Which fluid attractants are used for the long-distance detection of active
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sites, and which stage of life are involved (Herring and Dixon 1998, Tyler and Young 2003), is still
uncertain. Since sulfide, although emblematic of vent chemicals, is not a relevant stimulus in this
context, the prospective that vent shrimp cannot detect manganese and iron makes the distant
chemodetection of hydrothermal plume doubtful for adults. Detection of other long-distance relevant
chemicals such as methane (de Angelis et al. 1993) should be tested, as well as other possible long-
distance attractants like noise (Crone et al. 2006) or temperature (Baker et al. 2016). Chemodetection
abilities of other life stages should also be investigated, since larval dispersal is thought to play a role
in colonization processes (Lutz et al. 1984) and aesthetasc sensilla are present in Alvinocaridid first

zoeal stages (Hernandez-Avila et al. 2015).
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IV. Conclusions

We tested the detection of food related odors and hydrothermal fluid chemicals by the
antennal appendages of the vent shrimp M. fortunata and the coastal shrimp P. elegans to investigate
the ability of the vent species to detect its chemical environment, and to get insights into the potential
chemotaxis role of the hydrothermal fluid for both short- and long-distance distance of the
hydrothermal habitat. We found that the two species detect the short-distance stimulus sulfide, but

not iron and manganese which are relevant for the long-distance detection of the hydrothermal plume.

To test the detection of various organic and chemical compounds by the antennal appendages
in the shrimps M. fortunata and P. elegans, we developed the first EAG method in marine shrimp
underwater. This technique is especially suitable for rare vent species since it does not require killing
the specimens, who can recover and eventually be re-used for further experiments. Moreover, EAG
gives the most general idea of the animal sensitivity compared to other classical electrophysiological
methods (e.g. patch-clamp), and is thus relevant in an ecological approach. It allows the screening of

several chemicals before testing potential odor-gated behavioral responses.

Food-related odors triggered significant EAG responses from the antennal appendages of M.
fortunata and P. elegans. This result supports the ability of the vent species to locate food sources, and
highlight that not only the lateral antennules (associated to the olfactory aesthetascs) are involved in
such detection, but also the antennae which bear bimodal sensilla that mediate the distributed

chemodetection pathway.

Sulfide was detected by both the antennule and the antenna of M. fortunata, and it has
previously been demonstrated to be also detected by the antenna of R. exoculata. These results
suggest that hydrothermal shrimp may sense sulfide in the near field of the vents. Hence, sulfide is a
good candidate for subsequent behavior experiments to investigate if vent shrimp use this chemical
signature of the hydrothermal fluid for orientation in their local environment. The coastal shrimp P.
elegans also detected sulfide via the antennule and the antenna, meaning that sulfide detection is not
specific to hydrothermal species. Behavior experiments have to be developed for this species too, as
it is not likely to encounter sulfide in its natural environment and may respond differently to a sufide

stimulation.

Iron and manganese did not trigger significant EAG responses neither for M. fortunata and P.
elegans. These chemicals are transported in the hydrothermal plume far from the emission point, and
could thus be used for the detection of distant active sites by vent shrimp. The eventuality that M.

fortunata cannot detect iron manganese raises doubts on the relevance of long-distance
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chemodetection of hydrothermal plumes at adult stages. However, the absence of detection through
EAG should not be interpreted as conclusive. Iron and manganese may stimulate a low number of
chemosensory neurons and prompt behavioral responses while not triggering perceptible EAG
responses. Chemodetection abilities of other life stages should also be investigated, since dispersal
and colonization processes are believed to occur at larval stages (Lutz et al. 1984), which are also
equipped with aesthetascs and maybe are more sensitive to long-distance stimuli than adults.
Furthermore, behavioral responses to both short and long-distance stimuli must be investigated for
M. fortunata and other hydrothermal species using pressurized aquaria (Shillito et al. 2014). Shrimp
species occupy distinct microhabitats around vent chimneys, thus they may not be sensitive to the

same attractants and could exhibit different chemosensory abilities.
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Insights into the behavioral responses
to food odor sources, sulfide and temperature
in M. fortunata, R. exoculata and P. elegans
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l. Introduction

Hydrothermal vents are dynamic ecosystems, with steep fluctuations of temperature and
chemical concentrations created by cooling and dilution of the hydrothermal fluid when mixing with
the surrounding seawater (Johnson et al. 1986, Coumou et al. 2006). Ecological studies often suggest
that the distribution of vent fauna is linked to food availability or environmental features such as
temperature and chemical conditions (Sarrazin et al. 1997, 2002, Gebruk et al. 2000, Desbruyéres et
al. 2001, Cuvelier et al. 2009). Nevertheless, how these parameters are actually detected by the

animals and exploited to choose their microhabitat has not been demonstrated.

Vent shrimp are continuously exposed to the release of various chemicals in the hydrothermal
habitat, and may use the chemical signature of diluted fluids as an orientation cue. It is unknown if the
chemicals trigger specific behavioral responses such as attraction or repulsion. Among the chemical
stimuli of the hydrothermal fluid potentially used by vent shrimp, sulfide is the only one that has been
considered. Sulfide is known for its toxicity and triggers escape responses in the shallow water caridean
species Crangon crangon (exposed to 20 pmol.L! H,S, Vismann 1996) and Palaemonetes vulgaris
(exposed to 0.08 mmol.L! H,S, Sofranko and van Dover, unpublished data). In contrast, Renninger and
collaborators (1995) noticed an orientation behavior in the vent shrimp Rimicaris exoculata to a piece
of sulfidic rock removed from a chimney, and suggested an attraction guidance by sulfide, argued by

sulfide chemodetection by the antenna.

Habitat selection by marine species is determined principally by thermal conditions (Williams
and Morritt, 1995). Attraction to temperature has been observed with in vivo experiments for R.
exoculata (attraction to 11°C in 3°C seawater background, Ravaux et al. 2009). For the vent shrimp
Mirocaris fortunata, relation to temperature has been examined in terms of temperature preference
(19,2+1.1°C, Smith et al. 2013) and observation of aggregation behavior on warm zones (27-27,8°C) in
rearing aquaria equipped with heaters at in situ and atmospheric pressure (Matabos et al. 2015).
Nonetheless, attraction to warm temperature as a behavior specific to vent shrimp has not been

robustly characterized.

Behavior experiments on vent fauna are challenging to conduct primarily because animals
suffer from decompression during sampling at depths and are difficult to maintain in good
physiological conditions. In situ imagery has provided direct access to living species in their natural
habitat (Cuvelier et al. 2009, 2011, 2012) and enabled to investigate species spatial and temporal
distribution, as well as some behavioral aspects in polychaetes (Chevaldonné and Jollivet 1993, Grelon

et al. 2006). However, observations under controlled conditions are needed to quantify behavior such
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as attraction. Pressurized devices were appropriately developed (Shillito et al. 2008, 2014) and provide
the unique opportunity to quantify peculiar behaviors on live deep vent shrimp. Also, M. fortunata
presents the advantage to survive quite well to decompression when sampled at depths that do not
exceed 2000 m, such as from the Lucky Strike (1700 m depth) and Menez Gwen (800 m depth) sites.
M. fortunata can thus successfully be maintained at atmospheric pressure for several months (Shillito
et al. 2015, Matabos et al. 2015) and being tested for behavioral responses in similar conditions than

shallow water species.

To investigate if vent shrimp use the hydrothermal fluid chemicals and temperature as hints
for orientation, we conducted attraction experiments on M. fortunata using various setups at in situ
and atmospheric pressure. Responses were compared to those of the coastal shrimp P. elegans to get
insights into the adaptive significance of vent shrimp behaviors. Food odor sources were used as a
stimulus expected to trigger an attractive response. Sulfide was selected as a hydrothermal fluid
chemical stimulus, because sulfide was proposed as a potential attractant for vent animals in the
literature, and sulfide was detected by the antennal appendages of both M. fortunata and P. elegans
using electroantennography (see Chapter IV). Attraction to sulfide was also tested on R. exoculata at
in situ pressure to investigate potential differences with M. fortunata linked to their distinct lifestyles.

We also tested attraction to warm temperature in M. fortunata and P. elegans.
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Il. Results and discussion

The stimuli tested for triggering behavioral responses and the corresponding results for each species
tested are briefly summarized in Table 13.

Table 13 Stimuli tested in behavior experiments and corresponding results for P. elegans, M. fortunata and
R. exoculata

. Food odor Food - . Warm
Species . Sulfide
source sulfide temperature
P. elegans + + - -
M. fortunata - - - +
R. exoculata nt nt - +*

+, attraction; -, no attraction observed; nt, not tested. Food odor source can be either mussel extract or shrimp
food extract. Sulfide (Na,S) concentration is 2 mmol.LY. Temperature corresponds to ~17°C in a 9°C seawater
background.

*attraction to warm temperature in R. exoculata was not tested in the present study but was previously
demonstrated in Ravaux et al. 2009.

1. Attraction to food-related odors

An intrinsic challenge of animal behavior experiments is to define relevant indicators for
behavior observations. For attraction experiments, position relative to a stimulus source can be
tracked, and quantitative information can be extracted, such as the number and duration of contacts
with a source. Another challenge is to find an experimental design that fits to the animal and efficiently
triggers behavioral responses. This implies for example the material setup, the choice of stimuli quality
and quantity, and beforehand preparation of the animals (e.g. acclimatization, starving period). To
choose a relevant attraction experimental design, the logic way is to start with a stimulus that is known

to trigger attraction response, usually food.

To test the attraction to a food odor source and the role of the antennules for this detection,
we used first a two-choice experiment between a food odor source and a lure of identical aspect
(Figure 48). The shrimps, starved for 48 h, were tested one by one for 15 min with the stimulus and

the lure positioned beneath the surface. The percentage of first contact with the food source, the lure
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or none revealed an attraction behavior to the food odor source in P.elegans (45% of first contact).
The detection of the food odor source was worsen by the selective ablation of the lateral antennules
(20% of first contact) or both the lateral and medial antennules (25% of first contact). The impaired
attraction to a food odor source when the antennules of P. elegans are ablated confirms the
chemosensory function of these organs to locate food sources, in consistency with the results of
Steullet et al. (2001) on spiny lobster. However, other indicators measured such as the mean number
and duration of contacts (not shown) were similar for the food source and the lure in the non-ablated
group of P. elegans. This experimental design is thus not optimal to demonstrate attraction to a food
odor source in P. elegans. The experiment was not conclusive for M. fortunata either, for which the
majority of the intact specimens went to the lure first (65% of first contact), so we did not performed

consecutive ablation experiments for the vent species.

n=20 n=20 n=20 n=20
100 -+ 5
30 {
g % 7 45 $
S 65
o 60 A
e 25 65
= 40 Setup
- ]
= 35 5
J Food odor stimulus
20 .
|:| Lure
O i
. . None
No ablation Ablation Ablation No ablation |:|
lateral lateral +
antennule medial
antennule
P. elegans M. fortunata

Figure 48 Responses to a food odor stimulus with two-choice experiments on single P. elegans and M.
fortunata

Distribution of the shrimps according to the first contact they made, either with the food odor source, the lure
or none. For P. elegans, both ablated groups significantly differed from the control intact group (Fisher exact test,
two-sided, p = 0.0007 for lateral antennule ablated and p = 7.10° for whole antennule ablated).

Setup: The shrimps were starved for 48h and placed individually in the tank for 5 min. The food odor source and
the lure were then immersed and the shrimp were observed for 10 min. Three groups of shrimps were tested for
P. elegans: intact, lateral antennule ablated, and whole antennule ablated. One group of intact M. fortunata was
tested. The whole experiment is detailed in Chapter Il — section 11.2.1.1.
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For the second setup, we used a multiple choice experiment with three tubes containing
control gels and one tube containing a stimulus (food odor) gel (Figure 49). The gels were casted in the
bottom of black tubes in order to preclude any visual bias. The tubes were placed on the bottom
corners of the tank prior to the shrimp introduction, and the number and duration of entrances in each
tubes was measured during 30 min. With this setup, we observed a significant attraction behavior to
a food odor source in P. elegans (Figure 49A,B): 61% of shrimps went first in the stimulus tube (Figure
49A), and the time spend in this tube compared to the control tubes was significantly higher (Figure
49B), as well as the number of entrances in the stimulus tube (not shown). In contrast, results for M.
fortunata did not show any attraction to the food odor source (Figure 49C,D) although the shrimps

explored the tank and the tubes (40% of first entrance in the control tubes).

% of first entrance Mean time (%)
in the stimulusand spend in the stimulus
controls tubes and controls tubes

100% -

B 80% *%
P. elegans 0% |
Stimulus: mussel extract 40% - T
n=23 2o | 1
0% -
100% ~
C D s, NS
M. fortunata [
40% 60% 1 l
Stimulus: shrimp food extract
40%
n=10 40%
20%

0% -

[ Food odor stimulus [_] Controls  [_] None

Figure 49 Responses to a food odor stimulus with multiple choice experiments on single P. elegans and M.
fortunata

A,C. Distribution of the shrimps according to their first entrance in the tube containing a stimulus gel (food odor)
or one of the tubes containing control gels, or none.

B,D. Mean (+ s.e.m.) time spend in the tube containing a stimulus gel (food odor) or the three tubes containing
control gels, relative to the total time spend in the four tubes (presented in percentage). Means were compared
with a two-sample t-test, two sided (B, p = 0.008). **, p < 0.01.

Setup: The shrimp were starved for 48h and placed individually in the tank just after tubes introduction (3
containing control gels, 1 containing stimulus gel). The shrimp behavior was video recorded from above for 30
min. The whole experiment is detailed in Chapter Il — section 11.2.1.1.

128



Chapter V - Behavior

These experiments to test attraction to a food odor source were not conclusive on M.
fortunata individuals tested one by one. However, it is easily observable that they detect and locate a
food source in their rearing tanks at atmospheric and in situ pressure (i.e. in the AbyssBox) when fed
with mussels or shrimp food pellets (e.g. Matabos et al. 2015). The question was raised if the shrimps
were heavily stressed when manipulated from one tank to another for the one by one experiments.
Therefore, we tested a third setup directly in the rearing tanks containing several individuals of M.
fortunata, at the Oceanopolis aquarium (Figure 50). The shrimps were not displaced from their rearing
tanks, and the aquarium thermostat heaters were left ON. The shrimps were starved for one week.
The water inlet and outlet were closed prior to insert one control gel and one stimulus (food odor) gel
on each side of the aquaria. The number and duration of contacts with each gel were measured over
30 min. The results obtained for the two batches of M. fortunata tested were not pooled because the
number of shrimps for each batch was too divergent (n=16 versus n=8), so we could not exclude a bias
resulting from the shrimp density. Because each batch was tested only twice, we could not conduct
statistical analysis, and results are presented as single observations (Figure 50). For the n=16 batch,
the maximum number of shrimp on the stimulus gel compared to the control gel suggests a possible
attraction to the food odor source (Figure 50A). By contrast, results between the stimulus and control
gels are similar for the n=8 batch (Figure 50B). Thus, the density of shrimp in the tank might influence
their behavior. For the two batches, the percentage of time the stimulus gel was occupied by shrimp
did not differ from the control gel (Figure 50C,D). Altogether, these results for M. fortunata do not
suggest an attraction behavior to the food odor source, which contrast with the observations of M.
fortunata swimming to the food source when fed weekly during maintenance. In all instances, results
presented in Figure 50 are observations that cannot be thoroughly interpreted since only two

replicates were generated per batch.
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Figure 50 Responses to a food odor stimulus with two-choice experiments on multiple M. fortunata

A. Maximum percentage of shrimps on the stimulus (food odor) and control gels over the experiment duration
(30 min).

B. Percentage of time shrimp (one or more) were in contact with the stimulus (food odor) and control gels.
Two batches (n=16 and n=8) of M. fortunata were tested twice. No statistical analysis could be conducted and
results are presented as single observations for each replica.

Setup: The shrimps were tested in their rearing tank after a one-week starving period. Two gels (one control, one
stimulus) were introduced on each side of the middle zone of the tank. The shrimps were observed for 30 min.
The whole experiment is detailed in Chapter 11 2.1.

To further investigate the attraction to a food odor source in conditions closer to the natural
state of vent shrimp, we tested a fourth setup, at in situ pressure in the VISIOCAMP aquarium, on
multiple M. fortunata during the BICOSE (2018) cruise on the Mid-Atlantic Ridge (Figure 51). The
shrimps were sampled from the Snake Pit vent site (3500 m depth) at in situ pressure in the PERISCOP
device, and were briefly bring to atmospheric pressure for transfer into the VISIOCAMP aquarium.
After a 2 h shrimp recovery at 300 bars, 10°C, gels were introduced in the tank through an isobaric line
with 45 min interval, and the number and duration of contact with the gels were measured. Two
control gels and one stimulus (food odor) gel were used. Because there are only two replicas (two
batches of shrimps tested), the results are presented as single observations. The results do not indicate

a potential attraction behavior to the food odor source. The shrimps may simply not being attracted

130



Chapter V - Behavior

to the stimulus (e.g. quality of the food, no starving period...). But the number of replicas does not
allow a robust analysis. An additional batch should have been tested, but the shrimps from the third

batch were in noticeable bad conditions and were not therefore tested.
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A Repiical (batch n=6) (Bathymodiolus mussel extract)
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Figure 51 Responses to a food odor stimulus with experiments at in situ pressure on multiple M. fortunata

A. Number of contacts with the stimulus (food odor) and the control gels.

B. Mean (+ s.e.m.) duration of contacts (sec) with the stimulus (food odor) and control gels.

Two batches of n=6 and n=5 M. fortunata were tested once. No statistical analysis could be conducted and results
are presented as single observations.

Setup: Just after sampling, the shrimps were placed in the VISIOCAMP aquarium and recovered at 300 bars, 10°C
for two hours. Three gels (two controls, one stimulus) were then consecutively introduced with 45 min of interval
through an isobaric line. All the experiment was video recorded. The whole experiment is detailed in Chapter Il
—section 11.2.2.

Several setups were experimented on M. fortunata and P. elegans. Attraction to a food odor
source was significantly demonstrated in P. elegans using a multiple choice experiment, but no
conclusive results were obtained for M. fortunata with the same setup (and also at in situ pressure),
although a food odor was expected to trigger an attraction behavior for this species too. This failure
raises several questions regarding the experimental conditions. A first unknown is the effective
duration of starving for vent species to eliminate the bias due to satiety. M. fortunata were usually fed

2 times a week, and were starved up to one week before experiments at atmospheric pressure. A

131



Chapter V - Behavior

starving period of two weeks could be tested but seems excessive. To starve the animals prior to
experiments at in situ pressure on cruises is not an option due to time limitation and multiple uses of
the pressurized systems. The physiological state of the shrimps is also of major importance to conduct
behavior experiments, and can be suspicious for such vent specimens manipulated far from their
habitat. However, M. fortunata specimens that are acclimatized to atmospheric pressure for several
weeks seem healthy, exhibit features of fitness such as feeding and molting (Matabos et al. 2015), and
several experiments have been previously conducted in the IPOCAMP aquarium with animals in a
seemingly good physiological state after re-pressurization (Shillito et al. 2014). Finally, comparison of
experiments between different species is hampered by behavioral differences towards search of food
or response to chemicals. Various parameters influence the foraging like odor diffusion dynamics,
water flow conditions or the quality and quantity of the stimuli (Kenning et al. 2015). It has been
showed for example that flow velocities or stimulus concentrations below or above a certain threshold
can impede or even prevent the successful localization of odor sources (Moore and Grills 1999). Thus,
a setup designed and suited for one species is not necessarily ecologically relevant for another species

(Kenning et al. 2015), as seen for P. elegans versus M. fortunata.

2. Attraction to sulfide

Sulfide is an obvious signature of the hydrothermal fluid, and has been previously proposed as
a potential orientation cue for vent animals (Segonzac et al. 1993, Renninger et al. 1995, Rittschof et
al. 1998). In addition, sulfide is detected by the antennae of R. exoculata (Renninger et al. 1995) and
we demonstrated that sulfide is also detected by the antennal appendages of M. fortunata and P.
elegans (see Chapter IV). For these reasons, we selected sulfide as a hydrothermal fluid chemical

stimulus for behavior attraction experiments.

A preliminary experiment to test attraction to sulfide in M. fortunata was carried out by the
AMEX team during the BIOBAZ (2013) cruise (Mid-Atlantic Ridge, Menez Gwen site, 850 m depth), at
in situ pressure in the IPOCAMP aquarium (Figure 52). Injections of 25 to 100 pmol.L Na,S solutions
did not trigger any particular reaction from the shrimps. The experiment was repeated only twice on
one batch of shrimps, which precludes any robust statistical analysis. However it can be suspected that
the concentrations of the injected solutions were not sufficient to trigger any response when diluted

in the tank.
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Figure 52 Responses to sulfide stimuli with preliminary experiment at in situ pressure on multiple M.
fortunata

Number of shrimps in a 6 cm? surface around the entrance of the seawater renewing system, prior and after
injection of increasing concentrations of sulfide solutions. The experiment was conducted twice on the same
batch (n=20) of shrimps (i.e. each point represents the mean of two replica).

Setup: Just after sampling, the shrimps were placed in the IPOCAMP aquaria and recovered at 70 bars, 9°C for 1
hour. Pulses of sulfide solutions were injected with one hour interval. All the experiment was video recorded.
The whole experiment is detailed in Chapter Il — section 11.2.2.

Using electroantennography, the sulfide concentration that triggered a significant response of
M. fortunata antennal appendages was 2 mmol.L? (see Chapter V). We consequently selected this
concentration for further behavior experiments using agarose gels. Since sulfide diffuses from the gel
and is thus highly diluted in the medium, the concentration perceived by the shrimp is lower than the
gel concentration. We suppose that the sulfide concentration perceived by the shrimp is likely in the
micromolar range, as measured in diffusion test within a 50 mL tube (Chapter Il — section 11.2.2.).
Micromolar concentrations are relevant compared to sulfide concentrations in the habitat of M.
fortunata (e.g. at the Lucky Strike site: 5.11-38.31 umol.L?, Sarrazin et al. 2015) or R. exoculata (e.g. at

the TAG site: 0.5-77 umol.L?, Cathalot et al. 2018).

To test attraction to sulfide with another setup, we used the two-choice experiment on
multiple individuals of M. fortunata at atmospheric pressure (Figure 53) previously described (see
section II.1). Two batches of n=16 and n=8 M. fortunata were tested, and the number of shrimps on
stimulus and control gels and the duration of contacts were measured. The number of replicas (2) per
batch does not allows any robust statistical analysis, however the observations do not indicate any

potential attraction to sulfide or a food-sulfide mixture compared to control gel.
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Figure 53 Responses to sulfide stimuli with two-choice experiments on multiple M. fortunata

A. Maximum percentage of shrimps on the stimulus (sulfide or food/sulfide mixture) and control gels over the
experiment duration (30 min).

B. Percentage of time shrimp (one or more) were in contact with the stimulus (sulfide or food/sulfide mixture)
and control gels.

Two batches (n=16 and n=8) of M. fortunata were tested twice. No statistical analysis could be conducted and
results are presented as single observations for each replica.

Setup: The shrimps were tested in their rearing tank after a one week starving period. Two gels (one control, one
stimulus) were introduced on each side of the middle zone of the tank. The shrimps were observed for 30 min.
The whole experiment is detailed in Chapter Il 2.1.

To discuss about adaptive behavior in relation with the habitat, we also tested behavioral
responses to sulfide on single individuals of P. elegans (Figure 54) with the multiple-choice experiment
previously presented in section Il.1. Although no attraction to sulfide was observed compared to the
controls (Figure 54A,B), P. elegans was significantly attracted to a mixture of food odor and sulfide
(Figure 54C,D), suggesting that sulfide is not a strong repulsive for this species. This result was
unexpected, since sulfide is well known for its toxicity. It has been shown to trigger escape behavior in
the caridean shrimp C. Crangon after exposure to micromolar concentrations of H,S (Vismann 1996),
and avoidance response in the shrimp Palaemonetes vulgaris with concentrations inferior to 0.08
mmol.L? (Sofranko and Van Dover, unpublished data). The ecologically relevance of the non-repulsion

to sulfide in P. elegans is unclear. It could be that a short exposure to high concentrations of sulfide is
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not considered as harmful by this species, but this hypothesis is not supported by the literature cited

above for other caridean species.
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Figure 54 Responses to sulfide stimuli with multiple choice experiments on single P. elegans

A,C. Distribution of the shrimps according to their first entrance in the tube containing a stimulus gel (A, sulfide
or C, food/sulfide mixture) or one of the tubes containing control gels, or none.

B,D. Mean (* s.e.m.) time spend in the tube containing a stimulus gel (B, sulfide or D, food/sulfide mixture) or
the three tubes containing control gels, relative to the total time spend in the four tubes (presented in
percentage). Means were compared with a two-sample t-test, two sided (D, p = 0.001). ***, p < 0.005.

Setup: The shrimps were starved for 48h and placed individually in the tank just after tubes introduction (3
containing control gels, 1 containing stimulus gel). The shrimp behavior was video recorded from above for 30
min. The whole experiment is detailed in Chapter Il — section 11.2.1.1.
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Sulfide did not triggered noticeable attraction behavior in M. fortunata in our experiments.
Nonetheless, relevance of sulfide as an orientation cue for this species can be debatable. M. fortunata
lives at distance from chimneys exit, in a fluid-diluted zone where comes from diffuse emissions of
fluid from cracks in the seafloor, at low concentrations (e.g. at the Lucky Strike site: 2.4-38 umol.L? in
diffusers and the habitat of M. fortunata [Desbruyéres et al. 2001, Sarrazin et al. 2015], 2.5-3 mmol.L
Lin the pure fluid [Charlou et al. 2002]). Furthermore, M. fortunata, which does not exhibit any strong
association to symbiotic bacteria, is rather an opportunistic feeder (Gebruk et al. 2000, Portail et al.
2018) and thus not depends directly on hydrothermal fluid emissions. In contrast, the hydrothermal
species R. exoculata exhibits a strong dependence to the hydrothermal fluid to supplement its

symbiotic bacteria in reduced compounds, such as hydrogen sulfide (Zbinden et al. 2004).

To investigate a possible link between trophic behavior and attraction to sulfide, we tested
attraction to sulfide in R. exoculata with the experiment at in situ pressure in the VISIOCAMP aquarium
(Figure 55) during the BICOSE (2018) cruise at the Mid-Atlantic Ridge. Two control gels and one
stimulus (sulfide) gel were consecutively presented to three batches of 10 individuals of R. exoculata.
A significant difference was observed between the mean number of contacts with the stimulus gel
compared to the control gels (Figure 55A), suggesting an attraction to sulfide. When considering
prolonged contacts (superior to 5 sec), which can be considered as more indicative of an attraction
behavior, there was not significant difference between the two types of gels (Figure 55B). Mean
duration of contacts and mean time before first contact were not conclusive either (not shown). In
addition, the experiment was repeated with a pH 4 sulfide gel as a stimulus, since lowering the pH
greatly enhances the release of sulfide. No difference with the control gel and a pH control gel was
observed (Figure 55C). Attraction to sulfide in vent shrimp was proposed by Renninger and
collaborators (1995), who reported a strong orientation behavior to a piece of sulfide removed from a
chimney in R. exoculata, and proposed a chemical guidance to explain this observation. The results of
our experiments do not support this hypothesis, since we did not demonstrate thoroughly attraction
to sulfide in R. exoculata, and neither in M. fortunata. Nonetheless, we cannot affirm either that these
species are not attracted to sulfide at all, because of the low number of replicas for each experiment,

and the failure to find a setup that demonstrates robustly an attraction behavior in vent shrimp.
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Figure 55 Responses to sulfide stimuli with experiments at in situ pressure on multiple R. exoculata

A,B. Mean (t s.e.m.) number of contacts (A) and contacts superior to 5 sec (B) with the control gels and the
stimulus gel (sulfide).

C. Mean (z s.e.m.) number of contacts with the control gel, the pH control gel and the stimulus gel (sulfide pH
4).

Means were compared with a two sample permutation t-test (A, p = 0.012). * p < 0.05.

Setup: The shrimps were placed in the VISIOCAMP aquarium and recovered at 300 bars, 10°C for two hours. Gels
were then consecutively introduced with 45 min of interval through an isobaric line. All the experiment was video
recorded. The whole experiment is detailed in Chapter Il — section 11.2.2.
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3. Attraction to warm temperatures

Temperature is likely a key factor influencing the positioning of the vent fauna around the
active chimneys (Sarrazin et al. 1997, Lee 2003), where steep thermal gradients occur (Le Bris et al.
2005). Vent shrimp have developed molecular strategies to cope with short exposure to acute
temperatures (Ravaux et al. 2003), but overall each vent species live in a relatively warm environment
compared to the cold (2°C) abyssal seawater (e.g. R. exoculata: 4.7 to 25°C at the Rainbow site [Geret
et al. 2002]; M.fortunata: 5.4 to 18°C at the Lucky Strike site [Sarrazin et al. 2015]). Hence, detection
of temperature gradients might be involved in the selection of the habitat in vent shrimp, which may
be attracted to these temperature ranges. To investigate if vent shrimp use the thermal signature of
the hydrothermal fluid as an orientation cue, and if such behavior can have an adaptive significance,
we conducted experiments on M. fortunata and P. elegans to test attraction to warm temperatures.
Intertidal shallow-water species, as P. elegans, are also exposed in their natural habitat to fluctuating

temperature conditions, although not as acute as in the vent environment (Bates et al. 2010).

We conducted choice experiments between two aquarium heaters (one turned ON set to 25°C,
one turned OFF) on several batches of M. fortunata and P. elegans in their 9°C rearing tanks at the
Oceanopolis aquarium (Figure 56). The number of shrimps on each heater was counted over time
during 180 min, and overnight. During the whole experiment, for P. elegans, a maximum of 20 % of
shrimps went on the ON and OFF heaters (Figure 56A). In contrast, for M. fortunata, 30% of shrimps
went on the heater ON in 30 min, 50% in 180 min, and up to 80% after one night, whereas the number
of shrimps never exceeds 5% on the heater OFF (Figure 56B). In addition, when examining the
repartition of the shrimps on the heater ON, M. fortunata individuals aggregated on the warmer zones
of the heater (Figure 56C), for which the temperature is approximatively 17°C. Thus, with this setup,
the attraction to warm temperatures (~ 17°C) is clearly defined for the hydrothermal species, whereas

no attraction is observed for the shallow-water species.

A-B. Distribution of P. elegans (A) and M. fortunata (B) on the ON and OFF aquarium heaters over time.

C. Distribution of M. fortunata on each zone of the ON heater over time.

Two batches of 20 P. elegans were tested 4 times each (n=8 replicas per point, except overnight, n=4 replicas).
Two batches of 28 and 19 M. fortunata were tested 6 times each (n=12 replicas per point, except overnight, n=4
replicas).

Setup: ON (set to 25°C) and OFF heaters were introduced on each side of the rearing tank (9°C) in the upper
region. The shrimps were observed for 30 min. Between consecutive trials, the heaters were inverted. The whole
experiment is detailed in Chapter Il — section 2.1.2.
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The aggregation of M. fortunata shrimps on the warmer zone of the heater is consistent with
the results from Smith and collaborators (2013), who established the temperature preference of M.
fortunata to be 19.2°C. They also studied Palaemonetes varians, which selected a mean temperature
of 18.3°C, contrasting with our results on P. elegans for which we did not observed any attraction to
the heater. These differences could result from the acclimatization duration: P. varians were
acclimated to 9°C for one week (Smith et al. 2013), whereas P. elegans were acclimated at least one
month to 9°C (present study). It also must be pointed that the experimental setups are different, and
consequently are the behaviors observed. Smith and collaborators (2013) demonstrated the
temperature preferendum for each species, by exposing the shrimps to a thermal gradient. In the
present study, we demonstrated that M. fortunata is attracted to a distant warm spot, in contrast to
P. elegans. Furthermore, Ravaux and collaborators (2009) demonstrated that vent shrimps R.
exoculata aggregate on a warm water source (injection of 11°C seawater in a 3°C background in the
IPOCAMP aquarium). Taking together, our results with those from Ravaux and collaborators (2009)
robustly support the statement of a key role of temperature in habitat selection as a specificity of

hydrothermal species.

These behavioral responses of vent shrimp to warm sources suggest that they have sensing
mechanisms to effectively exploit their thermal environment, as it is generally accepted for many
crustaceans (Lagerspetz and Vainio 2006). Jury and Watson (2000) found that lobster can detect
temperature changes of greater than 1°C, and probably as small as 0.15°C. In crab larvae
(Rhithropanopeus harrisii), vertical migration in the water column is triggered by changes from 0.29 to
0.49°C (Forward 1990). The unknown is the thermosensitivity of vent shrimp, which could present
particular abilities to detect fine temperature variationsIn the mixing zone of the hydrothermal fluid
with the surrounding seawater, temperature can vary abruptly from 2°C to temperatures exceeding
30°C (Schmidt et al. 2008). In the periphery of the rising hydrothermal plume, and in the buoyant
hydrothermal plumes spreading over 100 m, temperature differences with the seawater can be
inferior to 0.03°C (Baker et al. 2016, Tao et al. 2017). To detect such small temperature anomalies

could allow vent shrimp to orient towards an active site from distance.
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l1l. Conclusions

We conducted behavior experiments on M. fortunata, R. exoculata and P. elegans to test
attraction to factors relevant for the detection and orientation in the habitat of vent shrimp. Attraction
to food odor sources and sulfide was not demonstrated for the vent species, but detection of

temperature variations must be involved in the orientation within the vent habitat.

We investigated the responses to food odor sources as a stimulus expected to trigger an
attraction behavior. Attraction to food odor sources was successfully demonstrated for P. elegans with
choice experiments, but not for M. fortunata with experiments at both atmospheric and in situ

pressure, suggesting that the experimental conditions were not appropriate for this species.

To get insights into the chemotaxis role of the hydrothermal fluid for vent shrimp, we used
sulfide as a hydrothermal chemical stimulus, which has previously been proposed as an attractant for
vent shrimp. Our results did not suggest an attraction to sulfide or a mixture of food and sulfide in M.
fortunata. In P. elegans, we found that sulfide is not repulsive when mixed with a food odor,
contrasting with avoidance responses observed for other caridean species in the literature. We also
conducted an experiment at in situ pressure on R. exoculata, which relies much more on hydrothermal
fluid emissions than M. fortunata, but again our results did not reveal any significant attraction to
sulfide, or sulfide in acid conditions. Hence, we cannot discuss on the relevance of a chemical guidance

for vent shrimp orientation.

We tested the attraction to warm temperature as a potential factor to guide vent shrimp in
their habitat. Detection of temperature variations is relevant for the short-distance detection of the
habitat, where steep thermal gradients occur, but also for the long-distance detection of an active site,
with small temperature anomalies occurring between the hydrothermal plume and the ambient
abyssal seawater. We found that M. fortunata is significantly attracted to warm temperatures (~17°C),
as previously demonstrated in R. exoculata. In contrast, P. elegans does not exhibit such behavior.
Therefore, temperature sensing is probably used to detect and choose the habitat around the
chimneys, and has likely an adaptive significance. Thermosensitivity has not yet been investigated in
vent shrimp, but could provide important insights into their adaptive relation to the thermal properties
of their environment, as well as their ability to detect fine temperature variations for long-distance
detection of an active vent. Another unknown is the expression of specific thermoreceptors in vent

shrimp, but the mechanisms involved in thermodetection are poorly known in crustaceans yet.

Future bioassays could differ in setup, for example by testing aquaria equipped with choice-

chambers (e.g. Lecchini et al. 2010, Santonja et al. 2018) on M. fortunata specimens acclimated to
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atmospheric pressure. Other modes of stimulation should be explored too. Agarose gels were used to
allow the slow diffusion of the stimuli, but it is not representative of what occurs in the vent habitat,
where the shrimps are continuously exposed to steep chemical variations. Burst stimulations with
stimulus solutions are a good option, but preliminary tests on R. exoculata were not conclusive (not
shown). Also, other hydrothermal fluid chemicals should be tested for their potential to trigger

attractive responses, such as iron, manganese and methane.
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l. Introduction

Sensory abilities are primarily defined by the proteins expressed by the sensory neurons. Vent
shrimp could present adaptations at the molecular level, with the expression of specific sensory
proteins, or different levels and patterns of expression in the sensory organs. Considering
chemodetection, so far, only few chemoreceptor proteins have identified in crustaceans, and
thermoreceptors have not been identified in crustaceans yet. This chapter provides very first insights
into the molecular basis of chemo- and thermodetection in vent and coastal shrimp species, with the

identification, and eventually the expression pattern, of chemo- and thermoreceptor candidates.

The nature of crustacean chemoreceptors has remained elusive until recently, since searches
for the traditional insect olfactory receptors have been unsuccessful. The genome sequencing of the
branchiopod Daphnia pulex revealed the presence of several lonotropic Receptors (IRs), a family of
receptors involved in odorant detection in insects and subsequently shown to be conserved in
Protostomia (Benton et al. 2009, Croset et al. 2010). Several IRs were also identified from antennule
transcriptomes in decapods: the spiny lobster Panulirus argus (Corey et al. 2013), the American lobster
Homarus americanus (Hollins et al. 2003), and the hermit crabs Pagurus bernhardus (Groh et al. 2014)
and Coenobita clypeatus (Groh-Lunow et al. 2015). IRs are hence considered as the putative crustacean
olfactory receptors that mediate the odorant detection in the antennules (Derby et al. 2016). IRs
function as heteromeric receptors, with IR25a, IR93a and IR8a being common subunits that associate
with other IRs subunits that determine odor specificity in olfactory sensory neurons and likely in other
chemosensory neurons (Abuin et al. 2011; Rytz et al. 2013). In addition, the genome of D. pulex
revealed the presence of several Gustatory Receptors (GRs) and ChemoSensory Proteins (CSPs) (Eyun
et al. 2017) that are also involved in chemodetection in insects (GRs: Scott et al. 2001, CSPs: Pelosi et
al. 2014). GRs and CSPs were identified in transcriptomes from several species of copepods (Eyun et
al. 2017), but they have never been reported in antennule transcriptomes of decapod species. So far,
no chemoreceptors have been identified in Caridea, which comprises our shrimp models, the

Alvinocarididae vent shrimp and the Palaemonidae shallow-water shrimp species.

Thermosensory mechanisms in crustaceans are unknown so far. In insects, thermoreceptors
have been identified first in Drosophila melanogaster. They are mainly Transient Receptor Potential
(TRP) channels, a family of receptors that are likely associated to every sensory modality (Fowler and
Montell 2013). Several subfamilies of TRPs are believed to mediate thermodetection at different
ranges of temperatures (Lee et al. 2005; Neely et al. 2011). Some IRs and GRs have also been proposed
to mediate thermodetection in D. melanogaster (IRs: Ni et al. 2013; Knecht et al. 2016; GRs: Ni et al.
2013).
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Juliette Ravaux, Magali Zbinden and |, in collaboration with Thomas Chertemps and Nicolas
Montagné! (altogether referred in the text as “we”) investigated the expression of the olfactory
candidate co-receptor IR25a in the antennal appendages of four vent shrimp species (Rimicaris
exoculata, Rimicaris chacei, Mirocaris fortunata and Alvinocaris markensis). All the approaches were
conducted in parallel on Palaemon elegans, to search for differences that could reflect molecular
adaptation to the vent habitat. Comparisons within hydrothermal species were also conducted to
examine possible specific adaptations related to their different microhabitats and lifestyles. In
addition, | present in this chapter preliminary results from a transcriptome analysis we recently

launched for the four vent shrimp species to further identify potential chemo- and thermoreceptors.

! Chimioréception et Adaptation (CREA) team, Sensory Ecology department, iEES
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Il. Results and discussion

1. Comparative expression of the olfactory co-receptor IR25a in
hydrothermal vent and coastal shrimp

[Results published in Zbinden et al. 2017]

In order to identify organs putatively involved in olfaction, we investigated the expression
pattern of the co-receptor IR25a. IR25a ancestor may have initially evolved to detect environmental
glutamate and then it later acquired a co-receptor function after the IR repertoire duplicated and
diversified (Croset et al. 2010; Rytz et al. 2013). L-glutamate is a major chemical stimulus for
crustaceans, known to activate olfactory sensory neurons (OSNs) in the aesthetascs, and is linked to
feeding behaviors (Ukhanov et al. 2011; Derby and Zimmer 2012). Corey and collaborators (2013)
confirmed the olfactory function of IR25a in crustaceans by identifying and localizing IR25a in the

dendritic membranes of lobster OSNs.

Using a homology-based PCR with primers designed from the alignment of IR25a sequences
from diverse organisms, we obtained, for our 5 shrimp species, partial IR25a sequences of 903 bp for
R. exoculata and P. elegans, and 763 bp for M. fortunata, R. chacei, and A. markensis. A phylogenetic
analysis confirmed that these sequences group with IR25a sequences from other arthropods and form
distinct clusters within the shrimp sequences, being congruent with the phylogeny of these groups
(results in the thesis publication Zbinden et al. 2017). Our IR25a partial sequences are about 250 to

300 amino acids in length, which represents 25 to 30% of the total length expected for such sequences.

Then, using RT-PCR, we examined the expression pattern of IR25a in antennules, antennae,
mouthparts and walking legs, as well as in non-chemosensory tissues (abdominal muscles, eye), from
the 4 hydrothermal vent shrimp and the coastal shrimp P. elegans (Figure 57). In these 5 species, IR25a
was predominantly expressed in the lateral antennular flagella (Al lateral) that bear the aesthetascs
(Figure 57). This result is consistent with the expression pattern of this IR subunit previously reported
in H. americanus (iGIuR1, Stepanyan et al. 2004), P. argus (Corey et al. 2013) and C. clypeatus (Groh-
Lunow et al. 2015). In P. elegans, we observed a weaker expression in the external ramus than in the
internal ramus of the lateral antennular flagella, the latter bearing the aesthetascs. IR25a expression
in other chemosensory tissues than the lateral antennules varies amongst the species tested. We did
not detect IR25a expression in the medial antennules and the antennae in M. fortunata, A. markensis

and P. elegans, as results previously obtained for H. americanus (Stepanyan et al. 2004). In contrast,

146



Chapter VI - Receptors

we observed IR25a expression in the medial antennules in R. exoculata and R. chacei, and a weak
expression was detected in the antennae of R. exoculata. IR25a expression was not detected in the
eye, mouthparts and walking legs in P. elegans in the present study, although Corey et al. (2013)

detected IR25a in the mouth and the two first walking legs in P. argus.

The occurrence of IR25a in tissues other than those bearing the aesthetascs suggested to Corey
and collaborators (2013) that IR25a may play a more general role in decapod crustacean
chemodetection than just mediating olfaction. In contrast, Keller et al. (2003) suggested that organs
other than the aesthetasc bearing flagella can also have an olfactory role. Because our results show
that IR25a is not only expressed in the lateral antennules, and that several recent reviews indicate that
only the aesthetascs are considered as olfactory sensilla (Schmidt and Mellon 2011; Mellon 2014;
Derby and Weissburg 2014; Derby et al. 2016), we rather support the hypothesis of Corey et al. (2013).
All the antennal flagella, the mouthparts and the two first pairs of walking legs are associated to
bimodal chemo- and mechanosensory sensilla, hence IR25a might not be involved only in the olfactory
pathway mediated by the aesthetascs, but also in the distributed chemodetection pathway mediated

by the bimodal sensilla.

Among hydrothermal species, the different patterns of IR25a expression we obtained for R.
exoculata and R. chacei on one hand (detection in the lateral and medial antennules, and in the
antennae for R. exoculata) and for M. fortunata and A. markensis on the other hand (detection in the
lateral antennules only) would suggest different chemosensory mechanisms in these 2 shrimp groups.
We propose that these differences may be related to their respective diets and thus to their distinct
relations to the hydrothermal fluid. R. exoculata and R. chacei live in symbiosis with chemoautotrophic
bacteria from which they derive all or part of their food (Gebruk et al. 2000; Ponsard et al. 2013),
forcing them to stay permanently close to hydrothermal fluid emissions to supply their bacteria in
reduced compounds necessary for chemosynthesis (Van Dover et al. 1988; Zbinden et al. 2004, 2008).
This association with symbiotic bacteria is more extensive for R. exoculata than for R. chacei (Casanova
et al. 1993; Apremont 2017), so the IR25a expression pattern in the antennae of R. exoculata could be
reflective of its primary need to locate hydrothermal fluid chemicals, and consequently to have
enhanced chemosensory abilities. On the other hand, M. fortunata and A. markensis are secondary
consumers, scavenging on local organic matter and living at greater distances from the vent emissions
(Gebruk et al. 2000; Desbruyeéres et al. 2006; De Busserolles et al. 2009; Husson et al. 2017). The coastal
shrimp P. elegans has an IR25a expression pattern similar to hydrothermal secondary consumers M.
fortunata and A. markensis, itself having an opportunistic omnivorous diet comprising invertebrate

tissues (Janas and Baranska 2008).
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Figure 57 IR25a gene expression in hydrothermal and coastal shrimp species

Control RT-PCR products for comparative analysis of gene expression correspond to the glycolysis enzyme
GAPDH for hydrothermal vent shrimp R. exoculata, M. fortunata, A. markensis and R. chacei, and to the
ribosomal protein gene RPL8 for the coastal shrimp P. elegans. No amplification was detected in the absence of
template (not shown).

Al, antennules; A2, second antennae; Md, mandibles; Mx1-2, maxillae; p1 and p2, first and second walking legs;
R1, internal ramus of the lateral antennulles; R2, external ramus of the lateral antennules.

2. Pre-identification of potential chemo- and thermosensory proteins in
vent shrimp from RNA sequencing

So far, IRs are the only family of chemoreceptors identified in decapod crustaceans (Derby et
al. 2016, Eyun et al. 2017), but this statement is supported by transcriptomic data from the antennules
of very few species. Other functional classes of chemosensory proteins are reported in the genome of
D. pulex and the transcriptomes of several copepod species: the GRs and the CSPs, the latter being also
identified in one Dendrobranchiata species (Eyun et al. 2017). To get a more exhaustive view of the
sets of chemosensory proteins expressed in vent shrimp, as well as potential thermoreceptors, we
recently launched a transcriptome analysis for main sensory organs in the vent species R. exoculata,

R. chacei, M. fortunata and A. markensis.
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RNAs were extracted (as detailed in Chapter Il — IV. 1.) from 3 groups of organs for R. chacei,
M. fortunata and A. markensis: the antennules (lateral and medial flagella pooled), the antennae and
the abdomen muscles. For R. exoculata, RNAs were extracted from 6 groups of organs: the lateral
antennules, the medial antennules, the antennae, the abdomen muscles, a pool of maxillipeds 2 and
3 and the first pair of walking legs, and the fifth pair of walking legs. lllumina RNA-sequencing was
undertaken by the MGX Company (Montpellier, France), and the numbers of clustered sequences

obtained are presented in Table 14.

Table 14 Results of lllumina RNA-sequencing for four hydrothermal shrimp species

Total number of clusters*

Species Samples Total number of clusters* .
per species
Lateral antennules 23 586 189
Medial antennules 20226 159
Antennae 19 056 886
Rimicaris exoculata Abdomen muscles 67 313780 229172 327
Maxﬂllpeds 2, 3 and first pair 19918 823
of walking legs
Fifth pair of walking legs 79 070 490
Lateral and medial 15 276 667
antennules
Rimicaris chacei 53 147 985
Antennae 21105 346
Abdomen muscles 16 756 972
Lateral and medial 10252 121
antennules
Mirocaris fortunata 61976 254
Antennae 34362 241
Abdomen muscles 17 361 892
Lateral and medial 17 532 808
antennules
Alvinocaris markensis 51920530
Antennae 27 081 706
Abdomen muscles 7 306 016

*Number of clusters after filtering the raw data to remove the clusters that present too much overlapping (i.e.
to remove the least reliable data from the analysis)

Transcripts de novo assembly was carried out using Trinity. To identify receptor sequences, the
first step is to establish a reference transcriptome by pooling, for each species, the transcripts from all
the organs, and to annotate potential receptors by comparison with homologous sequences known in
other species. Our preliminary results are presented in Table 15, in comparison with receptors
previously identified in other marine crustaceans. From a first series of annotation, we identified

several IRs, GRs, CSPs and TRPs in the pooled transcriptomes of each hydrothermal species.
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The following paragraphs present general information on IRs, GRs, CSPs and TRPs families,
regarding their previous reports in crustaceans, and their potential chemo- and thermosensory
functions inferred from knowledge in insects. It must be reminded than any homology or similarity
with insect receptors is highly speculative, since one receptor with an identified function in insect may
have distinct roles in crustaceans. Hence, the following discussions must be considered as an
introduction to the potential sensory functions that could be further explored from our transcriptome
datasets, rather than interpretations. Also, at our current level of analysis, we cannot discuss on the
different levels of expression of each sensory protein family in each organ used for the transcriptome

analysis, since the presented results correspond to ongoing reference transcriptome annotations.

As explained previously, IRs are considered to play a general role in chemodetection in
crustaceans (Corey et al. 2013). They are insect IR orthologs and are abundant in the genome of
Daphnia pulex (Pefialva-Arana et al. 2009). From investigation of type and diversity of IRs in D.
melanogaster, IRs were classified into two categories: antennal IRs, expressed in the antennae, and
divergent IRs which are expressed in other chemosensory tissues (mouthparts, walking legs) (Croset
et al. 2010; Koh et al. 2014; Groh et al. 2014). In crustaceans, IRs diversity has not yet been extensively
explored, but the number of IRs appears to vary across species (Table 15 and Derby et al. 2016). For
comparison, 66 IR genes were identified in D. melanogaster (Benton et al. 2009), 85 IR genes were
identified in D. pulex (Pefialva-Arana et al. 2009), potentially 20 IRs were identified in the antennules
transcriptome of the hermit crab P. bernhardus (Groh et al. 2014), 13 IRs were identified in the
antennules transcriptome of the spiny lobster P. argus (Corey et al. 2013), and in the present study we
found approximatively 200 to 300 IRs candidates in the transcriptome of R. exoculata. Comparison of
these IRs RNAs expression within the transcriptome of each organ is needed to further discuss the
proportion of antennal and divergent IRs in this vent species. IRs were also proposed to mediate
thermodetection in D. melanogaster larvae, with IR21a mediating cool sensing together with IR25a (Ni
et al. 2013), and IR93a being expressed in larval thermosensory neurons mediating cool avoidance

(Knecht et al. 2016).

GRs are expressed in all arthropods and are ancestral to the Hexapod specific ORs (Eyun et al.
2017). In insects, GRs are expressed in antennae and other head and body appendages, and are
involved for instance in the detection of sugar, bitter compounds (Sato et al. 2011; Scott et al. 2001;
Ling et al. 2014) and also CO; (Kwon et al. 2007). GRs were identified in the D. pulex genome (Pefialva-
Arana et al. 2009), in transcriptomes from several copepod species (Eyun et al. 2017) but not in the
antennule transcriptomes of P. bernhardus (Groh et al. 2014) and P. argus (Corey et al. 2013) (Table
15). However, in the present study, we found GRs in the transcriptomes of R. exoculata, but also of M.

fortunata and A. markensis for which only the antennules, antennae and abdomen muscles have been
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sequenced. This expression in other structures than mouthparts suggests that GRs may be involved in
sensory functions other than taste. For example, in D. melanogaster, one GR (GR28B) is involved in
warm sensing (Ni et al. 2013). As pointed out by Eyun et al. (2017), the roles of GRs in non-insect

arthropod taxa are poorly understood and require functional studies.

The molecular basis of chemodetection consists not only in chemoreceptors but also in the
extracellular space surrounding them. In insects, processes that occur in the receptor environment
before or after the chemical stimuli bind to their chemoreceptors involve olfactory binding proteins
(OBPs) and chemosensory proteins (CSPs) (Pelosi et al. 2014). OBPs appear to be limited to terrestrial
insect species and enhance chemodetection through their ability to increase the solubility of volatile
odorants in the aqueous environment of the receptor. OBPs have never been identified in crustaceans,
and we have not identified any OBP in the transcriptomes of our vent species either. In contrast, CSPs
were reported in both insects and crustaceans. In crustaceans, CSPs were reported in D. pulex, several
copepod species and one Dendrobranchiata species (Eyun et al. 2017) (Table 15). In insects, CSPs
mediate the transport of ligands to the chemosensory receptors (Pelosi et al. 2014). Based on protein
structure similarity, Eyun and collaborators (2017) suggested that copepod CSPs might have similar
functions to those of insects. The sequencing of our transcriptomes revealed the presence of CSPs in

the four vent species, hence being the second report of CSPs in decapods.

TRPs represent a large family of receptor genes that are key for multiple sensory modalities,
including vision, hearing, chemodetection, thermodetection and mechanodetection (Fowler and
Montell 2013). Consequently these channels are critical for sensing the external environment and for
animal behaviors (Fowler and Montell 2013). The functions they mediate are extensively investigated
in insects, but are fairly complex to define since some insect TRPs can be involved in the detection of
multiple sensory stimuli (examples in Cattaneo et al. 2016). TRPs in insects have been divided into
seven subfamilies, comprising at least four members (TRPC, TRPV, TRPA and TRPN) known to play roles
in insect sensory systems (Fowler and Montell 2013). For thermodetection, in D. melanogaster several
TRPA channels (TRPA1, Pyrexia, Painless) detect different ranges of temperature (Lee et al. 2005;
Sokabe and Tominaga 2009) and contribute to the nociceptive responses (e.g. escape behavior) to
excessively hot temperatures (40°C for Pyrexia, Lee et al. 2005; 46°C for TRPA1 and Painless, Neely et
al. 2011). The isoforms of these receptors display different thresholds for temperature activation and
unique expression patterns (Kwon et al. 2007; Zhong et al. 2012). For instance, Pyrexia-expressing
neurons are widely distributed throughout the fly body (Lee et al. 2005). The arista (a large bristle
attached to the front part of the antennae of D. melanogaster) contains thermosensory neurons and
its heat-sensing function is thought to be mediated by TRP channels (Gallio et al. 2011). TRPAS has also

been reported to play a possible role in temperature sensing in antennae of the lepidoptera moth
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Cydia pomonella (Cattaneo et al. 2016). In crustaceans, TRPA1, Painless and Pyrexia have been
reported in transcriptomes from the brain and the heart of the lobster H. americanus but never from
the antennal appendages (Table 15) (McGrath et al. 2016). In the present study, our transcriptome
analysis revealed the presence of several TRPs, among which TRPA1 and Painless. These genes should
be considered first for future localization in sensory organs, especially in the antennal appendages, to

investigate a possible thermosensory function.
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l1l. Conclusions

We investigated the molecular basis of chemo- and thermodetection in four vent shrimp
species. They express in their antennal appendages the common IR25a known to be expressed in
crustacean chemosensory neurons, and they also express several families of sensory proteins

potentially involved in chemo- and thermodetection.

We identified partial sequences of the olfactory candidate co-receptors IR25a in the antennal
appendages of four vent shrimp species (R. exoculata, R. chacei, M. fortunata and A. markensis) and
of the coastal shrimp P. elegans. We showed that IR25a presents different patterns of expression in
the antennal appendages of these species, maybe reflecting differences in lifestyle and consequent
chemosensory abilities. In contrast to other species, R. exoculata express IR25a in all its antennal
appendages, which could reflects its need to efficiently detect the hydrothermal fluids in order to
supplement its symbiotic bacteria in chemicals. The different levels of expression of IR25a in the

antennal appendages need to be quantified with gPCR.

Preliminary results of transcriptome sequencing from a pool of several sensory organs of the
four vent species were also presented. They reveal the occurrence of several IRs, GRs, CSPs and TRPs,
with GRs and TRPs being reported for the first time in decapod sensory organs. The further exploitation
of these transcriptome datasets is very promising for the understanding of the molecular basis of
chemodetection in Alvinocarididae and Crustacea. Regarding vent shrimp sensory biology, all these
protein families are likely to be involved in chemodetection, and possibly in thermodetection for IRs,
TRPs and GRs. Differential analyses of the transcriptomes will further provide information about the
levels of expression of the corresponding RNAs in the antennules and the antennae of all species, as
well as in the mouthparts and walking legs for R. exoculata. Relevant sensory receptors will be selected
to search for their expression in the antennal appendages with RT-PCR, and within the neurons of the

sensory organs, through in situ hybridization.
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For this thesis project, my supervisors!, collaborators? and | investigated the abilities of deep
vent alvinocaridid shrimp to detect their environment and to exploit hydrothermal fluid factors as
orientation cues. We focused on the chemosensory abilities and, to a lesser extent, thermosensory
abilities of vent shrimp, with Mirocaris fortunata as the main model, compared to those of a closely-
related shallow-water species, Palaemon elegans, to discuss on potential sensory adaptations of the

vent species. The main objectives of this work were:

- to describe the structure of M. fortunata chemosensory system and especially the olfactory
system, from the morphology and the ultrastructure of the peripheral chemosensory sensilla to the
inputs of the chemosensory neurons in the central nervous system. The chemosensory structures
were compared with those of P. elegans, in order to reveal potential dissimilarities that may reflect

adaptive traits;

- to identify and locate chemoreceptors in the main chemosensory organs of several vent shrimp
species and P. elegans, for which distinct expression pattern may reflect functional differences in

relation with the lifestyle of each species;

- to test the detection of relevant chemical stimuli by major chemosensory organs (i.e. the antennal
appendages) using electrophysiology, in order to identify which hydrothermal fluid chemicals are
perceived by M. fortunata, and if this species presents specific response profiles compared to P.

elegans;

- to investigate the attraction to chemical and thermal cues in M. fortunata, with behavior
experiments conducted in parallel on P. elegans, and a posteriori on the vent species Rimicaris

exoculata to eventually highlight adaptive behavioral responses associated to vent shrimp lifestyle.

Overall, our results provide conclusions, insights and additional considerations for each issue,

discussed hereafter with perspectives for future researches.

! Juliette Ravaux and Magali Zbinden (UMR 7208 BOREA, team Adaptations to Extreme Environments)
2 Philippe Lucas, Thomas Chertemps, Nicolas Montagné (iEES, Sensory Ecology department); Steffen Harzsch,
Jakob Krieger (Greisfwald University, Cytology and Evolutionary Biology department)
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The olfactory system of the vent species M. fortunata is similar to that of the coastal species P.

elegans

We investigated in M. fortunata and P. elegans the structural and molecular features of the
olfactory pathway, mediated by the aesthetasc sensilla. We used morphometric measurements of
structural characteristics of the olfactory system to infer on its performance. The distribution,
dimensions and cuticle thickness of the aesthetascs are linked to the olfactory receptive surface. An
enhanced number of aesthetascs, each associated to identical neuron clusters, raises the sensitivity to
odorants. The number of OSNs, which bear different sets of olfactory receptors, and the related
volume of the olfactory neuropils are linked to the odors discrimination abilities. We found that all
these parameters are similar between M. fortunata and P. elegans (Zbinden et al. 2017, Machon et al.
2018). In addition, we analyzed the expression pattern of the co-receptor IR25a known to be involved
in crustacean olfaction, and broadly expressed in chemosensory neurons. In both M. fortunata and P.
elegans, IR25a is expressed only in the lateral antennules (Zbinden et al. 2017), which again suggests

that both species possess similar olfactory systems.

Overall, at these levels of investigation, we did not observed striking differences that could
suggest a different efficiency of the olfactory pathway in the vent species M. fortunata compared to

the coastal shrimp P. elegans.

Distributed chemodetection, rather than olfaction, may be prevailing for the detection of the

chemical environment by vent shrimp

For the structural analysis, a special attention was given to the aesthetascs (mediating
olfaction) located on the lateral antennules. However, several results and preliminary observations
presented hereafter suggest that the distributed chemodetection pathway (mediated by the bimodal

sensilla, located on all antennal appendages) plays an important role for vent shrimp.

We successfully developed the first electroantennography (EAG) method on a marine shrimp
in water (Machon et al. 2016), to test the detection of chemicals by the antennal appendages of M.
fortunata and P. elegans. We found that not only the lateral antennules (that bear the aesthetascs)
but also the antennae detect food-related odors and sulfide (Machon et al. 2018), indicating that at

least the bimodal sensilla mediate such detection.

Analysis of IR25a expression patterns in several vent shrimp species revealed that, in contrast
to M. fortunata and P. elegans, IR25a is expressed not only in the lateral antennules but also in the

medial antennules for Rimicaris chacei, and in addition in the antennae for R. exoculata (Zbinden et al.
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2017). These differences indicate that specificities at the molecular level are not restrained to the
olfactory receptors, but concern also chemoreceptors expressed by the chemosensory neurons
innervating the bimodal sensilla. Also, these results suggest that vent species might present
adaptations of their chemosensory system linked to their lifestyle, R. exoculata being the most
specialized to the vent habitat and could hence possess particular chemosensory abilities to efficiently

supply its symbionts in chemicals, whereas M. fortunata is a secondary consumer as P. elegans.

Preliminary observations in rearing tanks and in video-recordings of M. fortunata and R.
exoculata at in situ pressure suggest that the antennae, rather than the antennules, may be
predominantly used to sense the environment. The two species use extensively their antennae while
exploring (as previously observed by Matabos et al. 2015), whereas the antennules are not very
mobile. Future investigation will quantify the flicking frequency of the antennules (mode of active

chemodetection —sniffing— in crustaceans) in the vent species, in comparison with P. elegans.

The exploitation of our transcriptomic datasets will give precious information regarding the
specialization of vent species chemosensory systems. We preliminary identified various
chemoreceptor candidates in R. exoculata, R. chacei, M. fortunata and Alvinocaris markensis, including
several lonotropic Receptors (IRs), Gustatory Receptors (GRs) and Transient Receptor Potential
channels (TRPs). Quantitative comparison for their expression levels in the antennules versus the
antennae will give insights into their respective sensory functions, and differences in receptors
diversity could have an adaptive significance regarding the lifestyle of each species. An additional RNA
sequencing of the antennal appendages of P. elegans is needed to discuss on molecular adaptations

to the hydrothermal environment.

The role of the hydrothermal fluid components in vent shrimp chemotaxis is uncertain, but

thermodetection is likely a key sensory modality for the selection of the habitat

We conducted in vivo studies to investigate if the detection of active vents and selection of the

habitat by shrimp is guided by chemical and thermal cues.

With the EAG method, we demonstrated that M. fortunata detects sulfide with both its lateral
antennules and its antennae (Machon et al. 2018), supporting the statement of Renninger and
collaborators (1995) on the chemodetection of the hydrothermal fluid. However, similar response

profiles were obtained for P. elegans, indicating that sulfide detection is not specific to vent species.

Behavioural experiments at atmospheric and in situ pressure were not conclusive to discuss

on the attraction to sulfide neither in M. fortunata nor in R. exoculata. We were not able to
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demonstrate attraction to food-related odors in M. fortunata either, whereas we know this species
locate food sources when fed in rearing tanks at atmospheric pressure, or at in situ pressure in the
AbyssBox. Accordingly, our behavioural setups might not be appropriate to characterize an attraction

behavior to chemicals, and other experiments should be conceived.

In contrast, we observed a significant attraction to warm temperatures (~17°C in a 9°C
background) for M. fortunata, consistent with previous results obtained for R. exoculata (Ravaux et al.
2009). In our experimental conditions, we did not observed such behavior for P. elegans, suggesting
that detection and attraction to temperature may have an adaptive significance in the vent habitat.
The mechanisms for thermodetection are not known in crustaceans yet, but our transcriptomic
analysis revealed that vent shrimp express several TRPs known to be activated each by specific
temperatures in insects. Localization of these thermoreceptor candidates by in situ hybridization could
provide for instance hints for the occurrence of sensilla specifically involved in thermodetection in vent

shrimp.

The long-distance detection of active vents is still enigmatic

The long-term occurrence of shrimps at vents and evidence for high connectivity between
different sites along the Mid-Atlantic Ridge (Teixeira et al. 2013) suggest that vent shrimp must have
developed propagation strategies, including detection mechanisms to locate a distant active vent to
settle in. Such processes are believed to occur at the larval stages, but their sensory abilities are
unknown yet. However, it is not rare to observe from submersibles isolated shrimp adults swimming
in the water column at tens of meters from the vent field, suggesting that they might be able to detect

the vent activity from distance to return to their habitat.

Temperature is a potential factor for the long-distance detection of vents, since the spreading
hydrothermal plumes can be warmer than the ambient seawater by tenth of degrees. Such range of
temperature anomalies fits to the thermosensitivity estimated for some crustaceans, but remains to

be determined for vent shrimp.

Sulfide is restrained in location to the close environment of a vent field, hence it is not likely a
relevant cue for the long-distance detection of active vents. Iron and manganese were tested as stimuli
relevant for long-distance detection of the hydrothermal plume, but no EAG responses were elicited
by these compounds, which prevents any conclusion on their detection. Calcium imaging of the OSNs
activation, although challenging to develop on small shrimp, could be used to further test the detection

of iron and manganese.
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Sensory modalities other than chemo- and thermodetection may be involved in the long-
distance detection of active vents. Future research could examine sound detection as a sensory
modality potentially used by vent shrimp to detect active vents. Acoustic vibrations are emitted at
vents by the turbulent expulsion of the hydrothermal fluid through black smokers (Little 1988, Crone
et al. 2006). Crustaceans can detect acoustic vibrations with particular mechanosensory organs, the
statocysts, located in the basal segment of the antennules (Lovell et al. 2005). The hearing abilities of
M. fortunata could be investigated, in comparison with P. elegans, with anatomical description of
these organs and electrophysiology, using the Auditory Brainstem Response recording technique,
previously used in the shallow-water shrimp P. serratus (Lovell et al. 2005). Furthermore, in our
description of the central nervous system, we found that, compared to P. elegans, M. fortunata
exhibits prominent hemiellipsoid bodies and medulla terminalis. These higher integrative centers
process various sensory modalities and might be involved in learning, memory, or navigation skills in
crustaceans. Although for now we can not speculate on their functions, these elaborated neuropils

might have a functional significance for vent shrimp lifestyle.

Association with chemoautotrophic bacteria may be inherent to vent shrimp chemosensory abilities

The antennal appendages of vent shrimp, and sometimes even their sensilla, are often covered
by a thick layer of bacteria, which was never observed on P. elegans (Zbinden et al. 2017, Machon et
al. 2018, Zbinden et al. submitted). Most crustaceans groom their antennules to remove the microbial
fouling, considered as detrimental to the chemosensory function of these organs (Barbato et al. 1997).
Our preliminary observations indicate that M. fortunata grooms its antennules, but this behavior needs
to be quantified and compared to P. elegans. However, the frequent occurrence of bacteria on the
antennal appendages of vent shrimp is questioning. This bacterial coverage could impair the
chemosensory abilities of vent shrimp, or alternatively may have a functional role. We recently
identified these bacterial communities as Epsilon- and Gammaproteobacteria (Zbinden et al.
submitted), which are sulfide and hydrogen oxidizers. One hypothesis is that they could have a
detoxification role, for example by converting sulfide into less toxic sulphate, prior to the entrance of

chemicals within the sensilla.
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General conclusion

Together with a wide range of adaptations to the hydrothermal habitat, the sensory abilities
are fundamental features to explain the long-term evolution of Alvinocarididae shrimp at deep
hydrothermal vents. The chemical composition and the temperature of the hydrothermal fluid are
among the potential attractants that had been proposed but poorly investigated. In this work, we
demonstrated that vent shrimp use temperature as an orientation cue, and detect sulfide in the
hydrothermal fluid, but we could not resolve the behaviors triggered by this chemodetection. The vent
shrimp Mirocaris fortunata does not present striking specificities of its olfactory system compared to
the coastal species Palaemon elegans. Chemosensory adaptations might be linked to the trophic
behaviors of vent shrimp rather than to hydrothermal habitat itself. Comparison between
Alvinocarididae species with different lifestyle, the use of other sensory modalities, the role of epibiotic
bacteria, and the identification and localization of chemo- and thermoreceptors are promising areas
of investigation for future advances on the sensory biology and adaptations of deep hydrothermal vent

shrimp.
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METHODS & TECHNIQUES

New electroantennography method on a marine shrimp in water
Julia Machon'-2, Juliette Ravaux', Magali Zbinden® and Philippe Lucas?*

ABSTRACT

Antennular chemoreception in aquatic decapods is well studied via
the recording of single chemoreceptor neuron activity in the
antennule, but global responses of the antennule (or antennae in
insects) by electroantennography (EAG) has so far been mainly
restricted to aerial conditions. We present here a well-established
underwater EAG method to record the global antennule activity in the
marine shrimp Palaemon elegans in natural (aqueous) conditions.
EAG responses to food extracts, recorded as net positive deviations
of the baseline, are reproducible, dose-dependent and exhibit
sensory adaptation. This new EAG method opens a large field of
possibilities for studying in vivo antennular chemoreception in aquatic
decapods, in a global approach to supplement cumrent, more specific
techniques.

KEY WORDS: Electroantennography, Shrimp, Olfaction, Antennule

INTRODUCTION

Crustaceans, in particular lobsters and crayfishes, have emerged as
excellent models for research in chemoreception (Ache, 2002).
They rely on antennular chemoreception for diverse behaviors such
as food detection and social interactions (Derby and Sorensen,
2008). Their main olfactory organ is the antennule (Derby and
Weissburg, 2014), the lateral flagellum of which bears presumably
unimodal sensilla specialized in olfaction, the aesthetascs,
innervated only by olfactory receptor neurons (ORNs) (Ghiradella
et al, 1968). Antennular flagella also bear bimodal sensilla,
innervated by mechanoreceptor and chemoreceptor neurons
(Schmidt and Derby, 2005). Responses of crustacean
chemoreceptor neurons to odor stimuli were classically recorded
cither extracellularly from their axons (Derby, 1989; Kamio et al.,
2005) or intracellularly after the introduction of the patch-clamp
method (Ache, 2002; Anderson and Ache, 1985; Bobkov et al.,
2012).

Study of antennular chemoreception is essential for
understanding the biology of our model species, the blind
Alvinocarididac deep-sea hydrothermal shrimp. Despite the fact
that the antennal appendages may play a major role in the detection
of their environment (Chamberlain, 2000; Jinks et al, 1998;
Renninger et al., 1995), there is still little information about their
chemosensory sensitivity. Specimens of these species are
extremely difficult to collect and maintain alive, and therefore are
available in low numbers for experiments. The objective of this
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work was to develop a method with a high rate of success, allowing
the recording of global responses of the antennule, in marine
decapods. In insects, such a technique called electroantennography
(EAG) (Schneider, 1957) is commonly used to measure the global
response profile of antennal ORNSs to odor stimuli. This technique
is widely used in screening moth pheromones (Roclofs, 1984).
In crustaceans, EAG measurements were performed in aenal
conditions on two terrestrial crabs, the giant robber crab Birgus
latro (Stensmyr et al., 2005) and the hermmit crab Coenobita
chpeatus (Kring et al, 2012), and in the marine hermit crab
Pagurus berhnardus (Stensmyr et al., 2005). Two papers reported
very briefly EAG recordings, with no technical demonstration,
from freshwater crustaceans: the branchiopoda Daphnia spp.
(Simbeya et al., 2012) and the crayfish Procambarus clarkii
(Ameyaw-Akumfi and Hazlett, 1975).

We present here the first demonstration of an underwater EAG
method established for shrimp. It was developed on the coastal
marine species Palaemon elegans (Rathke, 1837) but it can easily
be adapted to other marine or freshwater decapods.

MATERIALS AND METHODS

Animals

Caridean shrimp Palaemon elegans (Rathke, 1837) were collected
from Saint-Malo Bay (France), housed communally in 100 liter
aquaria with oxygenated artificial seawater (Red Sea Salt, Red Sea,
Houston, TX, USA) at 15.540.5°C under a 12 h:12 h light:dark
cycle, and fed twice a week with shrimp food pellets [Novo Prawn
(NP), JBL, Neuhofen, Germany]. The specimens for experiments
were transferred to a 25 liter aquarium maintained at room
temperature (21+1°C) for at least 48 h of starvation to prevent any
potential adaptation of their chemoreceptor neurons to food odors.
The sex and age of animals were not determined.

Biological preparation

The animal was restrained ina 1 or 5 ml pipette tip cut according to
the shrimp’s size with the antennal appendages and the posterior
part of the abdomen out at each extremity of the cone (Fig. 1). The
shrimp was placed ventral side up. The preparation was attached to
a UM-3C micromanipulator (Narishige, London, UK) and angled
atapproximately 45 deg so that the anterior part of the animal (i.e.
antennal appendages) was submerged in a Petni dish filled with
Panulirus saline (PS) and the posterior part (ie. telson and
abdomen) remained in air. The composition of PS was (in
mmol 17"): 486 NaCl, 5 K(l, 13.6 CaCl,, 9.8 MgCl; and 10 Hepes,
pH 7.8-7.9 (Hamilton and Ache, 1983). A gravity-fed PS
perfusion was inserted in the pipette tip just over the
cephalothorax, to irrigate the branchial cavity and keep the
animal alive, and to renew the PS bath solution. The antennules
were immobilized with U-shape tungsten hooks on a piece of
Styrofoam stuck to the bottom of the Petri dish. The preparation
was visualized under a dissecting microscope (M165C, Leica,
Nanterre, France). Experiments were performed at room
temperature (21£1°C).
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Fig. 1. Setup, electrode placements and
electroantennography (EAG) responses from the

rine shimp Pak leg (A) Sketch of he
setup used to record EAG responses. The shrimp,
restrained ina cutpipette cone, is fixed head down in he
bath soluion, ventral side up, and is perfused with
. Panulirus saline (PS) sdution near the branchial cavity.
The ding o deisi din the k
r I lateral fagellum that bears the olffactory aesthetasc

sensilla, and the reference electrode is inserted

Apex  Medium Base

between the teison and the abdomen. The stimulus
delivery systiem is placed approximately 1.5 mm from
the lateral flagellum. Shrimp size (fom teison tip to
eyes) is 27204 cm; antennae, antennules and
materials are not to scale. (B) Sketch of P. elegans
thy bearing lar flagellum with the
different electrode placements at he base, midde and
apex regions. Not b scale. (C) EAG amplitides
recorded from the base region  narrow stimuli at
different zones aong the antennule (21, 22, 25, r=4;
23, Z4, r=5). (D) EAG amplitudes recorded from the
apex region to wide stimuli at different zones aong the
antennue (21,24, 25, n=5; 22, r=7, 23, n=6). (E) EAG
amplitudes recorded from the base region with wide

2252425

=

b
a 1.0
2 Z 08
08{ ap g 08 H
b w 04
04 .C
I—I—l ¢ 02{ a
0 lil o

Z1 22 Z3

e

Z1

Electrophysiological recordings and data analysis

Electrodes were pulled from GB150F-8P glass capillaries (Science
Products, Hofheim, Germany) using a P-97 puller (Sutter
Instrument, Novato, CA, USA). They had a tip diameter of 1 to
2.5um and were filled with PS. The reference clectrode was
introduced through the soft articular membrane between the telson
and the abdomen. The recording electrode was inserted with a
NMM-25 micromanipulator (Narishige, London, UK) in the base,
middle or apex region of the flagellum area bearing the
aesthetascs, between two aesthetasc rows (Fig. 1B). Signals
were amplified (¥100) and filtered (0.1-1000 Hz) using an EXI
amplifier with a 4002 headstage (Dagan, Minneapolis, MN,
USA), and digitized at 2kHz by a 16-bit acquisition board
(Digidata 1440A) under Clampex 10.3 (Molecular Devices,
Sunnyvale, CA, USA). Data were analyzed using Clampfit
(Molecular Devices). Signals were low-pass filtered offline at
20 Hz. Data are given as meansis.e.m.

Chemical stimuli preparation and delivery
An aqueous extract of shrimp food NP was used as odorant in
most experiments. NP pellets were dissolved for 48 h at room

simuli at different zones along the antennule (21, 22,
23, n=T, Z4,n=6,25, r=4). In C-E, EAGs were
recorded in response to Novo Prawn (NP) s§muli
(02g mi~" of NP extractfor 1sin C, 0.5s in Dand E).
Fast Green was used to visualze stimuated zones; it
dd not modify responses to NP stimuli. The gray zone
on he de sketch rep s the aesthet

b bearingarea. Me ©.m. were compared with aone-
way ANOVA with permutation test (C, P=0.04; D,
P=0.002; E, P=0.01) and by multiple comparisons with
wo-sample permutation (Hests; Benjamini-Hochberg
correctons were applied. Means with diferent letiers
are significantly different (P<0.05).

ab

z4 25

21_ﬂ.ﬂ;

temperature at 0.2 gml™" in PS. The extract was then centrifuged
at 5900 g for 10, 15 and 20 min and the supernatant was collected
after each centrifugation and filtered (0.45 pm), aliquoted and
stored at =20°C until use. For dose-response experiments, NP
extracts were diluted from 1:2 to 1:200 with PS. Aqueous extracts
of green crab Carcinus maenas, blue mussel Mytilus edulis and
dead P. elegans individuals were prepared from fresh material at
approximately 0.1, 0.5 and 0.6g ml™" in PS, respectively, using
the same protocol as for NP extract. Osmolarity (1050 mOsm I
with mannitol) and pH (7.85 with NaOH) were adjusted for all
solutions.

To deliver chemical stimuli, we used a pressurized perfusion
system with eight channels (AutoMate Scientific, Berkeley, CA,
USA). Each reservoir was connected to one entry of an MPP-8
multi-barrel manifold (Harvard Apparatus, Les Ulis, France). A
segment (60 mm) of deactivated gas chromatography (GC) column
(0.25 mm intemal diameter) was glued to the manifold exit. The
manifold was mounted onto a UM-3C micromanipulatorand the tip
of the GC column was positioned approximately 1.5 mm from the
recorded flagellum in its longitudinal axis. Stimuli were applied for
IsatSpsi(l.1ml min~"). Consecutive stimuli were delivered with
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at least 2min intervals to prevent chemosensory adaptation. To
establish the dose-response relationship for NP extract, stimuli were
applied in increasing concentrations. To analyze how global the
responses are, glass capillaries with two diameters were used to
stimulate wide and narrow portions of the antennule (0.86 mm and
100 pm intemal diameter, respectively) perpendicular to the
antennule axis. Responses to 0.1 or 0.2 gml™' of NP extract
(positive control) were measured at the beginning and at the end of
each experiment to ensure that the quality of recording remained
constant throughout the experiment. PS was used as a negative
control.

RESULTS AND DISCUSSION

We implemented a new EAG technique on a manne decapod
while keeping both its antennule and the stimulus in their natural
(marine) environment. This technique is derived from EAG on
insects. Insect antennae have different shapes, which impacts the
positioning of the recording electrode. In Lepidoptera, EAG is
typically performed from whole insect preparations by cutting the
tip of the antenna and inserting it in a glass electrode filled with
clecrolyte, with the reference electrode inserted in the insect
body. Excised antenna can also be used but they have a shorter
lifetime (Martinez et al, 2014). In Coleoptera, the recording
clectrode is inserted in the antenna (Roelofs, 1984). In aquatic
species, having the two electrodes in water would result in a short
circuit between them. We used the air-water interface to prevent
this short circuit, putting the anterior part of the shnmp (ie.
antennular appendages, one lateral flagellum impaled by the
recording electrode) in the bath solution and the posterior part
(i.c. telson and abdomen, connected to the reference electrode) in
the air. Because cutting the extremity of the antennule induced a
prominent outflow of fluid, we inserted the recording electrode tip
between aesthetascs.

Determination of recording parameters

To establishthe best conditions to record EAG responses, NP extract
stimuli were used. Responses to NP were positive deviations of the
baseline, while control stimuli (PS) induced negative deviations of
the baseline.

A

To estimate whether the recording electrode sampled the
responses from a large or small portion of the antennule (i.c.
global versus local response), different portions were stimulated
with 0.2 gml™' of NP extract. When namrow stimuli were applied
along the antennule while recording from the base region (Fig. 10),
the electrode recorded responses from zones stimulated far from the
clectrode location. Then, increasing lengths of the antennule were
stimulated by moving a larger stimulation capillary along the
antennule while recording from the apex (Fig. 1D) or the base
(Fig. 1E) regions. For both clectrode placements, the EAG
amplitude increased with the size of the simulated area. Thus,
there is a good propagation of the chemosensory response within the
antennule, so a large fraction of receptor neurons can be recorded.
To maximize the amplitude of recorded responses (i.e. to record the
largest number of receptor neurons), subsequent experiments were
performed by placing the recording electrode in the middle region of
the antennule (Fig. 1B).

In decapods, the antennule is not only equipped with unimodal
(chemosensory) aesthetascs housing ORNS. It also camies bimodal
(chemo- and mechanosensory) non-aesthetasc sensilla; however, in
much lower density than aesthetascs (Cate and Derby, 2001;
Hallberg et al., 1997; Obermeier and Schmitz, 2004; Steullet et al.,
2002). Hence, both neurons innervating the aesthetascs and the non-
aesthetasc sensilla can contribute to recorded chemical responses;
selective ablation experiments could clanify this point. To verify
whether control responses were mechanical, PS flows were applied
at increasing pressures (2 to 10 psi). PS responses were pressure-
dependent, with no significant response for the lowest pressure
(2 psi) and significant response for pressure values of 4 psi and
more (Fig. 2A,B), indicating that PS responses were likely
mechanical. The response increase from 4 (—=0.17:0.04 mV,
n=24) to 10 ps (=0.32£0.09 mV, n=25) was not significant (one-
way ANOVA with permutation test, P=0.8) because of a high
variability of the amplitude of PS responses across recordings. We
thus decided to adjust the pressure of all stimuli to § psi to facilitate
stimulus access to aesthetascs through their dense packing and to
distributed chemosensilla without eliciting strong mechanical
responses that would have impeded the comrect measurement of
chemical responses.

Fig. 2. EAG responses to mechanical and
consecutive chemical stimuli. (A) Supermposed
traces of EAG responses to Panulirus saline with
increasing pressure, the upper ¥ace corresponding b

ot

2 psi,and the ohers to 4, 6, 8 and 10 psi. (B) EAG
pressure-response curve to Panulirus saline (n=21 for
2 psi; n=24 for 4 psi; n=25for 6, 8 and 10 psi).
(CO)E les of EAG resp b two
stimuli (0.1 gmi~" of NP extract for 1s at 5 psi)
separated by 20, 60 and 90 s. (D) Amplitude of EAG

ive NP

responses to NP stimuli (same as in C) relative b the
amplitude of EAG response to a previous identical
stimuation, as a function of e §me between he two
stimuli (n=7 for 10,60 and 90s, n=9 for 4 and 40's;
n=11for 20 s). In A and C, bars indicate the smulus

-

20s

60s

* delivery. Transient peaks are valve opening artefacts.
M e.m. were pared with a one-way ANOVA
with permutation test (B, P=0.004; D, P<10~'%), and
witha ple p gaton Htest b ref
values (0in B, 1in D). "P<0.05; ***P<0.001.
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Responses of chemoreceptor neurons depend not only on the
stimulus characteristics (quality, quantity), but also on previous
chemosensory experience via the process of adaptation (Kaissling
et al., 1987). When chemoreceptor neurons are adapted by a
stimulus, responses to subsequent stimuli are reduced. The
recovery from ad dent. To define a time
interval between consecutive stimuli that could prevent
measuring responses from adapted sensory neurons, we
measured EAG responses to pairs of identical stimuli
(0.1 gml™" of NP extract) with increasing inter-stimulus
intervals (4 to 90 s) (Fig. 2C,D). As the inter-stimulus interval
was increased, the average amplitude of the response to the
second stimulus increased and eventually did not differ
significantly from the amplitude of the first response when the
interval was at least 90 s. For safety, in the following we kept an
interval of at least 2 min between consecutive stimuli.

me-d
nist P

EAG responses according to defined recording parameters
All the responses to NP extracts were positive deviations of the
baseline (Fig. 3A). Increasing concentrations of NP extract (0.001
to 0.2 g ml™") elicited dose-dependent responses with a threshold
between 0.001 and 0.003 gml™' (Fig. 3B) and amplitudes
reaching 2.6 mV for the highest concentration (0.2 g ml™'). The
delay between the electrovalve opening command and the
beginning of the EAG response to 0.1 or 0.2g ml™" is 6243 ms
(n=20). Antennules were also stimulated with other food extracts
made from green crabs, blue mussels and dead P. elegans
individuals, and responses had the same polanty as those for NP
extracts (Fig. 3C). A similar response profile to dead shrimp
extract was obtained for the deep hydrothermal shrimp Mirocaris
Sfortunata (Fig. 3D).

EAG responses to food-related odor in P. elegans are
reproducible, dose-dependent and exhibit sensory adaptation,
confirming we indeed recorded chemosensory responses. We
could not reach the saturation level in the dose-response curve
because we reached the saturating concentration of the NP
extract. All stimuli we tested (extracts of NP, crab, mussel and
dead shrimp) elicited positive EAGs in P. elegans whereas insect
EAGs are usually negative (Roelofs, 1984), with some
exceptions related to the chemical structure of single odorants
(e.g. Pavis and Renou, 1990). The EAG response is assumed to

{
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represent the summation of receptor potentials of many
synchronously activated chemoreceptor neurons (Schneider,
1957, 1999; Nagai, 1983; Mayer et al, 1984). As slow
clectrical events (e.g. receptor potentials) travel better than
action potentials because of low-pass filtering of the
extracellular space (Bedard et al., 2004), the fact that odor-
evoked signals travelled far within the antennule suggests that
EAGs in shrimp are also summed receptor potentials. In the
terrestrial hemit crab Coenobita clypeatus, compounds with
different chemical properties elicited EAG responses of opposite
polanity (Kring et al., 2012), which has been proposed to result
from activation of different signal transduction pathways. In
lobsters, odors may depolarize or hyperpolarize ORNs, and
different pathways are directly linked to opposing outputs:
excitatory and inhibitory receptor potentials coexist in the same
ORN and the response type (excitation or inhibition) is not a
property of the stimulant but it depends on the ORN (Doolin
et al., 2001; McClintock and Ache, 1989; Michel et al., 1991).
Positive EAG responses were obtained in robber crab, hermit
crab and daphnia (Kring et al, 2012; Simbeya et al, 2012;
Stensmyr et al., 2005). In the marine hemmit crab P. bernhardus,
EAG responses to amines were positive, and responses to acids
were negative (Kring et al., 2012). Here we worked with
complex mixtures. Comparison of EAG responses to single
odorants will allow determining whether different chemical
groups also elicit different response polanities in P. elegans.
Mechanical stmuli elicited negative EAGs. Recordings from
single chemoreceptor neurons and single mechanoreceptor
newrons could help clarify why chemical and mechanical
responses have opposite polarities.

The development of the EAG method in shrimp opens a large
field of possibilities for studying antennular chemoreception in
decapods and maybe other crustaceans. This method is relatively
easy to use on species larger than 1 cm, and it enables work on
intact animals. EAG is complementary to other existing
clectrophysiological methods. It gives a more general idea of
the animal sensitivity than single chemoreceptor neuron
recordings, and is thus relevant in an ecological approach. EAG
allows the screening of compounds eliciting electrophysiological
response, before testing potential odor-gated behavioral
responses.

«#» Fig.3. EAG responses to odorant extracts in the
marine shrimp Palemon elegans.

(A) Superimposed races of EAG responses to ditions
of NP extract (0.001, 0.003, 0.01, 0.03, 0.05,0.1 and
0.2gmi™"). (B) EAG dose-response curve to diutions
of NP extract (=10 for 0.05g mi~*; n=11 for 0.001 and
0.003 gmi~*; n=12 for control; n=14 for 02g mi~";

n W =16 for 0.01,0.03 and 0.1 g mi~'). Meansss.em.

were compared with a one-way ANOVAwWh

¢ >
€ n E
l:mol an Doad shimp

0 -]
B 0 (B o oMo?
Dose (g mt-1)

gaton st (P<10-'%), and with a two-sample
poumulon t-test to contrd stimuli (PS). *P<0.05;
***P<0.001. (C) EAG responses to fresh mussel
extract fresh green crab extract and extract of dead
P. degans individuals. The order of stimuli (musse,
crab, dead shrimp) was randomized. (D) EAG resp
© dead shrimp extract from the deep hydrohemal
shrimp Mirocan's brtunata. In A, C and D, bold
horizontal bars indicate the stimulus delivery. Transient
peaks are valve opening artefacts.
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Abstract

The detection of chemical signals is involved in a variety of crustacean behaviors, such as social
interactions, search and evaluation of food and navigation in the environment. At hydrothermal
vents, endemic shrimp may use the chemical signature of vent fluids to locate active edifices,
however little is known on their sensory perception in these remote deep-sea habitats. Here,
we present the first comparative description of the sensilla on the antennules and antennae
of 4 hydrothermal vent shrimp (Rimicaris exoculata, Mirocaris fortunata, Chorocaris chacel,
and Alvinocaris markensis) and of a closely related coastal shrimp (Palaemon elegans). These
observations revealed no specific adaptation regarding the size or number of aesthetascs
{specialized unimodal olfactory sensilla) between hydrothermal and coastal species. We also
identified partial sequences of the ionotropic receptor IR25a, a co-receptor putatively involved in
olfaction, in 3 coastal and 4 hydrothermal shrimp species, and showed that it is mainly expressed
in the lateral flagella of the antennules that bear the unimodal chemosensilla aesthetascs.

Koy words: assthetascs, decapod, hydrothermal shrimp, 1R25a, olfaction

OXFORD

Introduction

Chemical senses are crucial in mediating importane behavioral pae-
terns for most animals. In crustaceans, chemical senses have been
shown to play a role in various social interactions, search and evalo-
ation of food, as well as in evaluation and navigation in the habitat
{Steullet et al. 2001; Derby and Weissburg 2014 ). Chemoreception in
decapod crustaceans is mediated by chemosensory sensilla that are

‘L Tha Author 2017. Published by Dicford University Press. All rights reserved.
For permissions, pleasa e-mail: journals.permissions@oup.com

mainly localized on the first antennae (antennules), pereiopod daceyls
and mouthparts (Ache 1982; Derby etal. 2016). Chemoreception has
been proposed to be differentiated into 2 different modes (Schmide
and Mellon 2011; Mellon 2014; Derby et al. 20016): 1) “olfaction”™
mediated by olfactory receptor neurons (ORNs) housed in specialized
unimodal olfactory sensilla (the aesthetascs), restricted to the lateral
flagella of the antennules (Laverack 1964; Grinert and Ache 1988;
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Cate and Derby 2001) and projecting to the olfactory lobe of
the brain (Schmidt and Ache 1996b) and 2) “distributed chem-
oreception” mediated by numerous bimodal sensilla (containing
mecano- and chemo-receptor neurons) occurring on all append-
ages, projecting to the second antenna and lateral antennular new-
ropils and the leg neuromeres (Schmidt and Ache 1996a). Alcthough
the molecular mechanisms of olfaction have been well studied in
insects, they remain largely unknown in crustaceans, and the existing
knowledge is restricted to a few number of model organisms (lob-
sters, crayfish, and the water flea Daphnia pulex: review in Derby
ct al. 201&). In particular, the nature of crustacean odorant receptors
has remained elusive until recently, since searches for the traditional
msect olfactory receptors have been unsoccessful. A new family
of receptors involved in odorant detection, named the lonotropic
Receptors (IRs), was recently described in Drosophila melanogaster,
and was subsequently shown to be conserved in Protostomia, includ-
ing the crustacean I pulex (Benton et al. 2009; review in Croset
et al. 2010). Lately, several IRs were identified in other crustaceans,
the spiny lobster Pannlirus argus (Corey et al. 2013), the American
lobster Homarus americanus (Hollins et al. 2003), the hermit crabs
Pagurus bernbardus (Groh et al. 2014) and Coenobita clypeatus
{Groh-Lunow et al. 2015), and were proposed to mediate the odor-
ant detection in the antennules. In the lobstes, the authors propose
that IRs function as heteromeric receptors, with IR25a and IR%3a
being common subunits that associate with other IR subunits to
determine the odor sensitivity of ORNs.

Chemoreception in crustaceans has been largely studied in large
decapods like lobsters (Devine and Atema 1982; Cowan 1991;
Moore et al. 1991; Derby et al. 20001; Shabani et al. 2008; and see
review in Derby et al. 2016). However, this research theme remains
poorly investigated in shrimp, especially in deep-sea species. Deep-
sea hydrothermal vent shrimp inhabit patchy and ephemeral envi-
ronments along the mid-oceanic ridges. Inhabiting such sparsely
distributed habitats presents challenges for the detection of active
emissions by endemic fauna, especially in the absence of light. In
the early developmental stages, after release and dispersal in the
water column, sometimes tens or hundreds of kilometers from their
starting point, larvae need to locate a vent site to settle and begin
their adult life (Pond et al. 1997; Herring and Dixon 1998). Later as
adults, mobile vent fauna may need to evaluate their environment,
to find hydrothermal fluid either to feed their symbiotic bacteria
or just to be able to detect the appropriate habitat, in an environ-
ment characterized by steep physicochemical gradients {Sarradin
et al. 1999; Sarrazin et al. 1999; Le Bris et al. 2006&). Chemical com-
pounds like sulfide, temperature and dim light emitted by vents have
been proposed to be potential attractants for detection of hydro-
thermal emissions (Van Dover et al. 1989; Renninger et al. 1995;
Garen et al. 1998).

Only a few studies on olfaction in the hydrothermal shrimp
Rimicaris exoculata have been published (Renninger et al. 1995;
Chamberlain et al. 1996; Jinks et al. 1998), providing the first, brief,
description of the sensilla on the antennules and antennae of this
species. These authors also reported preliminary behavioral observa-
tions, suggesting an attraction to sulfide, and registered electrophysi-
ological responses to sulfide in antennal filaments (but surprisingly
not in the antennular lateral ones bearing aestherascs).

Here, we present a comparative morphological description of
antennae and antennules of 4 hydrothermal vent shrimp (R. exoc-
wlata, Mirocans fortumata, Chorocariz chacer, and Alvimocaris
markensis). We also identified partial sequences of the candidate
co-receptor IR25a and studied its expression pattern in the dif-
ferent species. All the approaches were conducted in parallel on a

closely related coastal shrimp (Falaemon elegans), to give insights
in the potential adaptations of sensory organs in deep-sea species.
Comparisons within hydrothermal species were also conducted to
examine possible specific adaptations related to their different envi-
ronments and lifestyles, as previous studies showed that chemical
senses of crustaceans rapidly evolve and present specialized adap-
tations according to phylogeny, lifestyle and habitat, as well as
to trophic levels (Belm er al. 2003; Derby and Weisshurg 2014).
Knowledge of the sensory capabilities of hydrothermal species is
especially relevant with the growing interest of mining companies
for extraction of seafloor massive sulfides hydrothermal deposits
{Hoagland et al. 2010). Possible impacts of sulfide exploitation on
vent species encompass habitat destruction, increase of suspended
particles and the presence of higher levels of toxic elements, lead-
ing to physiological disturbances and to potential alteration of their
ability to perceive their environment (Lahman and Moore 2015) and
derect hydrothermal emissions.

Materials and methods

Choice of models

Shrimp are one of the dominant macrofaunal taxa of hydrothermal
sites in the Mid-Atlantic Ridge (Desbruyéres et al. 2000, 2001). They
are highly motile, and according to species, ocoupy different habitats,
exhibit different food diets, and show various degrees of assoca-
tion with bactenia. Therefore they provide good models for studying
olfactory capabilites since individuals belonging to different spe-
cies are potentially not sensitive to the same artractants. Rimricaris
exoculata lives in dense swarms (up to 2500 ind/m?, Desbruvéres et
al. 2001) on the chimney walls, at around 20-30 *C, near the fluid
emissions in order to feed their dense symbiotic chemoautotrophic
bacterial community (Van Dover et al. 1988; Zbinden et al. 2004,
2008). Characaris chacer 1s much less abundant (locally 2-3 ind/
dm®) than R. exoculata, but may live close to it. It is also found
as on sulfide blocks, in areas of weak fluid emissions {Desbruyéres
et al. 2006; Husson et al. 2016). Chorocaris also harbors a bacte-
rial symbiotic community, though less developed than in Rimnicaris
(Segponzac 1992). Mirocaris fortunata lives ar lower temperature
(4.8-6.1 *C, Husson et al. 2016), in diffuse flow habitats and among
Bathymodioles mussel assemblages (Sarrazin et al. 20135). Mirocaris
15 opportunistic and feeds on mussel tissue, shimp and other inver-
tebrates, being reported as predators andfor scavengers (Gebruk et
al. 2000; De Busserolles et al. 2009). Alvirocaris markensts occurs as
solitary individuals, at the base of and on the walls of active edifices,
close to R. exocnlata aggregares, and also on mussel assemblages. It
has been reported as necrophagous (Deshruyéres et al. 2008), bur
also as a predaror (Segonzac 1992).

In order to identify potential adaptations of hydrothermal shrimp
sensory faculties, compansons were made with the related shallow-
water palaemonid species P efegans. The description of palaemonid
antennal structures is also interesting per se since olfaction is poorly
analyzed in shrimp in general. Two additional palaemonid species,
Palaemon serratus and Palaemonetes varians, were used for identify-
ing the IR25a sequence.

Animal collection, conditioning, and maintenance

Specimens of Alvinocarididae M. fortunata, R. exoculata, C. chacei,
and A. markensis were collected during the Momarsat 2011 and
2012, Biobaz 2013, and Bicose 2014 cruises, on the Mid-Atlantic
Ridge {see Table 1 for cruises and sites). Shrimp were collected with
the suction sampler of the ROV “Victor 6000 operating from the
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RV “Pourquoi Pas?”. Immediately after retrieval, living specimens
were dissected and tissues of interest (see below) were fixed in a
2.5% glutaraldehyde/seawater solution for morphological observa-
tions or frozen in liquid nitrogen for molecular biology experiments.

Specimens of Palaemonidae P elegans, P. serratus, and P. var
tans were collected from Saint-Malo region (France; 48%64'M,
-2°00"W), between October 2011 and Janwary 2015, wsing a
shrimp hand net. They were transported to the laboratory and
transferred to aerated aguaria with a 12 h:12 h light:dark cvcle, a
salinity of 35 o/l, and a warer temperarure of 18 *C. The shrimp
were regularly fed with granules (JBL Novo Prawn). Tissues of
interest were also fixed in a 2.5% glutaraldehydefseawater solu-
tion for morphological observations or frozen in liguid nitrogen
for molecular biology experiments.

Tissue collection

For morphological observations, antennae and antennules {both
medial and lateral flagella) were wsed. For molecular biology
experiments, the following organs were dissected for P, elegans: the
antennular medial and lateral flagella (internal and external ramus
separated), the antennae, the mouthpares (mandibles and 2 pairs of
maxillae), the first and second walking legs and the eyestalks. For the
hydrothermal shrimp, the dissection included the following organs:
the antennular medial and lateral flagella, the antennae, and abdomi-
nal muscles.

Scanning electron microscopy

Samples were post-fixed in osmium tetroxide 1% once in the lab and
dehydrated through an ethanol series. They were then critical-point-
dricd {CPD7301, Quorum Technologies) and platinum-coated in a
Scancoat six Edwards sputter-unit prior to observation in a scanning
electron microscope (Cambridge Stereoscan 260), operating at 20 kW,

RMA extraction and reverse transcription

Frozen shrimp tissues were ground in TRIzol Reagent (Thermo
Fisher Scientific) with a Minilys homogenizer (Bertin Corp). Total
RMA was isolated according to the manufacturer’s protocol, and
quantified by spectrophotometry and electrophoresis in a 1.2% aga-
rose gel under denaturing conditions. BRMNA (500 ng) was DMNAse
treated to remove contamination wsing the TURBO DMAse kit
{Thermo Fisher Scientific) and then reverse transcribed to cDMA
with the Superscript II reverse transcriptase kit (Thermo Fisher
Scientific) using a aligo(dT),, primer according to the manufacturer’s
instructions.

IR2Ba sequencing and mRMNA expression (reverse
transcription polymerase chain reaction)

The cDMNA fragments encoding IR25a were amplified by 2 rounds
of polymerase chain reaction (PCR). Oligonucleotide primers were

designed from a multiple-sequence alignment of IR25a sequences of
crustaceans [D. prelex, Croset et al. 2010; H. americanus AY098942,
Hollins et al. 2003, Lepeophtheirus salmonis PRJNA2Z80127
penome sequencing project), insects (Acyrthosiphon pisim, Aedes
acgypti, Anopheles gambiae, Apis mellifera, Bombyx mori, Culex
guinguefasciatus, D). melanogaster, Nasonia vitripennis, Pedicnlns
bremears, Triboliom castamewm, Croset et al. 2010), gastropod mol-
luscs {Aplysia califormica, Lottia gigantea, Croset et al. 2010}, nema-
tods (Caenorbabditis briggsas XM_002643827, Stein er al. 2003,
Caemorbabditis elegans NM_076040, The C. slegans Sequencing
Consortium) and an annelid |Captells capitata, Croset et al. 2010)
{primer sequences are listed in Supplementary Table 51). PCR ampl-
fication reactions were performed in a 20 pL. volume containing 1 pl.
of cDNA template, 2 pl. of cach primer [10 uM], 11.7 pL of H,0,2
pl. of PCR buffer [10=], 0.8 pL of MgCI2 [50 mM], 0.4 pL. of ANTP
[10 mM] and 0.1 pL of BIOTAQ polymerase [§ Ufpl] (Eurobio
AbCys). The thermal profile consisted of an initial denaturation
(94 °C, 3 mun), followed by 35 cvcles of denaturation (94 2C, 30 s),
annealing (45 to 55 °C, 45 s) and extension (72 *C, 2 min), and a
final exrension (72 *C, 10 min) step. The PCR products were sepa-
rated on a 1.5% agarose gel, purified with the GeneClean kit {MP
Biomedicals), and cloned into a pBluescript KS plasmid vector using
the T4 DMA ligase (Thermo Fisher Scientific). The ligation product
was introduced in competent Escherichia coli cells (DHSalpha) that
were cultured at 37 *C overnight. The clone screening was performed
through Pstl/HindIll {Thermo Fisher Scientific) digestion of plasmid
DMA after plasmid extraction. Positive clones were sequenced on
both strands (GATC Biotech). The resultng nucleotide sequences
were deposited in the GenBank database under the accession
numbers KU726988 (M. fortumata IR25a; consensus sequence from
& clones), KU726987 (R. exocmlata IR25a; consensus seguence
from 3 clones), KUT26989 | C. chacei IR2 5a; consensus sequence from
4 clones), KU726990 (A, markensis IR25a; consensus sequence
from 4 clones), KU726984 (P elepans IR23a; consensus
sequence from 11 clones), KU726985 (P varians IR25a; consensus
sequence from 12 clones), and KU726986 (P, serratus IR2 5a; consen-
sus sequence from 3 clones). Specific primers were further designed
to amplify [R25a sequences in diverse tissues of the 4 alvinocandid
species and the palacmonid P elegans (Supplementary Table 51). PCR.
amplifications were performed using BIOTAQ polymerase {Eurobio,
AbCys) in a thermocycler (Eppendorf, Hamburg, Germany) with the
following program: 94 °C for 3 min, 35 cycles of (94 *C for 30 5, 53
*C for 45 s, 72 °C for 2 min), and 72 °C for 10 min, with minor mod:-

fications of annealing temperature for different primer pairs.

Sequence analyses

A dataset of IR amino acid sequences was created, including the
IR25a sequences identified in shrimp (present study), in other
decapods (P. argus, Corey et al. 2003; C. clypeatus, Groh-Lunow
et al. 20135; H. americanus AY098942, Hollins et al. 2003) and

Table 1. Cruises, locations and depths of the different sampling sites of the samples used in this study

Sites Lat. Long. Depth (m) Cruise, year Ship/ submersible Chief scientist
Mence Gwen 37°SI'N J3TW B840 Biobaz, 2013 Pourguot Pas? F ROV Victor E Lallier
Lucky Serike 377N 2MeW 1700 Biobaz, 2013 Pourquoi Pas? f ROV Victor E. Lallier

Momarsat, 2011 Pourquoi Pas? F ROV Victor M. Cannat

Momarsat, 2012 Thalassa / ROV Victor M. Cannat and P. M. Sarradin
Rainbow 3&"I¥N 3354w 2260 Biobaz, 2013 Pourquoi Pas? f ROV Victor F. Lallier
TAG 26"08'N 44749 3600 Bicose, 2014 Pourquoi Pas? { ROV Victor M. A. Cambon-Bonavita
Snake Pit 23"2¥N 447 SR 3480 Bicose, 2014 Pourquoi Pas? F ROV Victor M. A. Cambon-Bonavita
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in other crustaceans (D. prlex, Croset et al. 2000; L. salmoms
PRJNA280127) together with IR seguences from the insects
B. mori, D. melanogaster, A. mellifera, and T. castamenm (Croset
et al. 2010). Drosophila melanogaster ionotropic glutamate recep-
tor sequences were also included to serve as an out-group, and
the final data set contained 173 sequences. These amino acid
sequences were aligned with MAFFT v.6 (Katoh and Toh 2010)
using the FFT-MS-2 algorithm and default parameters. The align-
ment was then manually curated to remove highly divergent
regions (300 amino acid positions conserved in the final dataset).
The phylogenetic reconstruction was carried out using maximum-
likelihood. The LG+1+G+F substitution model (Le and Gascuel
2008) was determined as the best-fit model of protein evolution
by ProtTest 1.3 (Abascal et al. 2005) following Akaike informa-
tion criterion. Rate heterogeneity was set at 4 categories, and the
gamma distribution parameter was estimated from the data ser.
Tree reconstruction was performed wsing PhyML 3.0 {Guindon
et al. 2010), with both Subtree Pruning and Regrafting (SPR) and
Wearest Neighbour Interchange (NMNI) methods for tree ropol-
ogy improvement. Branch support was estimated by approximate
likelihood-ratio test (alRT) (Anisimova et al. 2006). Images were
created using the iTOL web server { Letunic and Bork 2011).

mf

Results

Morphology of the chemosensory organs:

description and distribution of setal types on the
antennae and antennules

In the 5 shrimp species studied for morphology (P elegans, M. for-
tunata, R. exoculata, C. chacei, and A. markensis), antennae and
antennules both consist of a peduncle and segmented flagella (one
for the antennae and 2 for the antennules: an owter or lateral, and
an inner or medial). In the 3 flagella, the diameter and length of the
annuli vary, being large and short at the base and becoming thinner
and longer towards the apex. The aesthetasc dimensions vary also
along the flagella, being thinner and shorter at the base and growing
toward the apex. The set of values (maximum, minimum, mean and
standard deviation of diameter and length) for aesthetasc, as well
as for non-aesthetasc sensilla, are given in Supplementary Table 2.

Palaemon elegans

The antennules are made of 3 basal annuli and 2 distal flagella.
The lateral flagella are divided in 2 rami after a short fused basal
part: a long external one and a shorter internal one (1/3 of the long
one, n = 12, SD = 0.61) (Figure 1A). The aesthetascs are localized

Figure 1. Morphology of antennules and setal types of Palaemon slegans. [A) Antennules are made of 3 basal annuli (bs) and 2 flagella: @ madial (mf) and a
lateral one (Ifl, which is divided in 2 rami: a long (outer} and a short (innerl, bearing the aesthetascs (as). (B) Close-up on the ventral side of the furrow on the
shomer ramus of the |ateral flagellum bearing the aesthetascs. (C) Apeax of the shorter ramus, showing the absence of sesthetascs on the last 2 annuli and the
occurrence of small cuticular depressions (d, enlarged in insert. (D) Madizl antennular flagellum showing the long simple seta (Is). (E}Tuft of 3 simple short
(s=), one twisted flat (tf) and one beaked scaly (b) setze. (F) Beakad scaly seta. (3] Twistad flat seta. (H) Bifid seta. Scale bars: A =1 mm; B, C, D =100 pm; E=10

pm; E G, H =2 pm. Scale bar iminsert in C=5 pm.
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ventrally, in a furrow on the shorter ramus (Figure 1B). They are
present from the basal fused part of the antennules to the apex of
the short ramus (except from the lase 2 annuli, Figure 1C). Two rows
of § to 6 aesthetascs oocur on each annulus (one row at the distal
part of the annulus and the other at the middle part) (Figure 1B}
The 2 or 3 basal and apical annuli have a smaller number of aes-
thetascs, giving a total number of approximately 140 aesthetascs per
ramus (Table 2). Aesthetascs are up to 20.3 pm in diameter (i = 14)
and 393 pm in length (n = 10) (Supplementary Table 52). They bear
annulation throughout their length (short at the base and longer
towards the apex), and lack a terminal pore.

Mon-aesthetasc setae are also present on all the annuli of the 3
flagella (antennae and antennules), where they are distributed (up
to 8) around the distal part of each annulus (Figure 1D). Five setal
types are observed on the flagella, named after their morphology
{dimensions are given in Table 2): 1) short simple seta {Figure 1E),
2} long simple seta (Figure 1D}, 3} beaked scaly seta (Figure 1F),
4) twisted flat seta (Figure 1G), and 5) bifid seta (Figure 1H). All
these 5 types appear to have a terminal pore. Short simple, beaked
scaly and twisted flar setae are present on the antennae, the medial
flagella of the antennules and the long ramus of the lateral flagella
of the antennules. They occur as tufts of 5 setae, containing 3 simple
short, one twisted flat and one beaked scaly seta (Figure 1E). These
tufts are present on each annulus near the base but are spaced fur-
ther apart towards the apex. The bifid setae are found only on the 2
flagella of the antennules, whereas the long simple are only found on
medial flagella of the antennules (2 every 5 annuli, on each side of
the flagellum). $mall round cuticular depressions (3,5 to 6,7 pm in
diameter] are observed on the medial side of the short ramus of the
lateral flagella of the antennules, as well as on the antennae (insert
in Figure 1C).

Mirocaris fortunata

In M. fortrumata, as well as in the 3 other hydrothermal species, the
antennules are also made of 3 basal annuli and 2 distal flagella (lat-
eral and medial) (Figure 2A). In M. forfunata, the aesthetascs are

localized latero-ventrally on the inner side of the lateral flagella,
from the base to 2/3 of the flagella. One row of 3 to 4 aesthetascs
occurs on the distal part of each annulus (Figure 2B), leading to a
total number of approximately 60 aesthetascs per ramus (Table 2).
Aesthetascs are up to 18.3 pm in diameter (n = 21) and 290.3 pm in
length (n = 46} (Supplementary Table 52). They bear annulation on
the apical half, and lack a terminal pore.

The rows of aesthetascs are flanked on the inner side by non-
aestherasc setae, organized as follows: one intermediate seta (thin-
ner and shorter than the aesthetascs) and 2 or 3 short thin setae
(thinner and shorter than the former) (Figure 2B). The intermedi-
ate setae have a peculiar apex shape with no obviously visible pore
{Figure 2D, whereas the short setae are simple with a clearly visible
pore at the apex (Figure 2E).

Intermediate and short simple setae also occur along with a
sparse third type of non-aesthetasc setae (Figure 2F) on the 2 other
flagella (medial flagella of the antennules and the antennae), dis-
tributed around the distal part of each annulus (about 10 over the
entire circumference by extrapolation of what is seen on one face).
Small round cuticular depressions (7 to 10 pm in diameter] are
observed on the lateral flagella of the antennules, on the medial side
of the aesthetascs (Figure 2B). Flagella are often densely covered
by a thick bacterial layer of filamentous and rod-shaped bacteria
{Figure 2C), which was never observed on P elegans. Rod-shaped
bacteria also sometimes covered the entire aesthetasc surface (not
shown).

Rimicaris exoculata

The aesthetascs are localized laterally on the medial side of the lateral
flagella, from the bhase (except the 2 or 3 first annuli) up to the apex
{except for the 4 last annuli). One row of 3 to 4 aesthetascs occurs
on the distal part of each annulus (Figure 3A), leading to a total
number of approcamately 108 aesthetascs per ramus. Aesthetascs
are up to 22 pm in diameter (1= 22) and 1%1 pm in length (n = 26)
{Supplementary Table 52). They bear annulation on the apical half,

and lack a terminal pore.

Table 2. Comparative table of aesthetascs setae characteristics in different species of decapods

Species Total number  Mumber per row  Dimensions (diameter = length in pm)  Reference
Lobster
Panudirus argus (20-60 cm) 2000 to 4000 210 40 = 1000 Gleeson et al. 1993
Laverack 1964
Homarus americanus | 20-60 cm) 2000 10-12 20 = &M Guenther and Atema 1993
Cravfish
Orconectes propinguus (4-10cm) 160 36 12 = 150 Ticrney et al. 1986
Cherax destructor (10=20 cm) 260 2-5 18 = 100 Sandeman and Sandeman 19%6
Beltz et al. 2003
Crab
Callinectes sapidus (13 cm) 1400 ~20 12 = 795 Gleeson et al. 199
Carcivus maenas (9 cm) 100-300 810 13 « 750 Fontaine et al. 1982
Shrimp
Lysmata® (5-7 cm) 210460 3-5 20 = §00 Zhang et al. 2008
FPalaermon elegans |7 cm) 280 -6 14 = 230 Thas study
Mirocaris fortunata (3 cm) 120# 34 16 = 234 This study
Rimicaris exoculata (5.5 cm) 2060 34 200= 170 This study
Chorocaris chacei (5.5 cm) 22ga 24 1% = 251 Thas study
Alvinocaris markensis (8.2 cm) 23 34 21 =531 This study

Rough animal lengths are given for comparison. Total length is given for lobster, crayfish and shrimp, carapace width for crabs.

*species with only one row of aesthetascs per annuli.

bStudy realized on Lysmuata boggessi, L. wurdemarnni, L. ambwinensis, and L. debelius.
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Figure 2. Morphology of antennule and setal types of Mirocaris fortunats. (A) Antennules are made of 3 basal annuli (bs) and 2 flagella: a madial (mf) and a
lataral one (i}, bearing the sesthetascs (as). Box- area enlarged in B. (B) Close-up on the lateral flagellum bearing the aesthetascs, and intarmedizte (i} and
short thin setae [st). (C} Lateral flagellum covered by dense filamantous and rod-shaped bacteria. Somea setae are visible, protruding from the layer of bacteria
{arrows). (D} Apax of tha intermeadiate simpla setae. (E} Short satas are simple with a clear pore at the apewx. {F) Third setal type. Scale bars: A =1 mm; B = 50 pm;

C=100pm; 0.E.F=1pm

The arrangement pattern of the non-aesthetasc setae around the
aesthetascs is quite similar to that observed in M. forfumata, but with
different setal types: 1 long thick beaked seta, 1 intermediate beaked
seta and & or 7 short thin beaked setae (Figure 3B). All these setae
have a pore at the apex (Figure 3C), but they are devoid of scales
unlike the beaked setae observed in P elepans.

Long thick, intermediate and short thin beaked setae also occur
on the outer side of the lateral flagella, on the medial flagella of the
antennules, and on the antennae, distributed over the circumference
{2025 over the entire circumference by extrapolation of setae seen
on one face, or counted on the periphery of the apex), with a tight
tuft of 6—8 setae on the inner side.

Small round cuticular depressions were (rarely) observed (6 to
% pm in diameter) in R. exoculata, but they are barely observable due
to a dense rod-shaped bactenial coverage. Indeed, for this species too,
we have observed that the flagella (even the acsthetascs) can be cov-
ered by layer of filamentous and rod-shaped bacteria (not shown).

Chaorocaris chacei

The aesthetascs are localized laterally on the medial side of the lat-
eral flagella, from the base (except the 4 or 5 first annuli) to 273 of
the flagella. One row of 2 to 4 aesthetascs occurs on the distal part
of each annulus (Figure 3D), leading to a total number of approxi-
mately 113 aesthetascs per ramus. Aesthetascs are up to 23.2 pm in
diameter (= 50) and 339.5 pm in length (= 38) (Supplementary
Table 52). They bear annulation on the apical half, and lack a
terminal pore.

The arrangement pattern of the non-aesthetasc setae around the
aesthetascs is also quite similar to that observed in M. forfunata with
one intermediate beaked seta, and 1 to 3 short simple or beaked thin
setae on both the medial and lateral sides (Figures 3E and FJ.

Intermediate beaked and short setae (either simple or beaked
shaped) also occur on the medial flagella of the antennules, and on
the antennae, distributed over the circumference, roughly equidis-
tant (around 15 over the entire circumference by extrapolation of
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Figure 3. Morphology of lateral flagella and satal types of Rimicaris exoculsts (A, B, C), Chorocaris chacei (D, E, F) and Alvinocsnis markensis (G, H, Il as:
sesthetascs, o long thick seta, ik intermedizte seta, st: short thin seta, Scale bars: A, 0, G=500pm; B.E.H=100pm; C. E 1= 2 pm.

setae seen on one face, or counted on the periphery of the apex), with
a tight tuft of ¥ to 10 setae on the inner side.

Small cuticular depressions (5 to 5.5 pm in diameter] are
observed on the lateral flagella of the antennules, on the medial side
of the aesthetascs but are difficult to observe as they are covered by
rod-shaped bacteria. For this species again, the flagella (and even the
aesthetascs) can be covered by filamentous and rod-shaped bacteria
(not shown).

Alvinocaris markensis

The aesthetascs are localized laterally on the medial side of the lat-
eral flagella, from the base (except the 3 or 4 first annuli) up to half
of the flagella. One row of 3 to 4 aesthetascs (rarely 5) occurs on
the distal part of each annulus (Figure 3G), leading to a total num-
ber of approximately 110 aesthetascs per ramus, Acsthetascs are up
to 25.2 pm in diameter (m = 39) and 879.1 pm in length (n = 49)
{Supplementary Table 52). They bear annulation almost throughout
their length (short at the base and longer towards the apex), and lack
a terminal pore.

The arrangement pattern of the non-aesthetasc setae around the
aesthetascs is guite similar to that observed in M. fortunata with 1
intermediate seta and 1 short thin seta (Figure 3H). Two (sometimes
3 or 4) short setae occur at mid-length of each annulus. Intermediate
and short thin setae all seem to all be simple, with a pore {Figure 31).
They also occur on the medial flagella of the antennules and on the
antennae, in fewer numbers than observed in the other species (4—6
over the entire circumference, mostly on the medial side). Long sim-
ple setae also occur on few basal annuli on the medial flagella of the
antennules and of the antennae.

Small cuticular depressions (4.5 to 7.5 pm diameter) were also
observed in A, markensis, on the lateral flagella of the antennules,

on the distal part of the annuli, occurring by one, 2 or sometimes
3, which had not been observed in other species (not shown). They
are also observed on the antennae. Only a few rod-shaped bacteria
occurred on the 2 specimens observed.

Identification and expression of the putative
olfactory co-receptor IR25a in hydrothermal vent
and coastal shrimp

In order to identify the regions of antennules and antennae puta-
tively mvolved in olfaction, we studied the expression pattern of the
IR IR25a, which belongs to a conserved family of olfactory recep-
tors amongst Protostomia (review i Croset et al. 2010), invalved
in olfaction, taste, thermosensation, and hygrosensation. Recently
the homologue of IR25a was identified in the lobster, and had been
associated with olfactory sensilla (Corey et al. 2013). Using homol-
opy-based PCR with primers designed from the alignment of IR25a
sequences from diverse organisms, we obtained partial sequences for
7 species of shrimp: 903 bp for R. exoculata, P. elegans, and P. par-
ians, 763 bp for M. fortumata, C. chacei, and A. markemsis, and
881 bp for P sermatus (Figures 4A and B). A phylogenetic analy-
sis confirmed that these sequences are IR25a orthologs (Figure 3).
All shrimp sequences growped with IR25a sequences from other
arthropods, and were closely related to IR2%a sequences from the
decapod crustaceans P argus (Corey et al. 2013), H. americanus
{Hollins et al. 2003) and C. clypeatus (Groh-Lunow et al. 2015). The
Palaemonidae and Alvinocanididae sequences formed distinct clus-
ters within the shrimp sequences, therefore being congruent with the
phylogeny of these groups (Figure €). The IR23a partial amino acid
sequences obtained in this study are about 250 to 300 amino acids in
length, which represents 25 to 30% of the total length expected for
such sequences (Figure 4). They include the ligand-gared ion channel
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Ligand-gated ion channel

_—
Sequences obtained in this study
B.
R.exoculata ——————-DINGITILME EFDVPTS LEKFLTVLEPEVWVC ILFAYAFTSVLLY IFDRFSPY 53
C.chacei VCILFAYAFTSVLLYIFDRFSEY 23
A.markensis ————— -——— ——— - ———VCILFAYAFTSVLLY ISDRFSFY 23
L - LT e ——— VCILFAYAFTSVLLYIFDRESEY 23
P.elegans DFTVEDYDLVGITILME KPEVPTSLPEPFLIVLEPEVWVCILFAYGFTSVLLYIFDRFSPY 60
P.varians DETVEYYDLVGITI LMK KREVETELF K PLIVLEPEVWVCILFAYCFTEVLLY IFDRFSFY &0
F.osrpatus = --—————- DLYGITILME KPEVPTSLFEFLTVLEPEVWVCILFAYGFTSVLLY IFDRFSPY 53
R.exssulats SYQNHEERYKDDDEKRE FTFEECLWPCHTS LTPQGGGEAPKNLEGRLVAATWWLFGFIII 113
C.chacel SYQNHEERYEDDDEKRE FTFREECLWFCHTSLTEQGEEEAPKNLEGRLVAATWWLFGFITII B3
h.markensie SYQNNEERYKDODEKRE FTFEECLWFCHMTS LTPQGEGERPENLEGRLVAATWWLFGFIII B3
M.fortunata SYQNHEERYFDODEKRE PFTFRECLWFCHTSLTEPQGGGEAPKNLEGRLVAATWWLFGFIII 83
F.elegans SYQNNEEKYKDDDEKRE FTFREECLWFCHTSLTEQGEEERFENLIGRLVAATWWLFGFIII 120
F.varians SYQNNEEEYEDDDEKRE FIFEECLWFCHTS LTPQGGGEAPENLEGRLVARTWWLFGFIII 120
F.serratus SYQNHEERYKDPODERRE FTFRECLWFCHTS LTEQGGSEAFENLEGALVAATWWLFGFIII 113
R.excculata ABYTANLAAFLIVSRLDTRIESLDDLEWOY VY APMNGTS THTYFERMAY IEKKFYEIW 173
C.chaced ASYTANLAAFLTIVSRLDTFIESLDDLENOY KVOY APMNGTS THTYFERMAY IEKKFYEIW 143
h.markensis ASYTANLAAFLTVSRLDTEIESLDDLSHOY VY APMNGTS THTYFERMAY TEEKFYETW 143
M.fortunata ASYTANLAAFLTVSRLD TR IESLDOLSHOYKVOYAPMNGTS THTYFERMAY TEFKFYETH 143
P.elegans ASYTANLAAFLTVSRLD TR IESLDDLSHOY X VOYAPVHGTS THTYFERMAY TENKFYETH 180
F.varians ASYTANLAAFLTVSRLDTPIESLDDLSHOY KV YAPVHGTS THTYFERMAY TENKFYEIW 180
P.serratus ASYTANLARFLTVSRLD TPIESLDDLSROY KVOYAPVHGTSTHTYFERMAY IENKFYEIW 173
*.
R.exoculata EDMSLHDSMSDVERAEL AVWDY PV SDKY TEMWOSMOEAGLFPOFDEALERVRESTSSSEG 133
C.chacei EDMBLHNDSHMEDVERARL AVWDYPVEDEYTENRQSMQEACLF PDFDEALERVREETSESEG 202
B.markensis EDMSLHDSMSDVERARL AVWDYFVSDEY TEMWOSMOEAGLF INFDEALDEVEESTSSSEG 203
M.fortunata EDMELMDSMSDVERARL AVWDY PYVSDEYTENROSMOBAGLFNTFERRLERVRESTSESEG 202
F.elegans KDHELHDSMSEVERARL AVWDY FVEDE Y TENNGSHOEAGLFRTHESAVERVRKSTSSSEG 240
F.varians EDMSLHDSHMSEVERAKL AVWDY PVSDEY TENNQSHOEAGLFRTHESAVERVRKSTSSSEG 240
P.serratus KDHMSLHDSHMSEVERAKL ANVWDYPVSDE Y TENRQSMJEACLPRTHESAVERVRHETSESEG 233
R.exoculata FAYIGDATDIRYLVLTR-CDLQIVGEEFSREPEAVAVIQGSPLEDQFHDAILELLHQRKLE 283
C.ehacel FAYIGDATDIRYLVLTN-CDLOIVGEEFSREPYAVAVOOGSPLEDOFNDALL 254
&.markensis FAYIGDATDIRYLVLTH-CDLOIVGEEFSKEPFYAVAVDOGSPLEDOFHDALIL 2154
M.fortunata FAYIGDATDIRYLVLTN-CDLOLVGEEFSREPEAVAVOOGSPLEDOFNDALL 154
F.elegans FAFIGDATDI-YLVLTNCDLOMVGEEFSRE PYAVAVOOGSPLEDQFHDATILELLNQRKLE 289
F.varians FAFIGDATDIRYLVLTHCDLOMVGEEFSREPYAVAVOOGEFLE-0FNDAILELLHORKLE 259
F.serratus FAFIGDATDIRYLVLTRCDLOMVGEEFSRE PYAVAVOQGSPLEDOFHDATLELLNORKLE 283
-
R.exoculata TLEERWWE 301
C.chacei
A.markensis
M.fortunats = --—-——---
P.elegans
P.varians
P.aerratus Rmmmmmm 244

Figure 4. IR25a partial sequences obtained for hydrothermal and coastal shrimp. (A IR25a protein domain organization {modified from Crosat et al. 2010}
showing the position of the shrimp partial sequences obtained in the presant study. The ligand-binding domains are named 51 and 52. (B) Alignement of shrimp
IR25a sequences. The ligand-binding 52 domain is underlined, and putative ligand-binding residues are indicated by an asterisk

and the ligand-hinding 52 domain, localized in the C-terminal part
of the protein, When considering the ligand-binding 52 domain, the
threonine and aspartate, which are charactenistic glutamate binding
residues, are conserved among shrimp sequences.

Then, we studied the expression pattern of IR2 53 in antennules,
antennae, mouthparts and walking legs, as well as in non-chemosen-
sory tissues (abdominal muscles, eve), from the 4 hydrothermal vent
shrimp and the coastal shrimp P. elegans (Figure 7). IR25a was pre-
dominantly expressed in the lateral antennular flagella (A1 lateral)
for all shrimp. In P. elegans, a weaker expression was observed in the
external ramus (Al lateral R2) than in the internal ramus of the lac-
eral antennular flagella (A1 lateral R1), which bear the aesthetascs.

A weak expression was also detected in the medial antennular fla-
gella of B. exocwlata and C. chacei (Al medial), and in the antennae
(A2} of K. exoculata. IR25a transcripts were undetectable in other

Hssues.

Discussion

Comparative morphology of sensilla of antennae

and antennules among decapods, and in coastal
palaemonid versus hydrothermal alvinocarid shrimp
Setae are outgrowths of the arthropod integument presenting a mul-
titude of sizes and shapes. These ubiguitous fearures of crustacean
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Figure 5. Phylogeny of insect and crustacean ionotropic recepiors {IRs)_This tree is basad on a maximum-likelihood analysis of an amino acid dataset. Drosophila
melanogaster ionotropic glutamate receptor sequences were used as an out-group. Branch support was estimated by approximate likelihood-ratio test (aLRT)
{circles: =0.9). The scale bar comesponds to the expected number of amino acid substitutions per site. Crustacean IRs are in bold and the new |Rs identified in
this study are in larger font size, and highlighted with an asterisk. Amar, Alvinocaris markensis; Amel, Apis mellifers; Bmor, Bombyx mon, Ccha, Chorocaris
chacai; Cely, Coenobitus ciypestus; Dmel, Drosophils melanogaster; Dpul, Daphnis pulex; Hame, Homarus smericanus; Lsal, Lepeophtheirus saimaonis; Mfor,
Mirocarnis fortunsts; Parg, Panulirus srgus; Pele, Palsemon elegsns; Pser, Palzemon sematus; Pvari, Peizemon varizns; Rexo, Rimicaris exocwlats; Teas, Tnbolium

CastanewT.

integuments are involved in a variety of vital functions including
locomortion, feeding, sensory perception and grooming | Felgenhaver
1992), Sensilla {setae innervated by sensory cells) were shown to
present a great inter- and intra-specific diversity in crustaceans (see
references in the paragraphs below).

In the most studied large decapods like lobsters and crayfish, the
aesthetascs are localized in tufts on the distal half or two-thirds of the
ventral side of each lateral antennular flagellum (P. argus, Cate and
Derby 2001; H. americanus, Guenther and Atema 1998; Orconectes
samborni, McCall and Mead 2008; O. propinguns, Tierney et al.
1986: Procambaris clarkii, Mellon 2012). The localization at the tip
of the antennules may increase the spatal resolution of the chemical
environment, but could also increase their chance of damage during
encounters with the environment or other animals. On the contrary,
in shrimp (the 4 alvinocaridid species and P elegans [this study], as
well as other palaemonid species like P. serratus and Macrobrachium
rosenbergit [Hallberg et al. 1992]), the aesthetascs are localized on
the basal half or two-thirds of the lateral flagella (for the alvinoca-
rididae) or on the basal part of the short ramus of the lareral flagella

(for the palaemonidae). The aesthetascs are thus less likely to be lost
or damaged, but this arrangement may decrease spatial resolurion.
The aestherascs are usually organized in 2 successive rows (in
the different lobsters and crayhishes cited above and also in Lysmata
shrimp, Zhang et al. 2008) or in 2 juxtaposed rows in the short
antennules of the crab Carcimues maenas (Fontaine et al. 1982).
Surprisingly, there 1s only one row of aethetascs on each annulus in
the 4 hydrothermal species (an exception also occurs in the cray-
fish Cherax destructor, see Table 2). Mevertheless, comparisons of
the total number of aesthetascs in diverse decapod species (Table 2)
revealed that this number is relatively similar among shrimp group
and other decapods of comparable size (the crayfish Orcomectes pro-
pinguus or the crab C. maeras) (Table 2 and see Belez et al. 2003
for more comprehensive data). Hydrothermal shrimp do not seem
to present any specific adaptation regarding this character. The total
number, as well as the size of aesthetascs seems related to the size
of the animal rather than to its enviconment. Indeed, based on a
study of 17 Reptentia decapods, Belez et al. (2003) found a strong
linear relationship between the number of aesthetascs and carapace
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Figure 6. Detail of the IR25a clade of the IR phylogeny. This sub-tree is @ zoom of the IR25a clade from the tree depicted in Figura 5.
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Figure T |IR25a gene expression in hydrothermal vent shrimp Rimicaris exoculata, Mirocaris fortunata, Alvinocaris markensis, Chorocaris chacei, and in the
coastsl shrimp F elegsns. Control RFPCR products for comparative anakysis of gene expression cormaspond to the glycolysis enzyme GAPDH for hydrotharmal
went shrimp, and to the ribesomal protein gene RPLA for P slegans. Mo amplification was detectad in the absence of template (data not shown). A1, antennules;
R1, internal ramus of the lateral antennular flagalls; A2, external ramus of the lateral antennular flagells; A2, second antennze; Md, mandibles; Mx1-2, maxillas;
pl and p2, first and second walking lags.

2 to 4 rimes higher than for the 3 other species (see Supplementary
Table 52). The adult hydrothermal shrimp lack the usual externally

length, which was also reported earlier for the cravfish C. destructor
by Sandeman and Sandeman (1996). Among hydrothermal species, it

can however be noted that the aesthetascs of A. markensic are longer
than those of the 3 other species, with the maximum length being

differentiated eve (eve-stalked), having instead a pair of large, highly
reflective, dorsal organs (Van Dover et al. 1989), These modifications

200



Chemical Sanses, 2017, Vol. 00, No. 00

have been reported to be an adapration for the detection of extremely
faint sources of light emirted by the vents (Pelli and Chamberlain
1989), These eyes are unusual in having no image-forming optics, but
a solid wall of ight-sensitive rhabdom containing rhodopsin, with the
exception of A. markensis, which also lacks this photoreceptor and is
completely blind {(Wharton et al. 1997; Gaten et al. 1998). The longer
olfactory sensilla observed in this species may possibly be interprered
as a development of the olfactory capacity to compensate for the
lack of vision. Zhang et al. (2008) showed for Lysmata species that
shrimp living in aggregations (L. boggessi and L. wurdemanni, 460
aesthetascs) possess a significantly higher number of acthetascs than
pair-living species (L. amboinensis and L. debelins, 210 aesthetascs),
suggesting a possible correlation between the number of aesthetascs
and the social behavior. Our results do not support this hypothesis,
since no significant differences were observed between vent species
living in dense swarms (R. exoculata) and the others.

Most studies on olfaction in crustaceans have focused on
aesthetascs. Several lines of evidence however suggest that non-
aesthetasc bimodal chemosensilla (innervated by mecano- and
chemo-receptive cells, also called distributed chemosensilla [Schmide
and Mellon 2011]) or non-olfactory sensilla (Derby and Weissburg
2014}, distributed over both flagella of the antennules, as well as
on the antennae, also play a role in the detection of water-bome
chemicals (Guenther and Atema 1998; Carte and Derby 2001). Mon-
aesthetasc setae exhibit a wide variety of sizes and morphologies.
These setae are named in the literature according to their morphol-
ogy, size or location on the flagellum. For example, there are 9
setal types in P argws (hooded, plumose, short setuled, long simple,
medium simple, short simple, guard, companion, and asymmetric:
Cate and Derby 2001}, but only 1 type in the shrimp Thor manming
{curved simple: Baver and Caskey 2006). The role of these setae
is still poorly known and whether their diversity corresponds to a
multiplicity of perceived stimuli remains an open question (Cate
and Derby 2001; Derby and Stealler 2001). Among the shrimp stud-
ted here, the coastal shrimp P. elegans showed the highest diver-
sity in non-aesthetasc setal types (5 setal types: short simple, long
simple, beaked scaly, twisted flat, bifid) when compared with the
4 hydrothermal species (2 or 3 types). Among hydrothermal spe-
cies, the setal types vary essentially by their size (long, intermediate
or short) and less by their morphology (all simple in Alvmocarrs,
all beaked in Rimrcaris, a mix of the 2 in Chorocarss, whereas
Mirocaris exhibit more original morphologies [see Figures 2D and
2F]). At this point of our knowledge, it is difficult to explain the
observed differences and even more to speculate on the functions of
these different setae.

Surprisingly, dense bacterial populations were often observed on
the antennae and antennules of the 4 hydrothermal shrimp (see e.g.,
Miracaris, Figure 2C), sometimes even covering the whole surface
of acsthetacs (not shown), whereas no bacterial coverage was ever
observed in the coastal P elegans specimens. The type of bacteria
present on the antennae of hydrothermal shrimp, as well as their
potential impact on olfaction or other role for the shrimp should be
investigated in future studies.

Comparative expression of the putative olfactory
co-receptor IR263a in hydrothermal vent and

coastal shrimp

We identified, in the 4 alvinocaridid hydrothermal shrimp and in 3
palaemonid species (P. elegans, F. varians, and P. serratus), a mem-
ber of the IR family, which was recently proposed to be involved in
the odorant detection in crustaceans: the common IR25a subunit

{Corey et al. 2013). In the 5 shrimp species tested, IR25a was pre-
dominantly expressed in the lareral antennuolar flagella that bear
the aesthetascs olfactory sensilla (Figure 7), consistent with the
expression pattern of this [R subunit in H. americanus (1GluR1,
Stepanyan et al. 2004), P. argus (Corey et al. 2013), and C. clypea-
trs (Groh-Lunow et al. 2015). IR23a expression in other chem-
osensory tissues than the lateral antennular flagella varies amongst
decapod crustacean species, with either no detection (for M. for-
tunata, A. markensis, P. elegans: this study; for H. americanus:
Stepanyan et al. 2004), or detection in different organs [medial
antennular flagella in R. exoculata and C. chacei: this study:
mouth and 2 first walking legs in P. arews: Corey et al. 2013).
Taken together, these results raise the question of whether IR235a
may play a more general role in decapod crustacean chemosensa-
tion bevond just mediating odor detection (Corey et al. 2013), or
if organs other than the aesthetascs bearing flagella can also have
an olfactory role, as Keller et al. (2003) suggested for the antennae
and walking legs of the blue crab Callinectes sapidus. According
to several recent studies and reviews (Schmide and Mellen 2011,
Mellon 2014; Derby and Weissburg 2014; Derby et al. 2016), only
the aesthetascs are considered as olfactory sensilla, which rather
plead for the first hypothesis.

Among hydrothermal species, the different patterns of [R25a
expression obtained for R. exocwlata and C. chacei on one hand and
for M. fortumata and A. markensis on the other hand, would suggest
different chemosensory mechanisms in these 2 shrimp groups. This
may be related to their diet and thus to their direct dependence to
the hydrothermal fluid. Indeed, Rimicaris and Chorocarss to a lesser
extent live in symbiosis with chemoautotrophic baceeria from which
they derive all or part of their food (Segonzac et al. 1993; Ponsard
et al. 2013}, forcing them to stay permanently close to hydrothermal
emissions to supply their bacteria in reduced compounds necessary
for chemosynthesis. These 2 species are also phylogenetically closely
related, which recently led Vereshchaka et al. {2015) to propose to
synonymize all the genus Chorocaris with Rimicaris. On the other
hand, Mirocaris and Aleinocaris are secondary consumers, scaveng-
ing on local organic matter and living at greater distances from the
vent emissions. Regarding the IR23a expression pattern, the coastal
shrimp P elegans has a profile similar to hydrothermal secondary
consumers Mirocaris and Alvinocars, itself having an opportunistic
omnivorous diet of invertebrate tissues.

In future studies, we will attempt to identify, and subsequently
localize, other receptors of the IR family that could be involved in
olfaction, and in particular the members generally found associared
with IR25a (like IR93a and IR8a). We recently developed an elec-
trophysiological method that allows the recording of shrimp ORMs
activity {Machon et al. 2016). This method will be used to conduct a
comparative study of the global antennule activity upon exposure to
environmental stimuli, in the hydrothermal species M. fortimata and
the coastal species P. elegans. An ultrastructural approach could help
to refine the morphological comparison between hydrothermal and
coastal species, by analvzing other charactenstics like the number of
ORMNs per aesthetascs, the number of outer dendritic segments per
ORMNs or the aesthetase cuticle thickness. This combined morpho-
logical and functional approach will provide insights into deep-sea
vent shrimp olfaction, and ultimately in the potential adaptations of
the sensory organs to their peculiar environment.

Supplementary Material

Supplementary data are available at Chemrical Senses online.
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Abstract

Chemoreception might play an important role for endemic shrimp that inhabit deep and dark
hydrothermal vents to find food sources and to locate active edifices that release specific chemi-
cals. We compared the chemosensory abilities of the hydrothermal shrimp Mirocaris fortunata and
the coastal related species, Palaemon elegans.The detection of diverse ecologically relevant chem-
ical stimuli by the antennal appendages was measured with electroantennography. The 2 species
can detect food-related odor and sulfide, a short-distance stimulus, via both their antennae and
antennules. Neither iron nor manganese, considered as long-distance stimuli, was detected by the
antennal appendages. Investigation of the ultrastructure of aesthetasc sensilla revealed no specific
features of the hydrothermal species regarding innervation by olfactory sensory neurons. Pore-like
structures occurring in the aesthetasc cuticle and dense bacterial covering seem to be unique to
hydrothermal species, but their potential link to chemoreception remains elusive.

Key words: aesthetasc, chemoreception, electroantennography, hydrothermal vent, sulfide

OXFORD

Introduction

Alvinocaridid shrimp are emblematic of deep hydrothermal vents
in the Mid-Atlantic Ridge (MAR, Desbruyeres et al. 2000, 2001).
They inhabit patchy, ephemeral, and dark environments, depending
on hot and potentially toxic fluid emissions. Several studies show
that these shrimp possess a range of morphological, anatomical, and
physiological adaptations to the hydrothermal environment, related
to ectosymbiosis with bacteria (Casanova et al. 1993; Ponsard et al.
2013), respiration in sometimes hypoxic conditions (Lallier and
Truchot 1997; Hourdez and Lallier 2007), or thermal stress (Cottin
et al. 2010) for instance. However, adaptations of sensory systems
have been only partially investigated (Jinks et al. 1998). Vent fauna
communitics arc always spread around active chimneys, suggesting
that they must detect attractants to choose their microhabitat, such

© The Author{s) 2018. Published by Oxford University Press. All rights reserved.
For permissions, please e-mail: journals permissions@oup.com

as food sources or fluid emissions (Sarradin et al. 1999; Sarrazin
ct al. 1999; Le Bris ct al. 2006). Among the sensory modalitics that
can be involved in the detection of the habitat, chemoreception
might be relevant since active vents are characterized by an exten-
sive release of various chemicals (Charlou et al. 2000). However,
chemical attractants and vent shrimp chemosensory specificities are
largely unknown, despite their importance for understanding how
the shrimp detect their local dim environment, or new venting sites
to settle in.

Considering food sources, invertebrate tissues or bacterial mats
might be major attractants for scavenger species such as the hydrother-
mal shrimp Mirocaris fortunata (Gebruk et al. 2000). For the detec-
tion of hydrothermal fluid emissions, the chemicals released might be
used as orientation cues. The chemical composition of fluids varies
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were filled with Pamsdirus saline (PS, composition in chemical stim-
uli). The reference clectrode was introduced through the soft articular
membrane between the telson and the abdomen. The recording clec-
trode was inserted with a NMN-25 micromanipulator (Nanshige,
London, United Kingdom) in the middle region of the flagellum area
bearing the acsthetascs, between 2 aesthetasc rows, for the lateral fla-
gellum of the antennule (referred as “antennule™ further in the text),
and between 2 annuli of the proximal region (first quarter) for the
antenna. Signals were amplified (x100) and filtered (0.1-1000 Hz)
using an EX1 amplifier with a 4002 headstage (Dagan, Minncapolis,
MN), and digitized at 2 kHz by a 16-bit acquisition board (Digidata
1440A) under Clampex 10.3 (Molecular Devices, Sunnyvale, CA).
Data were analyzed using Clampfit (Molecular Devices). Signals were
low-pass filtered offline at 20 Hz.

A gravity-fed PS perfusion was positioned over the branchial
cavity to maintain the shrimp alive. For M. fortunata, the PS perfu-
sion was maintained at 9 = 1 °C using ice packs. Chemical stimuli
were delivered by a pressunzed perfusion system with 8 channels
(AutoMate saientific, Berkeley, CA). To prevent oxidation of the
iron, manganese, and sulfide solutions within reservoirs, the system
was pressurized under nitrogen gas. Reservoirs were connected to
a segment (70 mm) of deactivated gas chromatography (GC) col-
umn (0.25 mm internal diameter). The tip of the GC column was
positioned with a UM-3C micromanipulator at ~1 mm from the
recorded flagellum, and -4 5° from its longitudinal axis.

Sumuli were applied for 1 s at 5 pst (1.1 ml.min!). Consecutive
stimuli were delivered with at keast 90 s intervals to prevent chem-
osensory adaptation (Machon et al. 2016). In addition to conti

For stimuli charactenistic of hydrothermal fluids (sulfide, iron,
and manganesc), dose-response relationships were established with
concentrations in the range of those that M. fortunata s likely
to encounter its environment (sulfide, 2-20 pmol.L-'; iron, 0.2-
2.5 pmol.L"! [Sarrazin et al. 2015]; manganese, 0.004—4.8 pmol.
L' [Aumond 2013]) to concentrations in the range of those of the
hydrothermal fluid at the Lucky Strike vent site (sulfide, 2-15 mmol.

L' [Renninger et al. 1995); iron, 30-863 pmol.L'; manganese,

50-450 pmol.L-* [Charlou et al. 2000)). To minimize oxidation, all

were prepared under a funnel connected to a nitrogen gas

bottle, with PS previously deoxygenated by bubbling nitrogen for

5-10 mun. All dilutions were made the day of use. Stimuli, concentra-
tions, and controls used for EAG are given in Table 1.

In order to simulate the concentrations that M. fortunata encoun-
ters in its environment, stock solutions were prepared at 2 mmol.
L in deoxygenated PS, with pH adjusted to 2 for FeCl, (reference
372870, Sigma-Aldrich) and MnCl, (reference M8054, Sigma-
Aldrich) solutions, and to 9 for NaS (reference 208043, Sigma-
Aldrich) solution. Stock solutions were diluted with deoxygenated
PS. The concentrations 40 pmol.L-! for Na S and § pmol.L* for FeCl,
and Mn(l, correspond to the estimated concentrations in the envir-
onment of M. fortunata (Sarrazin et al. 2015 for iron and sulfide,
Aumond 2013 for manganese). For higher concentrations, 4 concen-
trations were chosen on a logarithmic scale, the lowest corresponding
to the estimated concentration in the environment of M. fortunata,
and the second highest corresponding to the concentration measured
in the pure fluid at the Lucky Strike vent site (Charlou et al. 2000).

rencwing of the PS bath solution with a gravity-fed perfusion, half of
the medium was replaced after applying cach stimulus with new PS
using a 10 ml. syringe. Between stimuli, the dead volume of the simu-
lus device (GC column) was rinsed outside of the Petri dish, first with
PS and then with the solution of the next stimulus. To establish the
dou-u-spom relationship for cach stimulus, stimuli were applied in
i g concentrations, always startuing with the negative control
(PS). Resp to the positive control (aqueous extract of shnmp
food.mbelow)wmapplitdaldwendoﬁhtcxpaim to ensure
the recording quality. Recordings of low quality were excluded from
the analysis by discarding experiments for which the amplitudes of
responses to the positive control were smaller than 0.3 and 0.08 mV
for the antennule and the antenna, respectively. When responses to
the negative control had different amplitudes at the beginning and at
the end of an experiment, the average of the 2 values was used.

Chemical stimuli

PS was used to prepare all sumuli and as a negative control. The
composition of PS was (in mmol.L) 486 NaCl, 5 KCl, 13.6 CaCl,,
9.8 Mg(l,, and 10 HEPES, pH: 7.8-7.9 (Hamilton and Ache 1983),
with osmolarity adjusted to 1050 mOsavl. with mannitol.

An aqueous extract of shrimp Novo Prawn food pellets (NP) was
used as positive control in all experiments. Food pellets were dis-
solved for 48 h at room temperature at 0.2 g.ml " in PS. The extract
was then centrifuged at $900 g for 10, 15, and 20 min and the super-
natant was collected after cach centrifugation and filtered (0.45 pm),
aliquoted and stored at ~20 °C until use.

Aqueous extracts of dead M. fortunata and dead P. elegans indi-
viduals were prepared in PS from material kept for 48 h at room tem-
perature at approximately 75 mg.ml. . Extracts were then centrifuged
at 2000 g with a Galaxy MiniStar microcentrifuge and the supernatant
was filtered (0.45 pm), aliquoted and stored at -20 °C. Before use, pH
was adjusted to 7.8-7.9 and solutions were diluted 10 and 100 times.

Solutions were prepared in deoxygenated PS with serial dilutions
from the highest concentration. For FeCl, solutions, pH was adjusted
to 6 to avoid iron precipitation. PS adjusted to pH 6 was used as a
pH control for FeCl, stimulation series, and PS adjusted to pH 11 was
used as a pH control for Na,S stimulation serics, to match the pH of
the highest concentrated Na,S solution (14 mmol.L).

Statistical analysis
For EAG data, 1-way ANOVA with permutation test was used to test
differences among amplitudes of EAG responses to concentrations of
cach sumulus. For significant results, 2-sided 2-sample permutation
test using Welsh's t test was performed to investigate the difference
with the negative control for cach concentration. Data are given as
means (standard deviation [SD]).

Data analyses were carried out using RStudio v.1.0.136 software.

Transmission electron microscopy

For anatomical observations, lateral flagella of the antennules were
used. Tissues were postfixed in osmium tetroxide 1%, dehydrated in
cthanol and propylene oxide serics, and further embedded in epoxy
resin (Agar Scientific). Ultrathin sections were made from the mid-
dle region of lateral flagella on a Leica Ultramicrotome (Ultracut R)
using a diamond knife, and were laid on 150 or 200-mesh copper
grids and stained with saturated solution of uranyl acetate at 60 °C.
Observations were carried out on a Hitachi H7100 transmission
clectron microscope operating at 75 kV.

Ultrastructural analysis

Anatomical traits of the acsthetascs, the cuticle thickness and the num-
ber of inner and outer dendritic segments (respectively IDSs and ODSs;
Figure 1), were estimated from TEM obscrvations, using Image] soft-
ware. Mcasurements of cuticle thickness were made on sections at
vanous levels of 20 and 30 aesthetascs for M. fortunata (5 individuals)

205



Chemical Senses, 2018, Vol. XX, No. XX

Table 1. Solutions and number (n) of antennules and antennae tested for each condition in EAG

Stimulus Concentrations, dilutions, controls N
Antennules Antennac
Mirocaris fortunata Palaemon elegans Mirocaris fortunata Palaemon elegans
Figure 2
Shrimp food 0.2 g.mlL* 44 58 13 27
extract
PS —
Dead shrimp Non-diluted; 1:10; 1:100 7 8 — —
extract
Figure 3
Nas PS (negative control) 9 12 B 8
PS pH 11 (pH control) K 7 4 8
0.04,0.1, 0.4, 1, 4 pmol.L"* 5 5 — —
40 pmol.L."! 8 12 B 8
300, 2000, 14 000 pmol.L"* B 7 B 8
FeCl, PS (negative control) 1 15 5 9
PS pH 6 (pH coatrol) 6 10 5 9
0.05, 0.1, 0.5, 1 pmol.L* 5 s — —
S pmol.L* 10 15 5 9
60, 900, 10 000 pmol.L* 6 10 5 9
MnCl, PS (negative control) 10 17 B 10
0.05, 0.1, 0.5, 1 pmol.L* 5 6 — -
5 pmol.L* o 17 4 10
50, 500, 3500 pmol.L-* 5 11 4 10

and P. elegans (4 individuals), respectively. Data for cuticle thickness
are given as minimum and maximum values. The number of IDSs per
acsthetasc was estimated from counts in several 25 to 150 pm? por-
tions of sections from the base of the sensilla, on 11 and 13 aesthetascs
for M. fortunata (3 individuals) and P. elegans (2 individuals), respect-
vely. The number of ODSs per acsthetasc was estimated from counts
in several 4 to 30 pm? portions of the sensilla judged to contain the
highest number of ODSs containing single microtubules, on 7 and 28
acsthetascs for M. fortunata (4 individuals) and P. elegans (4 individu-
als), respectively. Data for IDS and ODS are given as range.

Results

EAG responses to chemicals

Stimulations of the antennal appendages with a shrnimp food extract
(NP, positive control) always triggered positive deviations of the
baseline (Figure 2A). Antennular responses to NP extract had a sig-
nificantly higher amplitude in P. elegans than in M. fortunata. By
contrast, the amplitude of antennal responses to the NP extract were
significantly higher in M. fortunata than in P. elegans. Responses
to the negative control (PS) were always negative deviations of the
baseline for the an le, but were cither positive or negative for
the antenna (Figure 2B). Responses to PS from the antenna were
much lower than responses from the antennule for both species.

Resp s of the le to dead shrimp extracts were dose-
dependent (Figure 2C), with a threshold dilutions between 1:100
and 1:10 for P. elegans, and between 1:10 and non-diluted for
M. fortunata, and amplitudes reaching 250 and 70 pV for the nondi-
luted extract for P. elegans and M. fortunata, respectively.

At concentrations of M. fortunata environment, for the stimuli
tested (Na,S: 0.04-40 pmol.L-*; FeCl, and MnCl: 0.05-5 pmol.L-")
resp from the le of M. fortunata and P. elegans did not
depend on stimulus concentrations (Figure 3A,CE, white bars).

At higher concentrations, Na,S clicited dose-dependent responses
from both the ules and of M. fortunata and P. ele-
gans (Figures 3AB and 4). Thresholds were between 0.3 and
2 mmol.L-! for the antennules of both species and for the antennac
of M. fortunata, and between 2 and 14 mmol.L"! for the antennac
of P. elegans. For M. fortunata, amplitudes for the highest concen-
tration (14 mmol.L-!) reached 120 pV for the antennule and 50 pV
for the antenna. For P. elegans, they reached 20 pV for the anten-
nule and 110 pV for the antenna. Increasing concentration of FeCl,
(0.005-10 mmol.L") and MnCl, (0.005-3.5 mmol.L"") solutions did
not trigger dose-dependent responses from the antennules and the
antennac (Figure 3C,D,EF) for both specices.

pH control solutions were used to distinguish responses triggered by
the chemicals or by the pH of the solutions (pH 11 for Na S 14 mmol.
L, and pH 6 for all high concentration FeCl, solutions). Mean
response of P. elegans antennac to pH control solution (pH: 11) sig-
nificantly differed from the negative control (PS) and from the response
to the highest Na S concentration (14 mmol.L) (Figure 3B). This pH
control solution did not trigger response different from the negative
control (PS) for the antenna of M. fortunata, and for the antennules
of the 2 species (Figure 3A,B). The pH control solution for high con-
centration Fe(l, series (pH 6) did not clicit any significant response for
both antennac and antennules for the 2 species (Figure 3CD).

Aesthetascs cuticle and innervation

The thickness and ultrastructure of the cuticle of acsthetascs vary
over the length of the sensilla (Table 2). From the base to the tran-
sitional zone (sce Figure 1), the acsthetasc cutide is thick for the
2 species, from 0.8 to 1.8 pm (minimum and maximum values) in
M. fortunata and from 0.6 to 1.3 pm in P. elegans. Just distal to the
transitional zone, in P. elegans the cuticle becomes thin (0.6-0.3 pm)
on almost all the distal part of the sensilla (80% of the length),
with the cuticle at the tip of the aesthetasc thinning to 0.15 pm. In
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Figure 1. Schematic representation of an sesthetasc from 3 marine crust-
acean decapod. Only 2 of approximately 100-400 bipolar olfactory sensory
neurons that innervate each aesthetasc are shown, and for each neuron only
1 cilium branching is shown. The transitional zone refers to the 20ne where
the inner dendritic segments give rise to 2 ciliary segments, each starting to
divide dichotomously in outer dendritic segments. Axon (a); accessory cell
(ac); basal bodies (bb); cuticle (c); ciliary segment (cs); inner dendritic seg-
ment (ds); outer dendritic segment (ods); ciliary rootiet (r); lumen (1); sensory
cell somata (sc). Not to scale.

M. fortunata the cuticle remains thick on the first half of the acs-
thetasc kength, and becomes thin on the distal half of the sensilla,
from 0.8 to 0.15 pm. For cach specics, the thick cutick has a lamellar
structure (Figure SA,B), which gradually becomes loose when thin-
ning (Figure SCD). In M. fortunata, pore-like structures occur in
the lamellar cuticle (Figures SAE and 6C). They can reach approxi-
matcly 0.2 pm in diameter, open to the inner side of the acsthetasc
and arc scparated from the outside by a cutile layer that thins
from 0.4 to 0.06 pm. They are present from the transitional zone to
approximately 50 % of the acsthetasc length, when the cuticle starts
to thin, and arc no longer present in the loose part of the cuticle
(Figure 5C). These pore-like structures were also observed in the
same region of the acsthetascs in the hydrothermal shrimp R. exocu-
lata (Figure SF), with a diameter slighty larger (up to 0.4 pm). For
these 2 hydrothermal species, the aesthetascs are often covered by
bacteria (Figure SCEF) over their entire length. Neither pore-like
structures, nor bacteria have ever been observed in P. elegans.

A schematic view of the dendrites regionalization (with IDSs,
ODSs, and transitional zonc) within an acsthetasc is presented in
Figure 1. IDSs are surrounded by auxiliary cells (Figure 6B) and
extend into the lumen of the acsthetasc, where they terminate at vari-
ous levels within the transitional zone. They contain mitochondna,
microtubules, vesicles, and a aliary rootlet (Figure 6A,B). Each acs-
thetasc contains approximately 90 to 223 IDSs for M. fortunata and
177 to 519 IDSs for P. elegans, meaning cach acsthetasc is innervated
by approximately 90 to 223 and 177 to 519 OSNs for M. fortunata
and P. elegans, respectively (Table 2). ODSs are not surrounded by
auxiliary cells, the remaining arca is filled with lymph (Figure 6C,D).
Swellings occur along the entire kength of the outer dendnitic seg-
ments (Figure 6CD). There is approximately 2545 to 5383 and
1568 to 10637 ODSs per acsthetasc for M. fortunata and P. elegans,
respectively (Table 2).

Discussion

Detection of food-related odor mixtures

M. fortiunata exhibits an opportunistic feeding behavior, scavenging
on tissucs of mussel, shrimp, and other invertebrates when available,
as well as grazing bacteria on sulfide surfaces (Gebruk et al. 2000;
Colago et al. 2002; Busscrolles ct al. 2009). We used an extract of
dead M. fortunata as an environmental relevant food-odor stimulus
to test whether the detection of food is mediated by the antennule for
this species. This sumulus clicited dose-dependent responses from
the antennule, confirming its presumed roke in food detection. An
extract of dead P. elegans also stimulated the antennule of P. elegans.
These results are consistent since P. elegans and M. fortunata have
a similar food profile, being secondary consumers. EAG responses
to positive control (NP), from both the antennule and the antenna,
suggest that the antenna is also involved in the chemodetection of
food sources in both species. The detection of food sources by the
antennal appendages of M. fortimata indicates that this hydrother-
mal species may rely on food-related odors to detect its habitat as
can do coastal specics, but the influence of food stimuli in maintain-
ing shnmp around vent chimneys need to be further investigated
with behavioral experiments.

Detection of hydrothermal fluid stimuli

Chemicals and their concentrations were chosen regarding the chem-
ical composition of the hydrothermal fluids (Radford-Knoery et al.
1998; Charlou et al. 2000) and in the shnmp vicinity (Aumond
2013; Sarrazin ct al. 2015) at the Lucky Strike hydrothermal vent
site, where M. fortinata specimens were sampled. Each chemical
presents different removal rates, assoaated to reaction with scawater,
other hydrothermal fluid constituents, dissolved organic matter, and
to consumption by chemoautotrophic bacteria. Sulfide removal rate
is high and sulfide is thus considered as a short-distance stimulus,
detectable near hydrothermal fluid emission points, whereas man-
gancse and iron arc more stable, detectable far from the source,
thus are considered as long-distance stimuli (Radford-Knoery et al.
1998; Aumond 2013; Wacles et al. 2017). To investigate if vent
shrimp use such hydrothermal fluid compounds as orientation cucs
for both ncar-ficld and distant perception of the habitat, we tested
the detection of sclected chemicals by the antennular and antennal
appendages of M. fortunata, as well as those of the coastal shnmp
P. elegans, o check for potential hydrothermal shnimp specificity.
Each chemical was first tested on the antennules at concentrations
that M. fortunata is likely to encounter in its environment, but none
clicited responses distinet from responses to the negative control.
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Figure 2. EAG responses to food extract stimulus, to negative control, and to dead shrimp extracts. Responses to (A) a shrimp food extract 0.2 gmL-" and to (B)
PS (negative control) recorded from the antennules and antennae (gray, Mirocaris fortunata; white, Palsemon elegans), and to (C) dead shrimp extracts recorded
from the antennules. For (A) and (B), means (SD) were compared between 2 species for each organ and stimulus with a 2-sample permutation t-test. For (C),
means (SD) were compared with 3 1-way ANOVA with permutation test (P < 0™ and with 3 2-sample permutation f-test to control stimuli (PS). **P < 0.01,
***P < 0.005. The n numbers of antennules and antennae tested for each species and for each condition are presented inTable 1.

We then used high concentrations, up and beyond to the concen-
trations measured in the pure fluid of the Lucky Strike vent site, on
the antennule and antenna of both speaes. Sulfide clicited responses
in a concentration-dependent manner for both the antennules and
the in M. fortunata. Thus sulfide is detected by bimodal

illa from the but for the antennules we cannot distin-
guish the role played by aesthetascs and bimodal sensilla in sulfide
detection. Renninger et al. (1995) recorded trains of action potentials
from nerve fibers of the 3 antennal appendages of the hydrothermal
shrimp R. exoculata, and found that only the antennac respond in
a graded way to sulfide. This absence of concentration-dependent
P for the le in R. exocudata might be due to technical
limitations rather than no detection. Recording from nerve fibers
implics that only a fraction of axons are connected to the clectrode
opening, and thus action potentials are recorded from only a minor-
ity of ncurons. The EAG method overcomes this problem since the
clectrode records neuron activation from almost the whole length
of the flagellum (Machon et al. 2016). Hence at least 2 hydrother-
mal shrimp species are physiologically able to detect sulfide via their
antennal appendages, supporting the hypothesis that sulfide could
serve as an cffective orientation cue at short distance of the hydro-
thermal vent. Yet because the sulfide concentrations that triggered
significant EAG responses were equivakent to those encountered in
the pure fluid, there is some doubt about the ecological relevance of
the responses obtained since M. fortunata inhabits diffuse vents with
low chemical concentrations (Cuvelier et al. 2011), and R. exoculata
lives closer to vent chimneys but still in fluid-diluted arcas. However,
convergence of sensory inputs onto higher-level neurons occurs in
the chemosensory pathway of crustaceans (Mellon 2000), as in ver-
tebrates and insects (Van Drongelen et al. 1978). This convergence
makes second-order neurons in the central nervous system more sen-
sitive than peripheral chemosensory ncurons (Rospars et al. 2014).
Hence, behavioral responses to chemical stimuli can potenually be
observed at concentrations that do no trigger EAG responses, and
questions regarding the relevance of the sulfide concentrations tested

sulfide in this study, meaning that sulfide detection is not specific
to vent specics and is likely not an adaptation to the hydrothermal
environment. Again, behavior experiments are needed to investigate
if hydrothermal species present specific responses to sulfide, such as
attraction behavior, compared to coastal specics.

P. elegans antenna was also significantly responsive to a control
pH 11 sumulus, as observed by Renninger et al. (1995) for the coastal
shnimp Pala etes aztecus exposed to a pH 13 stimulus.
But the response to pH 13 in P. a2tecus was not significantly different
from the response to a pH 13 sulfide solution (1300 mmol.L}). In
this study, response of the antenna in P. elegans to pH 11 significantly
differs in amplitude from the resp to pH 11 sulfide solution (Na S
14 mmol.L-*), meaning there is detection of both sulfide and high pH
by the antenna of P. elegans. The confounded responses to sulfide and
pH 13 sumulus in P. a2tecus (Renninger et al. 1995) might be due to
the low number of specimens tested (1 < » < 4), insufficient to bring
out a significant difference between these 2 stimuli. Responses to high
pH stimuli could be speaific to coastal species, because neither M. for-
tunata antenna (this study) nor R. exoculata antenna (Renninger et al.
1995) were significantly responsive to basic pH solutions. However, in
shallow habitats extreme pH are rarely encountered and may appear
as ecologically irrelevant stimuli that should not evoke any behavioral
response (Puni and Faulkes 2010). Note that pH 11 stimulus was used
in this study as a control for the highest concentrated sulfide solution,
not as a pH sumulus. To investigate the detection of pH vanations as
an orientation cue for hydrothermal shrimp, aad pH solutions should
be tested because in Lucky Strike hydrothermal flud pH ranges from
3.84 to 645 (Charlou ct al. 2000), and from 6.1 to 7.3 in the shrimp
habitat (Desbruyeres et al. 2001).

Detection of manganese and iron by a vent shnimp was tested
here for the first ime, and the 2 stimuli did not trigger responses at
any concentration tested. This suggests but does not definitely proves
that shnimp cannot detect these compounds since the sensitivity of
the EAG method is imited. EAG represents the summation of recep-
tor potentials generated by many sensory neurons responding simul-

could be addressed with behavior expeniments. Al les and
antennac of the coastal shnmp P. elegans were also responsive to

ly (Nagai 1985). Thus, if iron and manganese stimulate only
a low number of chemosensory neurons, the sensitivity of the EAG
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FeCl,, and MnCl, in Mirocaris fortunata (black dots) and Palaemon elegans (white dots). (A) Responses to Na,S
For (A) and (B), pH control is set to 11 and corresponds to the pH of the 14 000 smol.L"' Na,S solution. (C) Responses to
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ded from the (B) Responses
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ded from the

For (C) and (D) pH control is set to € and corresponds to the pH of the

610000 pmol.L-' FeCl, solutions. (E) Responses to MnCl, recorded from the antennules. (F) Responses to MnCl, recorded from the antennae. Under the x axis,

white bars indicate concentrations that M. fortunata is likely to

ter in its

and black bars indicate concentrations measured in the pure fluid

at the Lucky Strike vent field. Means (SD) were compared with a 1-way ANOVA with permutation test (P < 10" for sodium sulfide dose-responses) and with 3

2-sample permutation t-test to control stimuli (PS). *P < 0.08, **P<0.01, ***P<0.001.The n bers of sles and

for each condition are presented inTable 1.

method is most likely not sufficient to detect a response. However,
the alternative that mangancse and iron are actually not detectable
by vent shrimp raises questioning about the relative importance of
chemoreception for these animals. Manganese and iron are relevant
stumuli for long-distance detection of hydrothermal fluids, which is
a fundamental issue regarding vent shrimp lifestyle. Because hydro-
thermal vents are dynamic and ephemeral ecosystems, vent animals
need to detect new venting sites to settle in, and the extremely high

tested for each species and

abundances of shrimp on MAR sites (Polz et al. 2003; Martin and
Hancy 2005) suggest that they are successful colonizers. Which
fluid attractants are used for the long-distance detection of active
sites, in addition to which stage of life are involved (Herring and
Dixon 1998; Tyler and Young 2003), is stll uncertain. Since sulfide,
although emblematic of vent chemicals, is not a relevant sumulus in
this context, the prospective that vent shrimp cannot detect manga-
nese and iron makes the distant chemodetection of hydrothermal
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Table 2. Comparison of cuticle thickness and number of IDSs and ODSs in aesthetascs of marine crustacean decapod species

Specics Thickness of “thick™  Thickness of “thin™  Number of IDSs per  Number of ODSs per  References
cuticke (pm) cuticle (pm) acsthetasc* acsthetasc*

Marine crab

Cancer productus 2.1 1.1 100 - Ghiradella ct al. 1968

Callinectes sapidus - - 105 1420 Gleeson ct al. 1996
Marine hermit crab

Pagurus birsutiusculus 1.3 0.4 400 6000-8000 Ghiradella ctal. 1968
Spiny lobster

Panulirus interruptus 4 1 300 — Spencer and Linberg 1986

Panulirus argus 3 0.8 300-350 8000-10 000 Granert and Ache 1988
Caridcan shrimp

Palaemon adspersus 1 04 — — Solari ct al. 2017

Palaemon elegans 1.3 0.14 177-519 1568-10 637 This study

Mirocaris fortunata 1.5 0.15 90-223 2545-5383 This study

*Estimations presented as range.

plume doubtful. Detection of other long-distance relevant chemicals
such as methane (de Angelis et al. 1993) should be tested, as well as
other possible long-distance attractants such as noise (Crone et al.
2006) or temperature (Baker et al. 2016). Chemoreception abilitics
of other life stages should also be investigated, although larval dis-
persal is thought to play a role in colonization processes (Lutz et al.
1984) and acsthetasc sensilla are present in Alvinocandid first zocal
stages (Hernandez-Avila et al. 2015).

Comparison of aesthetasc cuticle and innervation

Differences in chemosensitivity between 2 specics, as specific adapta-
tions to a particular environment, may be reflected by anatomical
dissimilanities (Beltz et al. 2003). Although the general organiza-
ton of acsthetascs and OSNs is analogous between decapod spe-
cics (Ghiradella ct al. 1968), the acsthetasc cuticle thickness and the
numbers of IDSs and ODSs can vary. The cuticle thickness relates
to the permeability of the acsthetase, thus the ability to detect
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Figure 5. Cuticle of sesthetasc sensilla of Mirocan's fortunata (A, C, E), Palsemon elegans (B, D), and Rimicaris exoculata (F). Cross sections through the base (B),
the middie (A, E, F), and the apex region (C, D) of the sesthetascs. Bacterium (b); cuticle (c); pore-like structure (p). Scale bar = 1 pm.

soluble odorants. IDSs and ODSs refer respectively to the number of
OSNs and dendrites innervaung the acsthetasc, and could be linked
to odorant discrimination ability (Derby and Weissburg 2014).
Acsthetasc ultrastructure has been well described for several deca-
pod models (Table 2; Laverack and Ardill 1965; Ghiradella et al.
1968; Snow 1973; Hallberg and Chaigneau 2004), but for candean
shrimp species only the acsthetasc external morphology is described
(Table 2; Bauer 1977; Hallberg et al. 1992; Mcad 1998; Obermeier

and Schmitz 2004; Zhang ct al. 2008; Zhu ct al. 2011; Solari et al.
2017; Zbinden ct al. 2017) and no information is available on the
ultrastructure. Aims of the present approach were to investigate
potenual specifiaitics of the hydrothermal shrnimp chemosensory
system regarding the aesthetasc cuticle structure and innervation, as
well as to provide obscrvations on shnmp acsthetasc ultrastructure
to enhance the general knowledge on decapods olfactory systems
diversity.
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ila of Mi

Figure 6. Inner and outer dendritic segments of aesthetasc

ata (A, C) and Palaemon elegans (B, D). Cross sections through the base

(A, B) and the middie (C, D) region of the aesthetasc, showing the inner and outer dendritic segments, respectively. Cuticle (c); auxiliary cell (ac); inner dendritic

9 (ids); mitochondri
arrows). Scale bar - 1 pm.

Acsthetascs of marine decapods are charactenized by a thin (0.4-
2.1 pm thick, Table 2), poreless cuticle, unlike bimodal sensilla that
have a pore at their up (Garm ct al. 2003) and a thick cutick (c.g.,
from 2 to 7 pm thick for the distal part of an antennular bimodal
scnsilla in R. exocudata; Machon, personal communication). The
acsthetasc cuticle looks spongy, especially in the distal part, possibly
funcuioning as a molecular sicve through which appropriate odor-
ants move quickly to activate OSNs, as reported in spiny lobster
(Derby et al. 1997) and crayfish (Tierney ct al. 1986). Therefore,
the cuticle thickness and structure along the acsthetasc may define
the portion of sensilla permeable to soluble odorants. Comparison
of acsthetascs from M. fortimata and P. elegans, and other mar-
inc decapod specics, reveals similarities in cuticle thickness in the
basal region of acsthetascs among the candean shnimp group, mar-
inc crabs and the hermut crab (Table 2), and also in structure, being
lamellar (Ghiradella et al. 1968; Griinert and Ache 1988; Gleeson
ct al. 1996). In our study, the distal region of acsthetascs has a thin-
ner cuticle than described for other decapod species (Table 2), but
similar to the thickness of Daphbnia acsthetasc cuticle (Hallberg et al.
1992), and identical between M. fortunata and P. elegans. Regarding
the cuticle, the spongy nonlamellar cuticle most likely corresponds
to the odorant-permeable region. A portion of 50 and 80% of the

(m); outer dendritic segment (arrow); pore-like structure (p); ciliary rootiet (arrow head); swelling of dendritic membrane (double

acsthetasc length has a thin and spongy cuticle in M. fortumata and
P. elegans, respectively. Although the 2 species have a similar acs-
thetasc length (Zbinden et al. 2017), P. elegans acsthetascs appear to
have a larger surface arca permeable to odorants than M. fortimata,
which could lead to better sampling of the environment and spatial
resolution.

Pore-like structures occur in the acsthetasc cuticle of M. fortimata
from and beyond the transitional zone, but arc absent in the thin
cuticke of the distal part of the acsthetasc. These structures and pattern
were also found in the hydrothermal shamp R. exocudata, but not in
the coastal shnimp P. elegans. Other types of pore-like structures have
been described in the basal region of the acsthetase for some marine
decapods. Pore canals perforate the lamellar cuticle of the basal tenth
of the acsthetascs in the hermit crab Pagurus birsstiuscudus (Ghiradella
ct al. 1968), proximal to the ciliary scgments of the transitional zone,
and pore-like structures occur from the base to the transitional zone
in the lobster Parudirus argus, and contain extensions of the auxiliary
cells (Grinert and Ache 1988). However, in M. fortimata these pore-
like structures appear only from and beyond the transitional zone,
where the auxiliary cells end. In addition these pore-like structures
are much more abundant than those described in P. birsstiuescadus and
P. argus, and arc longer, crossing almost the entire thickness of the
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cuticle, making them likely a feature specific to hydrothermal shrimp.
The function of these pore-like structures is unknown. Although the
cuticle layer separating the inner side of the pore-like structures with
the outside is extremely thin, they could facilitate the passage of odor-
ant molecules through the thick lamellar cuticle and thus enhance the
sampling of the environment by compensating the small surface per-
meable to odorants in M. fortunata acsthetascs.

The presence of a thick layer of bacteria covering the aesthetascs
is also likely a feature specific to hydrothermal shrimp. Indeed,
dense bacterial populations have been observed on the antennac
and antennules of 4 hydrothermal shrimp species (Zbinden et al.
2017; Figure 6C,E,F), sometimes covering the major surface of the
aesthetascs, whereas no bacterial coverage was ever observed with
the coastal shrimp P. elegans. Identification of the different bacteria
types present on cach species is needed to discuss on their potential
role or impact on shrimp sensory perception.

Increased IDSs and ODSs numbers could be associated to a bet-
ter discrimination of the chemical environment (Derby and Weissburg
2014) because the OSNs (whose number is reflected by the number
of IDSs) express different olfactory receptors, beared by the ODSs.
The number of IDSs per aesthetasc for M. fortunata and P. elegans fits
within the range of about 100400 displayed by several Malacostracan
taxons (Table 2; Harzsch and Krieger 2018). Compared to P. elegans,
aesthetascs of M. fortunata house fewer OSNs and contain fewer
ODSs, suggesting the hydrothermal species is not likely to have an
enhanced chemosensitivity regarding this character. However, these
data need to be completed by identifying and quantifying the receptor
proteins expressed by OSNs for cach specics, to investigate potential
adaptations of the hydrothermal species at the molecular level.

Conclusions and perspectives

This study presents the first insights into the detection of various
organic and chemical compounds by hydrothermal shrimp using an
EAG approach. Sulfide was detected by both the antennule and the
antenna, suggesting that hydrothermal shrimp may be able to sense
sulfide concentrations occurring naturally in the near field of the
vents. However, this detection s not specific to hydrothermal spe-
cies. Neurons responding to sulfide are presumably present at least
in Palacmonidace and Alvinocarididac shrimp groups, but the behav-
1oral responses triggered by this detection remains unknown. Sulfide
is a good candidate as a short-distance orientation cue in hydro-
thermal environments, as well as food-related odors, and behav-
1oral designs arc being experimented to see whether M. fortunata
use these chemical sources for orientation around vent chimneys.
In contrast, manganese and iron did not trigger significant EAG
responses, which puts in doubt the significance of chemoreception
for long-distance detection of active vents. Chemoreception abilities
of other life stages should also be investigated, because dispersal and
colonization processes occur at the larval stage (Lutz et al. 1984),
which may be more sensitive to long-distance stimuli than adults.
Furthermore, behavioral responses to both short- and long-distance
stimuli must be investigated for M. fortunata and other hydrother-
mal species using pressurized aquaria (Shillito et al. 2014). Shrimp
species occupy distinct microhabitats around vent chimneys, thus
may not be sensitive to the same attractants and could exhibit differ-
ent chemosensory abilitics.

Comparative description of the aesthetasc ultrastructure gave
insights into features of the hydrothermal shrimp, including cuticular
pore-like structures and large bacteria covering. Bacterial functional
types are being identified by sequencing approaches to ultimately dis-
cuss their potential influence on vent shrimp chemosensory abilities.

Examination of the aesthetasc cuticle thickness and the numbers of
IDSs and ODSs innervating acsthetascs did not reveal noticeable
specializations of the hydrothermal species. Molecular studies are
being conducted to further investigate adaptations of hydrothermal
species by identifying, quantifying and localizing the chemoreceptors
expressed by OSNs.
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e 19" annual meeting of the French Club for Invertebrate Neurobiology (CNI)
May 24-25, 2018, INRA, Campus de Versailles

Machon Julia, Ravaux Juliette, Zbinden Magali, Lucas Philippe, Chertemps Thomas, Montagné
Nicolas, Harzsch Steffen, Krieger Jakob, Meth Rebecca, Shillito Bruce

Talk: « Insights into the chemosensory system of the deep hydrothermal vent shrimp Mirocaris
fortunata »

e French-American Doctoral Exchange Program on Ocean (FadexO)
October 20, 2017, MNHN, Paris
Machon Julia, Lucas Philippe, Zbinden Magali, Ravaux Juliette

Talk: « Comparative study of sensory abilities in deep hydrothermal shrimp Mirocaris fortunata and
coastal shrimp Palaemon elegans »

e Teaching to master students, course unit: “Biologie et Adaptations en Milieux Extrémes »
September 12,. 2017, Sorbonne Université, Paris
Machon Julia

Lesson title: « Adaptations sensorielles (photo-et chimio-réception) chez les crevettes
hydrothermales profondes »

e 6th International symposium on chemosynthesis-based ecosystems (CBE6)
August 27 — September 1, 2017, Woods Hole Oceanographic Institution (USA)

Machon Julia, Zbinden Magali, Ravaux Juliette, Barthelemy Dominique, Lucas Philippe, Sarrazin Jose,
Sarradin Pierre-Marie, Shillito Bruce

Poster: « AbyssBox: Public exhibition of deep-sea hydrothermal fauna and associated research
projects »
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July 6-8, 2016
July 5-7, 2017, Caen
Machon Julia, Ravaux Juliette, Zbinden Magali

Talks: « Adaptations sensorielles chez les crevettes hydrothermales profondes »
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November 16-19, 2015, Sintra (Portugal)
October 3-7, 2016, Gent (Belgium)
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Ravaux Juliette

Poster: « Sensorial adaptations in deep hydrothermal shrimp »
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AbyssBox : Pari

Public exhibition of deep-sea hydrothermal fauna and associated research projects

Machon J.}, Zbinden M.}, Ravaux J.!, Barthélémy D.?, Lucas P.?, Sarrazin J.%, Sarradin P-M.#, Shillito B..
Ifremer

! Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7208 BOREA, Adaptations aux Milieux Extrémes, 75005 Paris, France

Océanopolis, Port de Plaisance du Moulin Blanc, 29210 Brest Ced
UPMC, UMR 7618, Dpt Sen

1, France

Yi€ES, Institut of Ecological and Environmen Paris-Versailles, France

* fremer, Centre de Bretagne, REM/EEP, Labor. onnement Profond, Institut Carn.

zané, France

The AbyssBox pressurized aq

A valuable approach to better understand ecosystem functioning is the experimentation on live animals, but deep-sea organisms
usually have low tolerance to sampling and prolonged exposure at atmospheric pressure

The AbyssBox project, at the Oceanopolis aquarium (Brest, France) aims to provide the first permanent public exhibition of live
hydrothermal invertebrates maintained at in situ pressure : the vent shrimp Mirocaris fortunata and crab Segonzacia mesatlantica,
sampled at 1700 m depth in the Lucky Strike vent field on Mid-Atlantic Ridge

Important mortalities (50-90%) occur
during the two weeks following sampling but then survivors stay alive for years

MOMARMAT oise M. fortunata | S. mesatiantica

201 In situ pressure

1097 da 731 day:

(AbyssBox) s i
Atmosphe

\ mospheric >2 years few days

\ pressure

Arrval 3t Océanopols
—— — =

»

Maximum lifespan observed in captivity

Designed to function permanently, AbyssBox is also available to the scientific community for long-term rearing of

deep-sea fauna, at the scal

of years, giving informations on lifespan, reproduction cycles and species interactions

which are often poorly characterized
Volume 16.5L — pressure up to 20MPa — temperature 2-40°C ~ flow rates up to 10L/h

erm (over years) maintenance and observation of hydrothermal fauna at in situ pressure

=» The AbyssBox is one of the most useful tools for lon

Comparative study of chemo-reception in deep hydrothermal shrimp Mirocaris fortunata and coastal shrimp Palaemon elegans

Does M. fortunata present specific adaptations of its chemo-sensory system to detect the environment, using hydrothermal fluid emissions ?

[ ‘Which organs are involved in chemo-reception ? > Which chemical stimuli are detected ?

The antenna and antennules Localisation of the The lateral antennule bears We developped the first underwater electroantennography (EAG)
are associated to various chemo-receptor IR25a aesthetasc sensilla method on live shrimp, to record the electrical responses of the
sensory modalities in the lateral antennule specialized in chemo-reception chemo-receptor neurons innervating the aesthetasc sensilla.
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rrent projects

We are estimating the number of dendrites per aesthetascs, since an enhanced dendritic number may be correlated to life style and/or chemo-reception efficiency.

We are lauching a transcriptomic study on 4 hydrothermal shrimps (M. fortunata, R. exoculata, Chorocaris chacei and Alvinocaris markensis) that live at different
distances from vent chimneys, in order to identify chemo-receptors expressed in their antennules, antenna and mouth parts.

p (e.g. or ), to determine if M. fortunata uses the chemical signature of the hydrothermal fluid for orientation in its

environment

Temperature variations around vent chimneys are also a potential attractant for hydrothermal shrimp. We are testing the to warm temp and

I Detection of hydrothermal stimuli (sulfide, iron and manganese) is being tested with the EAG method. The compounds eliciting positive responses will be used for

searching for thermo-rt

eptors expressed in the antennal appendages.
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Sensorial adaptations in deep hydrothermal shrimp :

Comparison of sensory abilities of hydrothermal shrimp Mirocaris fortunata and coastal species Palaemon elegans

Machon J.!, Zbinden M.}, Lucas P.2, Léger N.!, Montagné N.2, Chertemps T2, Ravaux J.!

Usiversisé Presse et Marse Curie ~ Paris VI (UPMC), UMR 7208 BOREA, équipe Adaptations sux Mibiewux Extiémes, 75005 Paris, France
\EES. Institut of Ecologxcal and Envonmental Saxences - UPMC. UMR 7618, Dyt Ecologse semonelle. Pars Versmlles. France

Hydrothermal vent ecosystems are scarce and ephemere environments along the mid-oceanic ridg tection of hydrothermal emissions is

crucial for endemic fauna, either to find fluid to feed their symbiotic bacteria, to re in an approg conditions, or
1o detect new venting sites during dispersion. Hydrothermal activity has specific chemical signatures, s thermal gradients, which may
be used to locate hydrothermal vent emissions.

To date, only a few studies are available on chemoreception in hydrothermal shrimp (Renninger et al. 1995; Chamberlain et al. 1996, Jinks e K\

1998), wh it is primordial for the understanding of their life cycle, maintening and long-term evolution. For thermoreception, no study has a8
irocans fortunata
been performed in hydrothermal species ans fortunata

In the present study we foccus on chemoreception, more precisely on olfaction (i.e. « distant » chemoreception) : sensilla respond to highly

soluble compounds, detected in very low concentrations at distance from the source (Bauer & Caskey 2006). In decapods, chemoreceptors are

located mainly on the antennule (or first antenna; for olfaction) and pereiopods dactyls and mouthparts (for gustation, Ache 1982)

The shrimp Mirocaris fortunara are among the dominant species of hydrothermal sites in Mid-Atlantic Ridge and a

» good models for studying
olfactory capacities. The closely re

ted coastal shrimp Paloemon elegans has been chosen for comparison to discuss potential adaptations of
deep-sea shrimp related to their environment.

Palaemon elegans

MORPHOLOGY OF ANTENNULAR SENSILLA RESEARCH OF IONOTROPIC RECEPTORS

In Crustacea, the main olfactory organ is the antennule, the lateral flagelhum of which bears speciaized sensilla called We equenced 3 recrptor evoheed n olfaction, Called Phylogenetx relstiomhe n arthropod K2 oFactory receptor
sesthetascs. Their cuticule b permeable to chemicals and they a only by chemoreceptor neurons %53, 0 4 hydrothermal thrmp and 3 coasts
Pakeermonid
Non sethetaic wenmils are prevent on both antenna and antennules, 3nd are nnervated by (hemo and mecano receptor
nowens he receptor IR75a wan dncovered
i of the lonotrope receptor (1) famdy. irs are ivolved

i the detection of odors, and are located in the
MHydrothermal shrimp Mirocaris fortunata Anterinule “"/ . e ane of the Offatory Receptor Newrom (ORN:)
The antennule 1y divided in lateral and medisl flagedls et Shing ong

&y Arthropods, we managed to sequence sbo
thetascs are located on the ventral face of the lateral

m, with one row of 3 10 4 sesthetascs per sepment .
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Coastal shrimp Palaemon elegans
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ol flagedum, and & short
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temperature, and shimp behavior 1 video recorded

We present here the first detailed morphological description of the olfactory aesthetasc sensilla, as well as the first i pic receptor ifi
hydrothermal shrimp. Ablation experiments confirmed that the lateral antennule play a major role in olfaction. We also de

technique of the global activity of the antennule in aquatic crustacean

and localisation in
loped the first extracellular recording

The validation of the EAG on shrimp opens a wide field of possibilities to refine the results obtained, both in detection of chemicals (to test other concentrations, or other
potential attractants, and potential behaviors associated) and in shrimp olfactory capacity (spectrum of response, interaction between compounds...)

The detection of temperature could also be a promising line of work, as suggested by preliminary data on R. exoculata and M. fortunata in IPOCAMP experiments.




Glossary

Aesthetasc: tubular, thin-walled sensilla found on the antennules of crustaceans (the lateral
antennules in decapods), innervated by olfactory sensory neurons that project to the olfactory
lobes in the brain.

Allatostatins: neuropeptide hormones that inhibit the generation of the juvenile hormone, which
regulates many aspects of insect and crustacean physiology.

Antennal neuropil: first-order neuropil that receives afferent fibers from the sensory neurons
innervating the sensilla on the antennae (second antennae).

Basaltic (rock): volcanic mafic (rich in silica) rock formed from the rapid cooling of lava.

Bimodal sensilla: sensilla with a terminal pore found on the antennal appendages, mouthparts,
walking appendages and the body surface of crustaceans, innervated by chemo- and
mechanosensory neurons that project to the lateral and medial antennular neuropils.

Calcium imaging: technique used to investigate neuronal activity, by visualizing changes in
intracellular calcium concentration, with fluorescent molecules that respond to the binding of Ca*
ions by changing their fluorescence properties.

Distributed chemodetection: one chemosensory pathway in crustaceans (in parallel to Olfaction),
mediated by bimodal sensilla, and comprising contact chemodetection (“taste”) and “chemical
senses” with specialized function, such the control of antennular grooming, coordination of
mating...

Flicking: movement of the antennules (the lateral flagellum is quickly depressed from its normal
posture and then returned at slower speed) that enhances odorant capture by exposing the
aesthetasc sensilla to new water samples (“sniffing”).

Grooming: crustacean behavior to keep the body free of microbial and particulate fouling, for
exemple by preening the antennules with setal brushes on the third maxillipeds.

Hemiellipsoid bodies: second-order neuropils that process information from various sensory
modalities, likely with the medulla terminalis.

Homeoviscous adaptation: adaptation of the cell membrane lipid composition to keep the adequate
membrane fluidity.

Lateral antennular neuropil: first-order neuropil that receives afferent fibers from the sensory
neurons innervating the sensilla on the antennules (first antennae), except from the olfactory
sensory neurons innervating the aesthetascs.

Lecithotrophy: form of development in which the larva receives nutritional supply only from its stock

of lipids.
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Manifold: stimulator device that has several openings to allow the passing of liquids or gases.

Medulla terminalis: second-order neuropils that might be involved in multi-sensory integration,
together with the hemiellipsoid bodies.

Neuropil: synaptically dense region in the central nervous system, composed of glial cells, axons and
dendrites, but not the somata, of sensory, inter- and projection neurons.

Olfaction: one chemosensory pathway in crustaceans (in parallel to Distributed chemodetection),
mediated by aesthetascs, and comprising to the distant detection of odorant molecules.

Olfactory lobe: first-order neuropil that receives afferent fibers from the olfactory sensory neurons
innervated the aesthetascs on the lateral antennules.

Olfactory sensory neuron: chemosensory neuron innervating the aesthetascs and projecting to the
olfactory lobes in the brain.

Patch-clamp: recording technique of ionic currents in isolated individual cells, tissues sections or
patches of cell membrane, especially in neurons to record action potentials and nerve activity.

Peripheral nervous system: neurons, nerves and ganglia outside the brain and the ventral nerve
cord.

Plume: column of one fluid moving through another (e.g. hydrothermal fluid or mining wastes mixing
with the ambient seawater).

Receptor potential: generally a depolarization consecutive to the activation of a sensory receptor,
which can eventually trigger the corresponding sensory neuron to emit action potentials.

Sensillum (Sensilla): cuticular expansion innervated by sensory neurons.

Seta (Setae): cuticular expansion with no sensory function (or for which innervation by sensory
neurons has not been demonstrated).

Single sensillum recording: electrophysiology technique to perform extracellular recording of action
potentials from single sensory neurons innervating a sensilla.

Statocyst: balance sensory receptor in some aquatic invertebrates, consisting of a sac-like structure
containing a mineralized mass and numerous sensory hairs.

Synapsins: family of proteins implicated in the regulation of neurotransmitter release at synapses.

Ultramafic (rock): dominant rock type of the Earth’s upper mantle (also known as peridotite), which
undergoes near the seafloor hydration and metamorphic transformation into serpentinite

minerals, which produces hydrogen gas.
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Abbreviations

AnN: Antennal Neuropil (see Glossary)

BALIST: Biology of Alvinella Isobaric Sampling and Transfer

EAG: ElectroAntennoGraphy

GR: Gustatory Receptor

HB: Hemiellipsoid Bodies

IPOCAMP: Incubateur Pressurisé pour I'Observation et la Culture d’Animaux Marins Profonds
IR: lonotropic Receptor

LAN: Lateral Antennular Neuropil (see Glossary)

MAR: Mid-Atlantic Ridge

MT: Medulla Terminalis

NP: Novo Prawn

OL: Olfactory Lobe (see Glossary)

OSN: Olfactory Sensory Neuron (see Glossary)

PBS: Phosphate Buffered Saline

PERISCOP: Projet d’Enceinte et de Récupération Isobare Servant a la Collecte d’Organismes Profonds
PS: Panulirus Saline

TRP: Transient Receptor Potential channel

Ifremer: Institut FRangais pour I'Exploitation de la MER

WHOI: Woods Hole Oceanographic Institution
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