References
“Towards Understanding The Organisation Of Metacommunities In Highly Dynamic Ecological Systems ”. Oikos. doi:doi: 10.1111/oik.02922.
. 2015. “Trace Metal Concentrations In Post-Hatching Cuttlefish Sepia Officinalis And Consequences Of Dissolved Zinc Exposure.”. Aquat Toxicol 159: 23-35. doi:10.1016/j.aquatox.2014.11.012.
. 2015. “Trophic Networks: How Do Theories Link Ecosystem Structure And Functioning To Stability Properties? A Review”. Ecological Indicators 52: 458–471.
. 2015. “Trophic Networks: How Do Theories Link Ecosystem Structure And Functioning To Stability Properties? A Review”. Ecological Indicators 52: 458–471.
. 2015. “The "Turritella Layer": A Potential Proxy Of A Drastic Holocene Environmental Change On The North-East Atlantic Coast”. In Sediment Fluxex In Coastal Areas, Coastal Research Library, 3-21. Dordrecht: Springer Science.
. 2015. 
“The "Turritella Layer": A Potential Proxy Of A Drastic Holocene Environmental Change On The North-East Atlantic Coast”. In Sediment Fluxex In Coastal Areas, Coastal Research Library, 3-21. Dordrecht: Springer Science.
. 2015. 
“Uncertainties In The Projection Of Species Distributions Related To General Circulation Models”. Ecology And Evolution 5. doi:10.1002/ece3.1411.
. 2015. 
“Unveiling The Evolution Of Bivalve Nacre Proteins By Shell Proteomics Of Unionoidae. ”. In Biomineralization: From Fundamentals To Biomaterials & Environmental Issues, Key Engineering Materials, 978-3-03835-591-5 Trans Tech Publications Ltd, 672:pp.158-167.
. 2015. “Abnormal Ovarian Dna Methylation Programming During Gonad Maturation In Wild Contaminated Fish.”. Environ Sci Technol 48 (19): 11688-95. doi:10.1021/es503712c.
. 2014. 
“Abnormal Ovarian Dna Methylation Programming During Gonad Maturation In Wild Contaminated Fish.”. Environ Sci Technol 48 (19): 11688-95. doi:10.1021/es503712c.
. 2014. 
“Acute Toxicity Of 8 Antidepressants: What Are Their Modes Of Action?”. Chemosphere 108: 314-9. doi:10.1016/j.chemosphere.2014.01.057.
. 2014. 
“Acute Toxicity Of 8 Antidepressants: What Are Their Modes Of Action?”. Chemosphere 108: 314-9. doi:10.1016/j.chemosphere.2014.01.057.
. 2014. 
“Amazon River Carbon Dioxide Outgassing Fuelled By Wetlands”. Nature 505: 395-398. doi:10.1038/nature12797.
. 2014. 
“Amazon River Carbon Dioxide Outgassing Fuelled By Wetlands”. Nature 505: 395-398. doi:10.1038/nature12797.
. 2014. 
“Assessment Of Cytotoxic And Immunomodulatory Properties Of Four Antidepressants On Primary Cultures Of Abalone Hemocytes (Haliotis Tuberculata).”. Aquat Toxicol 153: 3-11. doi:10.1016/j.aquatox.2013.10.020.
. 2014. 
“Biomineralization Of Schlumbergerella Floresiana, A Significant Carbonate-Producing Benthic Foraminifer.”. Geobiology 12 (4): 289-307. doi:10.1111/gbi.12085.
. 2014. “Biomineralization Of Schlumbergerella Floresiana, A Significant Carbonate-Producing Benthic Foraminifer.”. Geobiology 12 (4): 289-307. doi:10.1111/gbi.12085.
. 2014. “Biomineralization Of Schlumbergerella Floresiana, A Significant Carbonate-Producing Benthic Foraminifer.”. Geobiology 12 (4): 289-307. doi:10.1111/gbi.12085.
. 2014. “Cellular Effects Of Bacterial N-3-Oxo-Dodecanoyl-L-Homoserine Lactone On The Sponge Suberites Domuncula (Olivi, 1792): Insights Into An Intimate Inter-Kingdom Dialogue.”. Plos One 9 (5): e97662. doi:10.1371/journal.pone.0097662.
. 2014. “Cephalopod Development: What We Can Learn From Differences”. Oa Biology 2 (1): 6. http://www.oapublishinglondon.com/oa-biology.
. 2014. 
“Cephalopod Development: What We Can Learn From Differences”. Oa Biology 2 (1): 6. http://www.oapublishinglondon.com/oa-biology.
. 2014. 
“Cephalopods In Neuroscience: Regulations, Research And The 3Rs.”. Invert Neurosci 14 (1): 13-36. doi:10.1007/s10158-013-0165-x.
. 2014. “Cephalopods In Neuroscience: Regulations, Research And The 3Rs.”. Invert Neurosci 14 (1): 13-36. doi:10.1007/s10158-013-0165-x.
. 2014. “Cephalopods In Neuroscience: Regulations, Research And The 3Rs.”. Invert Neurosci 14 (1): 13-36. doi:10.1007/s10158-013-0165-x.
. 2014. “Chapter 7. Biogeographic Patterns Of Fish”. In Biogeographic Atlas Of The Southern Ocean, In: De Broyer C., Koubbi P., Griffiths H.J., Raymond B., Udekem d’Acoz C. d’, et al. (eds.), 327–362.
. 2014. “Characterization Of Spermatogonial Markers In The Mature Testis Of The Dogfish (Scyliorhinus Canicula L.)”. Reproduction 147: 125–139.
. 2014. “Colonisation Of Leaf Litter By Lotic Macroinvertebrates In A Headwater Stream Of The Phachi River (Western Thailand)”. Fundamental And Applied Limnology 184: 109-124. doi:10.1127/1863-9135/2014/0596. http://dx.doi.org/10.1127/1863-9135/2014/0596.
. 2014. 
“Combining Quantitative And Qualitative Models To Identify Functional Groups For Monitoring Changes In The Bay Of Biscay Continental Shelf Exploited Foodweb”. Ices Journal Of Marine Science 71: 105–117. doi:10.1093/icesjms/fst107.
. 2014. “Comparison Of The Sensitivity Of Seven Marine And Freshwater Bioassays As Regards Antidepressant Toxicity Assessment.”. Ecotoxicology 23 (9): 1744-54. doi:10.1007/s10646-014-1339-y.
. 2014. 
“Comparison Of The Sensitivity Of Seven Marine And Freshwater Bioassays As Regards Antidepressant Toxicity Assessment.”. Ecotoxicology 23 (9): 1744-54. doi:10.1007/s10646-014-1339-y.
. 2014. 
“Comparison Of The Sensitivity Of Seven Marine And Freshwater Bioassays As Regards Antidepressant Toxicity Assessment.”. Ecotoxicology 23 (9): 1744-54. doi:10.1007/s10646-014-1339-y.
. 2014. 
“Complex Patterns In Phytoplankton And Microeukaryote Diversity Along The Estuarine Continuum”. Hydrobiologia 726: 155-178. doi:10.1007/s10750-013- 1761-9.
. 2014. 
“Could Farp-Like Peptides Participate In Regulation Of Hyperosmotic Stress Responses In Plants?”. Front Endocrinol (Lausanne) 5: 132. doi:10.3389/fendo.2014.00132.
. 2014. “Could Farp-Like Peptides Participate In Regulation Of Hyperosmotic Stress Responses In Plants?”. Front Endocrinol (Lausanne) 5: 132. doi:10.3389/fendo.2014.00132.
. 2014. “Could Farp-Like Peptides Participate In Regulation Of Hyperosmotic Stress Responses In Plants?”. Front Endocrinol (Lausanne) 5: 132. doi:10.3389/fendo.2014.00132.
. 2014. “Detailed Reconstruction Of The Musculature In Limnognathia Maerski (Micrognathozoa) And Comparison With Other Gnathifera”. Frontiers In Zoology 11 (1). doi:10.1186/s12983-014-0071-z. https://frontiersinzoology.biomedcentral.com/articles/10.1186/s12983-014-0071-z.
. 2014. 
“Diversity Of Cultivable Fungi Associated With Antarctic Marine Sponges And Screening For Their Antimicrobial, Antitumoral And Antioxidant Potential.”. World J Microbiol Biotechnol 30 (1): 65-76. doi:10.1007/s11274-013-1418-x.
. 2014. . 2014.
“The Effect Of Dietary Oxidized Lipid Levels On Growth Performance, Antioxidant Enzyme Activities, Intestinal Lipid Deposition And Skeletogenesis In Senegalese Sole (Solea Senegalensis) Larvae”. Aquaculture Nutrition 20: 692–711. doi:10.1111/anu.12123. http://dx.doi.org/10.1111/anu.12123.
. 2014. “The Effect Of Different Polychlorinated Biphenyls On Two Aquatic Models, The Green Alga Pseudokirchneriella Subcapitata And The Haemocytes From The European Abalone Haliotis Tuberculata.”. Chemosphere 110: 120-8. doi:10.1016/j.chemosphere.2014.02.023.
. 2014. 
“The Effects Of Dietary Arachidonic Acid On Bone In Flatfish Larvae: The Last But Not The Least Of The Essential Fatty Acids”. Journal Of Applied Ichthyology 30: 643–651. doi:10.1111/jai.12511. http://dx.doi.org/10.1111/jai.12511.
. 2014. “The Effects Of Dietary Arachidonic Acid On Senegalese Sole Morphogenesis: A Synthesis Of Recent Findings”. Aquaculture 432: 443 - 452. doi:http://dx.doi.org/10.1016/j.aquaculture.2014.05.007. http://www.sciencedirect.com/science/article/pii/S0044848614002233.
. 2014. “Emergence Of Sensory Structures In The Developing Epidermis In Sepia Officinalis And Other Coleoid Cephalopods.”. J Comp Neurol 522 (13): 3004-19. doi:10.1002/cne.23562.
. 2014. “Emergence Of Sensory Structures In The Developing Epidermis In Sepia Officinalis And Other Coleoid Cephalopods.”. J Comp Neurol 522 (13): 3004-19. doi:10.1002/cne.23562.
. 2014. “Emergence Of Sensory Structures In The Developing Epidermis In Sepia Officinalis And Other Coleoid Cephalopods.”. J Comp Neurol 522 (13): 3004-19. doi:10.1002/cne.23562.
. 2014. “Estimating How Many Undescribed Species Have Gone Extinct.”. Conserv Biol 28 (5): 1360-70. doi:10.1111/cobi.12285.
. 2014. “Estimating How Many Undescribed Species Have Gone Extinct.”. Conserv Biol 28 (5): 1360-70. doi:10.1111/cobi.12285.
. 2014.