Titre | Pelagic larval duration of three amphidromous Sicydiinae gobies (Teleostei: Gobioidei) including widespread and endemic species |
Type de publication | Journal Article |
Year of Publication | 2012 |
Auteurs | Taillebois, L, Maeda, K, Vigne, S, Keith, P |
Journal | Ecology of Freshwater Fish |
Volume | 21 |
ISSN | 0906-6691 |
Résumé | Sicydiinae species have an amphidromous life cycle during which they undergo a pelagic larval phase allowing them to disperse through the ocean and to recruit in distant island rivers. Hypotheses for the differences observed in dispersal abilities between species include the variation in pelagic larval duration (PLD). However, the implication of the PLD as a proxy for explaining the dispersal ability of a species is not clear in the Sicydiinae subfamily. In this study, otolith microstructure of three Sicydiinae species was analysed. One of these species, Sicyopus zosterophorum, has a widespread distribution in the West Pacific area, whereas the other two species, Smilosicyopus chloe and Akihito vanuatu, are endemic to New Caledonia and to Vanuatu, respectively. Deposition of the daily growth increments on the otoliths of S. zosterophorum was validated using an alizarin complexone time marking technique. We estimated the PLD for the three species by counting the number of growth increments from the core to the metamorphosis check mark, and it was shorter than the one of previous studies on Sicydiinae species. The PLD of the widespread species, S. zosterophorum (54.6 +/- 5.6 days), was similar to those of the endemic species, S. chloe (53.6 +/- 5.7 days) and A. vanuatu (55.4 +/- 7.5 days). Here, we show that in contrast to the most diverse Sicydiinae genus, Sicyopterus, the PLD could not explain endemism, and we must take into account other elements to explain the differences observed in the distribution range. |
URL | http://apps.isiknowledge.com/InboundService.do?Func=Frame&product=WOS&action=retrieve&SrcApp=EndNote&Init=Yes&SrcAuth=ResearchSoft&mode=FullRecord&UT=WOS:000308290000009 |
DOI | 10.1111/j.1600-0633.2012.00575.x |