Année de publication
2020

Journal

Scientific Reports
Volume
10
Ticket
1
Date de publication
Jan-12-2020
DOI
10.1038/s41598-020-66909-7
URL
http://www.nature.com/articles/s41598-020-66909-7
Catégorie HCERES
ACL - Articles dans des revues internationales ou nationales avec comité de lecture répertoriées par l'HCERES ou dans les bases de données internationales
Résumé

Some sacoglossan sea slugs incorporate intracellular functional algal chloroplasts, a process termed kleptoplasty. “Stolen” chloroplasts (kleptoplasts) can remain photosynthetically active up to several months, contributing to animal nutrition. Whether this contribution occurs by means of translocation of photosynthesis-derived metabolites from functional kleptoplasts to the animal host or by simple digestion of such organelles remains controversial. Imaging of 13C and 15N assimilation over a 12-h incubation period of Elysia viridis sea slugs showed a light-dependent incorporation of carbon and nitrogen, observed first in digestive tubules and followed by a rapid accumulation into chloroplast-free organs. Furthermore, this work revealed the presence of 13C-labeled long-chain fatty acids (FA) typical of marine invertebrates, such as arachidonic (20:4n-6) and adrenic (22:4n-6) acids. The time frame and level of 13C- and 15N-labeling in chloroplast-free organs indicate that photosynthesis-derived primary metabolites were made available to the host through functional kleptoplasts. The presence of specific 13C-labeled long-chain FA, absent from E. viridis algal food, indicates animal based-elongation using kleptoplast-derived FA precursors. Finally, carbon and nitrogen were incorporated in organs and tissues involved in reproductive functions (albumin gland and gonadal follicles), implying a putative role of kleptoplast photosynthesis in the reproductive fitness of the animal host.