References
“Potential Combined Impacts Of Climate Change And Non-Indigenous Species Arrivals On Bay Of Biscay Trophic Network Structure And Functioning”. Journal Of Marine Systems 228: 103704. doi:10.1016/j.jmarsys.2022.103704. https://linkinghub.elsevier.com/retrieve/pii/S0924796322000070.
. 2022. 
“Potential Combined Impacts Of Climate Change And Non-Indigenous Species Arrivals On Bay Of Biscay Trophic Network Structure And Functioning”. Journal Of Marine Systems 228: 103704. doi:10.1016/j.jmarsys.2022.103704. https://linkinghub.elsevier.com/retrieve/pii/S0924796322000070.
. 2022. 
“Potential Combined Impacts Of Climate Change And Non-Indigenous Species Arrivals On Bay Of Biscay Trophic Network Structure And Functioning”. Journal Of Marine Systems 228: 103704. doi:10.1016/j.jmarsys.2022.103704. https://linkinghub.elsevier.com/retrieve/pii/S0924796322000070.
. 2022. 
“The Response Of North Sea Ecosystem Functional Groups To Warming And Changes In Fishing”. Frontiers In Marine Science 9. doi:10.3389/fmars.2022.841909. https://www.frontiersin.org/articles/10.3389/fmars.2022.841909/full.
. 2022. 
. 2022.
“On The Road: Anthropogenic Factors Drive The Invasion Risk Of A Wild Solitary Bee Species”. Science Of The Total Environment 827: 154246. doi:10.1016/j.scitotenv.2022.154246. https://linkinghub.elsevier.com/retrieve/pii/S0048969722013389.
. 2022. “On The Road: Anthropogenic Factors Drive The Invasion Risk Of A Wild Solitary Bee Species”. Science Of The Total Environment 827: 154246. doi:10.1016/j.scitotenv.2022.154246. https://linkinghub.elsevier.com/retrieve/pii/S0048969722013389.
. 2022. “On The Road: Anthropogenic Factors Drive The Invasion Risk Of A Wild Solitary Bee Species”. Science Of The Total Environment 827: 154246. doi:10.1016/j.scitotenv.2022.154246. https://linkinghub.elsevier.com/retrieve/pii/S0048969722013389.
. 2022. “Seasonal And Diel Modulation Of Dom In A Mangrove-Dominated Estuary”. Science Of The Total Environment: 159045. doi:10.1016/j.scitotenv.2022.159045. https://linkinghub.elsevier.com/retrieve/pii/S0048969722061447.
. 2022. “Seasonal Dynamics Of Marine Protist Communities In Tidally Mixed Coastal Waters”. Molecular Ecology. doi:10.1111/mec.16539. https://onlinelibrary.wiley.com/doi/10.1111/mec.16539.
. 2022. “Similar Trait Structure And Vulnerability In Pelagic Fish Faunas On Two Remote Island Systems”. Marine Biology 169 (1). doi:10.1007/s00227-021-03998-6. https://link.springer.com/10.1007/s00227-021-03998-6.
. 2022. “Spatialized Ecological Network Analysis For Ecosystem-Based Management: Effects Of Climate Change, Marine Renewable Energy, And Fishing On Ecosystem Functioning In The Bay Of Seineabstract”. Ices Journal Of Marine Science 79 (4): 1098 - 1112. doi:10.1093/icesjms/fsac026. https://academic.oup.com/icesjms/article/79/4/1098/6535870.
. 2022. 
“Spatialized Ecological Network Analysis For Ecosystem-Based Management: Effects Of Climate Change, Marine Renewable Energy, And Fishing On Ecosystem Functioning In The Bay Of Seineabstract”. Ices Journal Of Marine Science 79 (4): 1098 - 1112. doi:10.1093/icesjms/fsac026. https://academic.oup.com/icesjms/article/79/4/1098/6535870.
. 2022. 
“Spatialized Ecological Network Analysis For Ecosystem-Based Management: Effects Of Climate Change, Marine Renewable Energy, And Fishing On Ecosystem Functioning In The Bay Of Seineabstract”. Ices Journal Of Marine Science 79 (4): 1098 - 1112. doi:10.1093/icesjms/fsac026. https://academic.oup.com/icesjms/article/79/4/1098/6535870.
. 2022. 
“Stomach Content And Stable Isotope Analyses Provide Complementary Insights Into The Trophic Ecology Of Coastal Temperate Bentho-Demersal Assemblages Under Environmental And Anthropogenic Pressures”. Marine Environmental Research 182: 105770. doi:10.1016/j.marenvres.2022.105770. https://linkinghub.elsevier.com/retrieve/pii/S014111362200215X.
. 2022. “Stomach Content And Stable Isotope Analyses Provide Complementary Insights Into The Trophic Ecology Of Coastal Temperate Bentho-Demersal Assemblages Under Environmental And Anthropogenic Pressures”. Marine Environmental Research 182: 105770. doi:10.1016/j.marenvres.2022.105770. https://linkinghub.elsevier.com/retrieve/pii/S014111362200215X.
. 2022. “Structural And Functional Characterization Of Orcokinin B-Like Neuropeptides In The Cuttlefish (Sepia Officinalis)”. Marine Drugs 20 (8): 505. doi:10.3390/md20080505. https://www.mdpi.com/1660-3397/20/8/505.
. 2022. 
“Structural And Functional Characterization Of Orcokinin B-Like Neuropeptides In The Cuttlefish (Sepia Officinalis)”. Marine Drugs 20 (8): 505. doi:10.3390/md20080505. https://www.mdpi.com/1660-3397/20/8/505.
. 2022. 
“Structural And Functional Characterization Of Orcokinin B-Like Neuropeptides In The Cuttlefish (Sepia Officinalis)”. Marine Drugs 20 (8): 505. doi:10.3390/md20080505. https://www.mdpi.com/1660-3397/20/8/505.
. 2022. 
“Structural And Functional Characterization Of Orcokinin B-Like Neuropeptides In The Cuttlefish (Sepia Officinalis)”. Marine Drugs 20 (8): 505. doi:10.3390/md20080505. https://www.mdpi.com/1660-3397/20/8/505.
. 2022. 
“Structural And Functional Characterization Of Orcokinin B-Like Neuropeptides In The Cuttlefish (Sepia Officinalis)”. Marine Drugs 20 (8): 505. doi:10.3390/md20080505. https://www.mdpi.com/1660-3397/20/8/505.
. 2022. 
“The Success Of The Bloom-Forming Cyanobacteria Planktothrix: Genotypes Variability Supports Variable Responses To Light And Temperature Stress”. Harmful Algae 117: 102285. doi:10.1016/j.hal.2022.102285. https://linkinghub.elsevier.com/retrieve/pii/S1568988322001135.
. 2022. 
“Temporal Characteristics Of Plankton Indicators In Coastal Waters: High-Frequency Data From Planktonscope”. Journal Of Sea Research 189: 102283. doi:10.1016/j.seares.2022.102283. https://linkinghub.elsevier.com/retrieve/pii/S1385110122001216.
. 2022. “Transient Receptor Potential-Vanilloid (Trpv1-Trpv4) Channels In The Atlantic Salmon, Salmo Salar. A Focus On The Pineal Gland And Melatonin Production”. Frontiers In Physiology 22 (784416): 15. doi:10.3389/fphys.2021.784416. https://www.frontiersin.org/articles/10.3389/fphys.2021.784416/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Physiology&id=784416.
. 2022. 
“Transient Receptor Potential-Vanilloid (Trpv1-Trpv4) Channels In The Atlantic Salmon, Salmo Salar. A Focus On The Pineal Gland And Melatonin Production”. Frontiers In Physiology 22 (784416): 15. doi:10.3389/fphys.2021.784416. https://www.frontiersin.org/articles/10.3389/fphys.2021.784416/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Physiology&id=784416.
. 2022. 
“Annual Phytoplankton Succession Results From Niche-Environment Interactionabstract”. Journal Of Plankton Research 43 (1): 85–102. doi:10.1093/plankt/fbaa060. https://academic.oup.com/plankt/advance-article/doi/10.1093/plankt/fbaa060/6043723.
. 2021. “Anthropogenic Pressures Coincide With Neotropical Biodiversity Hotspots In A Flagship Butterfly Group”. Diversity And Distributions. doi:10.1111/ddi.13455. https://onlinelibrary.wiley.com/doi/10.1111/ddi.13455.
. 2021. 
“Anthropogenic Pressures Coincide With Neotropical Biodiversity Hotspots In A Flagship Butterfly Group”. Diversity And Distributions. doi:10.1111/ddi.13455. https://onlinelibrary.wiley.com/doi/10.1111/ddi.13455.
. 2021. 
“Aquatic Biota Responses To Temperature In A High Andean Geothermal Stream”. Freshwater Biology. doi:10.1111/fwb.13798. https://onlinelibrary.wiley.com/doi/10.1111/fwb.13798.
. 2021. 
“Are We Ready To Track Climate‐Driven Shifts In Marine Species Across International Boundaries? ‐ A Global Survey Of Scientific Bottom Trawl Data”. Global Change Biology 27 (2): 220 - 236. doi:10.1111/gcb.v27.210.1111/gcb.15404. https://onlinelibrary.wiley.com/toc/13652486/27/2.
. 2021. “Are We Ready To Track Climate‐Driven Shifts In Marine Species Across International Boundaries? ‐ A Global Survey Of Scientific Bottom Trawl Data”. Global Change Biology 27 (2): 220 - 236. doi:10.1111/gcb.v27.210.1111/gcb.15404. https://onlinelibrary.wiley.com/toc/13652486/27/2.
. 2021. “Are We Ready To Track Climate‐Driven Shifts In Marine Species Across International Boundaries? ‐ A Global Survey Of Scientific Bottom Trawl Data”. Global Change Biology 27 (2): 220 - 236. doi:10.1111/gcb.v27.210.1111/gcb.15404. https://onlinelibrary.wiley.com/toc/13652486/27/2.
. 2021. “Are We Ready To Track Climate‐Driven Shifts In Marine Species Across International Boundaries? ‐ A Global Survey Of Scientific Bottom Trawl Data”. Global Change Biology 27 (2): 220 - 236. doi:10.1111/gcb.v27.210.1111/gcb.15404. https://onlinelibrary.wiley.com/toc/13652486/27/2.
. 2021. “Assessment Of Ecological Status Of The Lagoon Of Bora-Bora Island (French Polynesia)”. Regional Studies In Marine Science 43: 101687. doi:10.1016/j.rsma.2021.101687. https://linkinghub.elsevier.com/retrieve/pii/S2352485521000797.
. 2021. “Bi-Decadal Variability In Physico-Biogeochemical Characteristics Of Temperate Coastal Ecosystems: From Large-Scale To Local Drivers”. Marine Ecology Progress Series 660: 19-35. doi:10.3354/meps13577. https://doi.org/10.3354/meps13577.
. 2021. “Bi-Decadal Variability In Physico-Biogeochemical Characteristics Of Temperate Coastal Ecosystems: From Large-Scale To Local Drivers”. Marine Ecology Progress Series 660: 19-35. doi:10.3354/meps13577. https://doi.org/10.3354/meps13577.
. 2021. “Bi-Decadal Variability In Physico-Biogeochemical Characteristics Of Temperate Coastal Ecosystems: From Large-Scale To Local Drivers”. Marine Ecology Progress Series 660: 19-35. doi:10.3354/meps13577. https://doi.org/10.3354/meps13577.
. 2021. “Bi-Decadal Variability In Physico-Biogeochemical Characteristics Of Temperate Coastal Ecosystems: From Large-Scale To Local Drivers”. Marine Ecology Progress Series 660: 19-35. doi:10.3354/meps13577. https://doi.org/10.3354/meps13577.
. 2021. “Bi-Decadal Variability In Physico-Biogeochemical Characteristics Of Temperate Coastal Ecosystems: From Large-Scale To Local Drivers”. Marine Ecology Progress Series 660: 19-35. doi:10.3354/meps13577. https://doi.org/10.3354/meps13577.
. 2021. “Bi-Decadal Variability In Physico-Biogeochemical Characteristics Of Temperate Coastal Ecosystems: From Large-Scale To Local Drivers”. Marine Ecology Progress Series 660: 19-35. doi:10.3354/meps13577. https://doi.org/10.3354/meps13577.
. 2021. “Biological Invasions In France: Alarming Costs And Even More Alarming Knowledge Gaps”. Neobiota 67: 191 - 224. doi:10.3897/neobiota.67.59134. https://neobiota.pensoft.net/article/59134/.
. 2021. 
“Changes To An Urban Marina Soundscape Associated With Covid-19 Lockdown In Guadeloupe”. Environmental Pollution 289: 117898. doi:10.1016/j.envpol.2021.117898. https://linkinghub.elsevier.com/retrieve/pii/S0269749121014809.
. 2021. “Characteristics Of Sound Production And Associated Pharyngeal Jaws In The Tomtate Grunt Haemulon Aurolineatum (Cuvier, 1830) In Caribbean Reefs”. Belgian Journal Of Zoology 151. doi:10.26496/bjz.2021.84. https://www.belgianjournalofzoology.eu/BJZ/article/view/84.
. 2021. “Conservative Route To Genome Compaction In A Miniature Annelidabstract”. Nature Ecology & Evolution 5 (2): 231 - 242. doi:10.1038/s41559-020-01327-6. https://www.nature.com/articles/s41559-020-01327-6.
. 2021. 
“Cumulative Effects Of Marine Renewable Energy And Climate Change On Ecosystem Properties: Sensitivity Of Ecological Network Analysis”. Ecological Indicators 121: 107128. doi:10.1016/j.ecolind.2020.107128. https://linkinghub.elsevier.com/retrieve/pii/S1470160X20310670.
. 2021. “Cumulative Effects Of Marine Renewable Energy And Climate Change On Ecosystem Properties: Sensitivity Of Ecological Network Analysis”. Ecological Indicators 121: 107128. doi:10.1016/j.ecolind.2020.107128. https://linkinghub.elsevier.com/retrieve/pii/S1470160X20310670.
. 2021. “Cumulative Effects Of Marine Renewable Energy And Climate Change On Ecosystem Properties: Sensitivity Of Ecological Network Analysis”. Ecological Indicators 121: 107128. doi:10.1016/j.ecolind.2020.107128. https://linkinghub.elsevier.com/retrieve/pii/S1470160X20310670.
. 2021. “Decadal Trajectories Of Phytoplankton Communities In Contrasted Estuarine Systems In An Epicontinental Sea”. Estuarine, Coastal And Shelf Science 258: 107409. doi:10.1016/j.ecss.2021.107409. https://linkinghub.elsevier.com/retrieve/pii/S0272771421002626.
. 2021. “Detailed Assessment Of The Reported Economic Costs Of Invasive Species In Australia”. Neobiota 67: 511 - 550. doi:10.3897/neobiota.67.5883410.3897/neobiota.67.58834.suppl1. https://neobiota.pensoft.net/article/58834/.
. 2021. 
“Disentangling Tropicalization And Deborealization In Marine Ecosystems Under Climate Change”. Current Biology. doi:https://doi.org/10.1016/j.cub.2021.08.034. https://www.sciencedirect.com/science/article/pii/S0960982221011386.
. 2021.