ECOFUNC - Functional ecology of coastal trophic and social-ecological networks
The team EcoFunc’s objectives are to establish a link between individuals’ functions (growth, reproduction, bleaching, toxicity, metabolism, diet, migration, etc), ecosystem’s functioning (functional diversity, food webs, resilience) and social-ecological network’s functioning (nature’s contribution to peoples, cultural benefit, risk, perception by actors of the seashore). The originality of the team is to be based on a multi-scale approach (traits, diversity, trophic functioning, social-ecological functioning), a strong numerical basis (data analysis and modelling) and a strong interdisciplinarity (collaborations with human and math/computer sciences). Understanding the effects of the ecosystem functioning on the reaction to climate change and global change more generally, will allow a better understanding of resilience’s factors, the definition of functional ecosystem health indicators and a social-ecological approach to scenarios of possible evolution.
Axe 1/ Traits and functional diversity : from experiments to chronological series from the field
Determinism of microphytoplankton and in particular toxic diatoms (species and functional diversity)
Biological and physiological traits of toxic algaes and tropical corals, under environmental influences. Sensitivity of temperatures anomalies.
Interactions between trophic diatoms and zooplankton, chemical communication
Axe 2/ Trophic ecology and trophic network functioning
Isotopic tracers and stomach contents, role of cephalopods in food webs, validation of trophic models by consumers’ trophic levels determined through isotopes
Functional diversity of coral reed associated communities and associated resilience.
Cumulative impacts, effects on the food-web functioning, and ecosystem health associated (marine energy, climate change, fisheries)
Axe 3/ From functional ecology to the characterization of the perception by humans of risks and benefits associated to the functioning of social-ecological networks.
Risks associates to coral bleaching and toxic algae blooms
Ecosystem services associated to Cephalopods
Ecosystem perception and interactions with networks of actors, in the case of the development of wind farms
Latest scientific articles
2020
-
“How To Model Social-Ecological Systems? – A Case Study On The Effects Of A Future Offshore Wind Farm On The Local Society And Ecosystem, And Whether Social Compensation Matters”. Marine Policy 119. doi:10.1016/j.marpol.2020.104031. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085318224&doi=10.1016%2fj.marpol.2020.104031&partnerID=40&md5=9e69340af6d591878af0f943cd4bc347.. 2020.
-
“An Open-Source Framework To Model Present And Future Marine Species Distributions At Local Scale”. Ecological Informatics 59. doi:10.1016/j.ecoinf.2020.101130. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086876945&doi=10.1016%2fj.ecoinf.2020.101130&partnerID=40&md5=0a5c308eac10a69880027d5de2e6fe98.. 2020.
-
“Highly Variable Taxa-Specific Coral Bleaching Responses To Thermal Stresses”. Marine Ecology Progress Series 648: 135 - 151. doi:10.3354/meps13402. https://www.int-res.com/abstracts/meps/v648/p135-151/.. 2020.
-
“Large Geographic Variability In The Resistance Of Corals To Thermal Stress”. Global Ecology And Biogeography. doi:10.1111/geb.13191. https://onlinelibrary.wiley.com/doi/10.1111/geb.13191.. 2020.
-
Philosophical Transactions Of The Royal Society Of London. Series B, Biological Sciences 375: 20190326. doi:10.1098/rstb.2019.0326. https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2019.0326.. 2020.
-
“What Evidence Exists On The Impacts Of Chemicals Arising From Human Activity On Tropical Reef-Building Corals? A Systematic Map Protocol”. Environmental Evidence 9 (1). doi:10.1186/s13750-020-00203-x. https://environmentalevidencejournal.biomedcentral.com/articles/10.1186/s13750-020-00203-x.. 2020.
-
“Isotopic Analyses, A Good Tool To Validate Models In The Context Of Marine Renewable Energy Development And Cumulative Impacts”. Estuarine, Coastal And Shelf Science 237. doi:10.1016/j.ecss.2020.106690.. 2020.
-
“Quantitative Food Web Modeling Unravels The Importance Of The Microphytobenthos-Meiofauna Pathway For A High Trophic Transfer By Meiofauna In Soft-Bottom Intertidal Food Webs.”. Ecological Modelling 430. doi:10.1016/j.ecolmodel.2020.109129.. 2020.
2019
-
Ices Journal Of Marine Science 76: 1543-1553. doi:10.1093/icesjms/fsz023. https://academic.oup.com/icesjms/article-abstract/76/6/1543/5369193.. 2019.
-
Ecosystems 22: 473-495. doi:10.1007/s10021-018-0282-9. https://link.springer.com/article/10.1007/s10021-018-0282-9.. 2019.
Team members
Programs
2020 to 2024 | PHENOMEN |
2020 to 2023 | SENSITROPH |
2019 to 2022 | INCIDENCE |
2018 to 2021 | ECUME |
2020 | Impact écosystémique des efflorescences d'espèces toxiques en lien avec les changements environnementaux et climatiques : détection de ruptures dans des séries temporelles multivariées |
2017 to 2020 | CephsandChefs |
2020 | EUBIOTTKK |
2016 to 2018 | ANR TROPHIK |
2015 to 2017 | The EcApRHA project |
2013 to 2017 | ANTHROPOSEINE |
2013 to 2017 | ANR Gigassat |
2012 to 2016 | DEVOTES |
2013 to 2015 | FLAM |
2013 to 2015 | Pêcheries de Céphalopodes : outils pour gérer la ressource, préserver le recrutement et valoriser la production |
2011 to 2014 | ANR COMANCHE |
2013 to 2014 | PEGASEAS |