References
“Marine Biodiversity And The Chessboard Of Life”. Plos One 13. doi:10.1371/journal.pone.0194006.
. 2018. 
“Marine Sublittoral Benthos Fails To Track Temperature In Response To Climate Change In A Biogeographical Transition Zone”. Ices Journal Of Marine Science. doi:doi:10.1093/icesjms/fsy095.
. 2018. 
“Microbial Parasites Make Cyanobacteria Blooms Less Of A Trophic Dead-End Than Commonly Assumed”. The Isme Journal 12: 1008-1020. doi:10.1038/s41396-018-0045-9. https://doi.org/10.1038/s41396-018-0045-9.
. 2018. 
“Microhabitat Characteristics Of Stegastes Planifrons And S. Adustus Territories”. Environmental Biology Of Fishes 101 (3): 441 - 448. doi:10.1007/s10641-017-0709-8. http://link.springer.com/10.1007/s10641-017-0709-8.
. 2018. “Microhabitat Characteristics Of Stegastes Planifrons And S. Adustus Territories”. Environmental Biology Of Fishes 101 (3): 441 - 448. doi:10.1007/s10641-017-0709-8. http://link.springer.com/10.1007/s10641-017-0709-8.
. 2018. “Microphytobenthic Biofilms: Composition And Interactions”. In Mudflat Ecology, 63–90. Cham: Springer International Publishing. doi:10.1007/978-3-319-99194-8_4. https://doi.org/10.1007/978-3-319-99194-8_4.
. 2018. “Mudflat Ecosystem Engineers And Services”. In Mudflat Ecology, 243–269. Cham: Springer International Publishing. doi:10.1007/978-3-319-99194-8_10. https://doi.org/10.1007/978-3-319-99194-8_10.
. 2018. “The Nanos1 Gene Was Duplicated In Early Vertebrates And The Two Paralogs Show Different Gonadal Expression Profiles In A Shark”. Scientific Reports 8 (1). doi:10.1038/s41598-018-24643-1. http://www.nature.com/articles/s41598-018-24643-1.
. 2018. “Optical Properties Of Nanostructured Silica Structures From Marine Organisms”. Frontiers In Marine Science.
. 2018. 
“Ozcar: The French Network Of Critical Zone Observatories”. Vadose Zone Journal 17. doi:10.2136/vzj2018.04.0067. https://doi.org/10.2136/vzj2018.04.0067.
. 2018. 
“Ozcar: The French Network Of Critical Zone Observatories”. Vadose Zone Journal 17. doi:10.2136/vzj2018.04.0067. https://doi.org/10.2136/vzj2018.04.0067.
. 2018. 
“Ozcar: The French Network Of Critical Zone Observatories”. Vadose Zone Journal 17. doi:10.2136/vzj2018.04.0067. https://doi.org/10.2136/vzj2018.04.0067.
. 2018. 
“Ozcar: The French Network Of Critical Zone Observatories”. Vadose Zone Journal 17. doi:10.2136/vzj2018.04.0067. https://doi.org/10.2136/vzj2018.04.0067.
. 2018. 
“Ozcar: The French Network Of Critical Zone Observatories”. Vadose Zone Journal 17. doi:10.2136/vzj2018.04.0067. https://doi.org/10.2136/vzj2018.04.0067.
. 2018. 
“Ozcar: The French Network Of Critical Zone Observatories”. Vadose Zone Journal 17. doi:10.2136/vzj2018.04.0067. https://doi.org/10.2136/vzj2018.04.0067.
. 2018. 
“Ozcar: The French Network Of Critical Zone Observatories”. Vadose Zone Journal 17. doi:10.2136/vzj2018.04.0067. https://doi.org/10.2136/vzj2018.04.0067.
. 2018. 
“Ozcar: The French Network Of Critical Zone Observatories”. Vadose Zone Journal 17. doi:10.2136/vzj2018.04.0067. https://doi.org/10.2136/vzj2018.04.0067.
. 2018. 
“Ozcar: The French Network Of Critical Zone Observatories”. Vadose Zone Journal 17. doi:10.2136/vzj2018.04.0067. https://doi.org/10.2136/vzj2018.04.0067.
. 2018. 
“Ozcar: The French Network Of Critical Zone Observatories”. Vadose Zone Journal 17. doi:10.2136/vzj2018.04.0067. https://doi.org/10.2136/vzj2018.04.0067.
. 2018. 
“Ozcar: The French Network Of Critical Zone Observatories”. Vadose Zone Journal 17. doi:10.2136/vzj2018.04.0067. https://doi.org/10.2136/vzj2018.04.0067.
. 2018. 
“Ozcar: The French Network Of Critical Zone Observatories”. Vadose Zone Journal 17. doi:10.2136/vzj2018.04.0067. https://doi.org/10.2136/vzj2018.04.0067.
. 2018. 
“Ozcar: The French Network Of Critical Zone Observatories”. Vadose Zone Journal 17. doi:10.2136/vzj2018.04.0067. https://doi.org/10.2136/vzj2018.04.0067.
. 2018. 
“Ozcar: The French Network Of Critical Zone Observatories”. Vadose Zone Journal 17. doi:10.2136/vzj2018.04.0067. https://doi.org/10.2136/vzj2018.04.0067.
. 2018. 
“Ozcar: The French Network Of Critical Zone Observatories”. Vadose Zone Journal 17. doi:10.2136/vzj2018.04.0067. https://doi.org/10.2136/vzj2018.04.0067.
. 2018. 
“Ozcar: The French Network Of Critical Zone Observatories”. Vadose Zone Journal 17. doi:10.2136/vzj2018.04.0067. https://doi.org/10.2136/vzj2018.04.0067.
. 2018. 
“Ozcar: The French Network Of Critical Zone Observatories”. Vadose Zone Journal 17. doi:10.2136/vzj2018.04.0067. https://doi.org/10.2136/vzj2018.04.0067.
. 2018. 
“Paraglacial Coasts Responses To Glacier Retreat And Associated Shifts In River Floodplains Over Decadal Timescales (1966-2016), Kongsfjorden, Svalbard”. Land Degradation And Development. doi:10.1002/ldr.3149.
. 2018. “Paraglacial Coasts Responses To Glacier Retreat And Associated Shifts In River Floodplains Over Decadal Timescales (1966-2016), Kongsfjorden, Svalbard”. Land Degradation And Development. doi:10.1002/ldr.3149.
. 2018. “Phylogeography Of Eleotris Fusca (Teleostei: Gobioidei: Eleotridae) In The Indo-Pacific Area Reveals A Cryptic Species In The Indian Ocean.”. Conservation Genetics 19 (5): 1025-1038.
. 2018. “Population Dynamics Of Prochilodus Nigricans (Characiformes: Prochilodontidae) In The Putumayo River”. Neotropical Ichthyology 16 (2): e170139. doi:http://dx.doi.org/10.1590/1982-0224-20170139.
. 2018. 
. 2018.
“Predominance Of Phytoplankton-Derived Dissolved And Particulate Organic Carbon In A Highly Eutrophic Tropical Coastal Embayment (Guanabara Bay, Rio De Janeiro, Brazil)”. Biogeochemistry 137: 1–14. doi:10.1007/s10533-017-0405-y. https://doi.org/10.1007/s10533-017-0405-y.
. 2018. “Regulation Of Extracellular Matrix Synthesis By Shell Extracts From The Marine Bivalve Pecten Maximus In Human Articular Chondrocytes- Application For Cartilage Engineering.”. Mar Biotechnol (Ny) 20 (4): 436-450. doi:10.1007/s10126-018-9807-7.
. 2018. 
“Regulation Of Extracellular Matrix Synthesis By Shell Extracts From The Marine Bivalve Pecten Maximus In Human Articular Chondrocytes— Application For Cartilage Engineering”. Marine Biotechnology 20 (4): 436 - 450. doi:10.1007/s10126-018-9807-7. http://link.springer.com/10.1007/s10126-018-9807-7.
. 2018. “Short-Term Prey Field Lability Constrains Individual Specialisation In Resource Selection And Foraging Site Fidelity In A Marine Predator”. Ecology Letters 21 (7): 1043 - 1054. doi:10.1111/ele.2018.21.issue-710.1111/ele.12970. http://onlinelibrary.wiley.com/wol1/doi/10.1111/ele.12970.
. 2018. “Spatial Variability In Post-Larval Traits Of Sicyopterus Lagocephalus Pallas 1770 Around Reunion Island”. Environmental Biology Of Fishes 101 (5): 813 - 827. doi:10.1007/s10641-018-0740-4. http://link.springer.com/10.1007/s10641-018-0740-4.
. 2018. “Strengths, Weaknesses, And Opportunities Of French Research In Trophic Ecology”. Comptes Rendus Biologies: -. doi:https://doi.org/10.1016/j.crvi.2018.05.001. https://www.sciencedirect.com/science/article/pii/S1631069118300830.
. 2018. 
“Structure And Composition Of Unio Pictorum Shell: Arguments For The Diversity Of The Nacroprismatic Arrangement In Molluscs.”. Journal Of Microscopy 270 (2): 156-169.
. 2018. 
“Surface Ocean Ph Variations Since 1689 Ce And Recent Ocean Acidification In The Tropical South Pacific”. Nature Communications 9 (1). doi:10.1038/s41467-018-04922-1. https://hal.archives-ouvertes.fr/hal-01839951.
. 2018. “Surface Ocean Ph Variations Since 1689 Ce And Recent Ocean Acidification In The Tropical South Pacific”. Nature Communications 9 (1). doi:10.1038/s41467-018-04922-1. https://hal.archives-ouvertes.fr/hal-01839951.
. 2018. “Toxicological Effects Of Cdse Nanocrystals On The Marine Diatom Phaeodactylum Tricornutum: The First Mass Spectrometry-Based Proteomic Approach”. Ecotoxicology And Environmental Safety 152: 78 - 90. doi:10.1016/j.ecoenv.2018.01.043. https://www.sciencedirect.com/science/article/abs/pii/S0147651318300514?via%3Dihub.
. 2018. 
“Trophic Cues Promote Secondary Migrations Of Bivalve Recruits In A Highly Dynamic Temperate Intertidal System”. Ecosphere 9 (12): e02510. doi:10.1002/ecs2.2018.9.issue-1210.1002/ecs2.2510. https://onlinelibrary.wiley.com/toc/21508925/9/12.
. 2018. “Trophic Cues Promote Secondary Migrations Of Bivalve Recruits In A Highly Dynamic Temperate Intertidal System”. Ecosphere 9 (12): e02510. doi:10.1002/ecs2.2018.9.issue-1210.1002/ecs2.2510. https://onlinelibrary.wiley.com/toc/21508925/9/12.
. 2018. “The Unique Functioning Of A Pre-Columbian Amazonian Floodplain Fishery”. Scientific Reports 8. doi:10.1038/s41598-018-24454-4. https://doi.org/10.1038/s41598-018-24454-4.
. 2018. “The Unique Functioning Of A Pre-Columbian Amazonian Floodplain Fishery”. Scientific Reports 8. doi:10.1038/s41598-018-24454-4. https://doi.org/10.1038/s41598-018-24454-4.
. 2018. “The Unique Functioning Of A Pre-Columbian Amazonian Floodplain Fishery”. Scientific Reports 8. doi:10.1038/s41598-018-24454-4. https://doi.org/10.1038/s41598-018-24454-4.
. 2018. “Use Of An Acoustic Telemetry Array For Fine Scale Fish Behaviour Assessment Of Captive Paiche, Arapaima Gigas, Breeders”. Aquaculture Research 49: 2296-2304. doi:doi.org/10.1111/are.13692. https://onlinelibrary.wiley.com/doi/abs/10.1111/are.13692.
. 2018. 
“Use Of An Acoustic Telemetry Array For Fine Scale Fish Behaviour Assessment Of Captive Paiche, Arapaima Gigas, Breeders”. Aquaculture Research 49 (6): 2296 - 2304. doi:10.1111/are.2018.49.issue-610.1111/are.13692. http://doi.wiley.com/10.1111/are.2018.49.issue-6.
. 2018. “Variation Of The Isotopic Composition Of Dissolved Organic Carbon During The Runoff Cycle In The Amazon River And The Floodplains”. Comptes Rendus Geoscience 350: 65–75. doi:10.1016/j.crte.2017.11.001. https://doi.org/10.1016/j.crte.2017.11.001.
. 2018. “Variation Of The Isotopic Composition Of Dissolved Organic Carbon During The Runoff Cycle In The Amazon River And The Floodplains”. Comptes Rendus Geoscience 350: 65–75. doi:10.1016/j.crte.2017.11.001. https://doi.org/10.1016/j.crte.2017.11.001.
. 2018.