References
“First Record Of Siganus Randalli (Teleost, Siganidae) In New Caledonia, And Comments On Its Diet”. Marine Biodiversity Records 9 (81): 1-5. doi:DOI 10.1186/s41200-016-0082-x.
. 2016. Moleana-etal-MBR-2016-1.pdf (517.32 KB)“Acute Toxicity Of 8 Antidepressants: What Are Their Modes Of Action?”. Chemosphere 108: 314-9. doi:10.1016/j.chemosphere.2014.01.057.
. 2014. Minguez et al 2014.pdf (798.01 KB)“Comparison Of The Sensitivity Of Seven Marine And Freshwater Bioassays As Regards Antidepressant Toxicity Assessment.”. Ecotoxicology 23 (9): 1744-54. doi:10.1007/s10646-014-1339-y.
. 2014. Minguez et al 2014.pdf (706.57 KB)“Assessment Of Cytotoxic And Immunomodulatory Properties Of Four Antidepressants On Primary Cultures Of Abalone Hemocytes (Haliotis Tuberculata).”. Aquat Toxicol 153: 3-11. doi:10.1016/j.aquatox.2013.10.020.
. 2014. Minguez et al 2014.pdf (1004.13 KB)“Characteristics Of Sound Production And Associated Pharyngeal Jaws In The Tomtate Grunt Haemulon Aurolineatum (Cuvier, 1830) In Caribbean Reefs”. Belgian Journal Of Zoology 151. doi:10.26496/bjz.2021.84. https://www.belgianjournalofzoology.eu/BJZ/article/view/84.
. 2021. “Life History And Morphology Of Eel Larvae In The Gulf Of Guinea Of Western Africa: Revisiting Jacques Blache’s Research (1960–1977) 40 Years Later”. Reviews In Fish Biology And Fisheries 28: 355–379.
. 2018. Miller and Robinet 2018_Life history and morphology of Eel Larvae in the Gulf of Guinea of western Africa.pdf (3.46 MB)“The Food Source Of Sargasso Sea Leptocephali”. Marine Biology 167 (5). doi:10.1007/s00227-020-3662-6. http://link.springer.com/10.1007/s00227-020-3662-6.
. 2020. Miller_et_al-2020-Marine_Biology.pdf (2.79 MB)“Contrasting Biodiversity Of Eel Larvae Across The Central Indian Ocean Subtropical Gyre”. Deep Sea Research Part Ii: Tropical Studies In Oceanography 161: 120–131. doi:doi.org/10.1016/j.dsr2.2018.02.012. https://www.sciencedirect.com/science/article/pii/S0967064517304393.
. 2019. Miller etal2019_Contrasting biodiversity of eel larvae across the central Indian Ocean subtropical gyre.pdf (3.41 MB)“Morphostructural Data And Phylogenetic Relationships Of A New Cnidarian Myxosporean Infecting Spleen Of An Economic And Ecological Important Bryconid Fish From Brazil”. Microbial Pathogenesis 150: 104718. doi:10.1016/j.micpath.2020.104718. https://linkinghub.elsevier.com/retrieve/pii/S0882401020310846.
. 2021. “First Assessment Of The Benthic Meiofauna Sensitivity To Low Human-Impacted Mangroves In French Guiana”. Forests 12 (3): 338. doi:10.3390/f12030338. https://www.mdpi.com/1999-4907/12/3/338.
. 2021. “Total Lipid And Fatty Acid Classes In Decomposing Mangrove Leaves Of Bruguiera Gymnorrhiza And Kandelia Candel: Significance With Respect To Lipid Input”. Journal Of Oceanography 61 (3): 613 - 622. doi:10.1007/s10872-005-0069-4. http://link.springer.com/10.1007/s10872-005-0069-4.
. 2005. “Litter Dynamics And Particulate Organic Matter Outwelling From A Subtropical Mangrove In Okinawa Island, South Japan”. Estuarine, Coastal And Shelf Science 63 (1-2): 301 - 313. doi:10.1016/j.ecss.2004.11.022. https://linkinghub.elsevier.com/retrieve/pii/S0272771404003543.
. 2005. “Fatty Acids In Decomposing Mangrove Leaves: Microbial Activity, Decay And Nutritional Quality”. Marine Ecology Progress Series 265: 97 - 105. doi:10.3354/meps265097. http://www.int-res.com/abstracts/meps/v265/p97-105/.
. 2003. “Fatty Acids As Tracers Of Organic Matter In The Sediment And Food Web Of A Mangrove/Intertidal Flat Ecosystem, Okinawa, Japan”. Marine Ecology Progress Series 200: 49 - 57. doi:10.3354/meps200049. http://www.int-res.com/abstracts/meps/v200/p49-57/.
. 2000. “Organic Matter In A Subtropical Mangrove-Estuary Subjected To Wastewater Discharge: Origin And Utilisation By Two Macrozoobenthic Species”. Journal Of Sea Research 47 (1): 1 - 11. doi:10.1016/S1385-1101(01)00092-2. https://linkinghub.elsevier.com/retrieve/pii/S1385110101000922.
. 2002. “Inter-Specific And Geographical Variations In The Fatty Acid Composition Of Mangrove Leaves: Implications For Using Fatty Acids As A Taxonomic Tool And Tracers Of Organic Matter”. Marine Biology 150 (6): 1103 - 1113. doi:10.1007/s00227-006-0424-z. http://link.springer.com/10.1007/s00227-006-0424-z.
. 2007. “The Use Of Lipid Markers To Define Sources Of Organic Matter In Sediment And Food Web Of The Intertidal Salt-Marsh-Flat Ecosystem Of Mont-Saint-Michel Bay, France”. Journal Of Sea Research 38 (1-2): 47 - 58. doi:10.1016/S1385-1101(97)00035-X. https://linkinghub.elsevier.com/retrieve/pii/S138511019700035X.
. 1997. “Croissance De Juvéniles De Nereis Diversicolor Nourris Avec Des Détritus D’halophytes”. Oceanologica Acta 25 (3-4): 119 - 124. doi:10.1016/S0399-1784(02)01187-8. https://linkinghub.elsevier.com/retrieve/pii/S0399178402011878.
. 2002. “Fate Of Mangrove Organic Matter Along A Subtropical Estuary: Small-Scale Exportation And Contribution To The Food Of Crab Communities”. Marine Ecology Progress Series 312: 15 - 27. doi:10.3354/meps312015. http://www.int-res.com/abstracts/meps/v312/p15-27/.
. 2006. “The Endocrine-Disrupting Effect And Other Physiological Responses Of Municipal Effluent On The Clam Ruditapes Decussatus”. Environ Sci Pollut Res Int. 22 (24): 19716-28.
. 2015. “The Endocrine-Disrupting Effect And Other Physiological Responses Of Municipal Effluent On The Clam Ruditapes Decussatus.”. Environ Sci Pollut Res Int 22 (24): 19716-28. doi:10.1007/s11356-015-5199-7.
. 2015. sawsann 2015 ruditapes.pdf (567.85 KB)“Testing Methods In Species Distribution Modelling Using Virtual Species: What Have We Learnt And What Are We Missing?”. Ecography 42 (12): 2021 - 2036. doi:10.1111/ecog.04385. https://onlinelibrary.wiley.com/doi/10.1111/ecog.04385.
. 2019. 2019 Meynard et al - Ecography.pdf (3.48 MB)“Detecting Outliers In Species Distribution Data: Some Caveats And Clarifications On A Virtual Species Study”. Journal Of Biogeography 46 (9): 2141 - 2144. doi:10.1111/jbi.13626. https://onlinelibrary.wiley.com/doi/full/10.1111/jbi.13626.
. 2019. “Molecular Evolution And Functional Characterisation Of Insulin Relatedpeptides In Molluscs: Contributions Of Crassostrea Giga Sgenomic Andtranscriptomic-Wide Screening”. General Comparative And Endocrinology 271: 15-29.
. 2019. “Some Histological Data On Bone And Teeth In The Grey Notothen (Lepidonotothen Squamifrons) And In The Mackerel Icefish (Champsocephalus Gunnari) (Notothenioidei; Perciformes; Teleostei)”. Cybium 42 (1): 091-097. doi:10.26028/cybium/2018-421-009. http://sfi-cybium.fr/fr/some-histological-data-bone-and-teeth-grey-notothen-lepidonotothen-squamifrons-and-mackerel-icefish.
. 2018. “The Skeleton And The Mineralized Tissues Of The Living Coelacanths”. Bulletin Of Kitakyushu Museum Of Natural History And Human History. Series A: Natural History 17: 37-48.
. 2019. “Histological Study Of The Cutaneous Bony Scutes In The John Dory, Zeus Faber Linnaeus, 1758 (Teleostei: Zeiformes: Zeidae)”. Cahiers De Biologie Marine 60: 195-199. doi:10.21411/cbm.a.260f6487. http://application.sb-roscoff.fr/cbm/doi/10.21411/CBM.A.260F6487.
. 2019. “Histological Study Of The Jaw Teeth In The Devonian Actinopterygian †Cheirolepis Canadensis (Whiteaves)”. Cybium 42 (1): 067-074. doi:10.26028/cybium/2018-421-005. http://sfi-cybium.fr/fr/histological-study-jaw-teeth-devonian-actinopterygian-†cheirolepis-canadensis-whiteaves.
. 2018. “The Diet Of The Early Cretaceous Coelacanth †Axelrodichthys Araripensis Maisey, 1986 (Actinistia: Mawsoniidae)”. Cybium 42 (1): 105-111. doi:10.26028/cybium/2018-421-011. http://sfi-cybium.fr/fr/diet-early-cretaceous-coelacanth-†axelrodichthys-araripensis-maisey-1986-actinistia-mawsoniidae.
. 2018. “Histological Characteristics Of Lower Jaw Bones And Oral Teeth Of The Short Nose Gar, Lepisosteus Platostomus Rafinesque, 1820 (Lepisosteidae)”. doi:10.26028/cybium/2017-413-004. http://sfi-cybium.fr/fr/histological-characteristics-lower-jaw-bones-and-oral-teeth-short-nose-gar-lepisosteus-platostomus.
. 2017. “Distocyclus Guchereauae A New Species Of Neotropical Electric Fish, (Gymnotiformes: Sternopygidae), From French Guiana.”. Cybium 38 (3): 223-230.
. 2014. 08-Meunier[383]223-230.pdf (1.35 MB)“Some Histological Data Of Bone And Teeth In The Rift Eelpout, Thermarces Cerberus (Zoarcidae)”. Cybium 42 (1): 083-086. doi:10.26028/cybium/2018-421-007. http://sfi-cybium.fr/fr/some-histological-data-bone-and-teeth-rift-eelpout-thermarces-cerberus-zoarcidae.
. 2018. “A Histological Study Of The Lingual Molariform Teeth In Hyperopisus Bebe (Mormyridae; Osteoglossomorpha)”. Cybium 42 (1): 087-090. doi:10.26028/cybium/2018-421-008. http://sfi-cybium.fr/fr/histological-study-lingual-molariform-teeth-hyperopisus-bebe-mormyridae-osteoglossomorpha.
. 2018. “The Skeleton And The Mineralized Tissues Of The Living Coelacanths”. Bulletin Of Kitakyushu Museum Of Natural History And Human History. Series A: Natural History 17: 37-48.
. 2019. 11.A17-37Meunier.pdf (6.63 MB)“Fish Skeletal Tissues”. In Fish Histology (Kirschbaum F & Formicki K) . Taylor & Francis Group.
. 2019. “The Histological Structure Of Teeth In The Northern Wolffish Anarhichas Denticulatus (Teleostei: Perciformes: Anarhichadidae)”. Cahiers De Biologie Marine 59: 217-224. doi:10.21411/cbm.a.99ce8062. http://application.sb-roscoff.fr/cbm/doi/10.21411/CBM.A.99CE8062.
. 2018. “Is It First The Egg Or The Shrimp? – Diversity And Variation In Microbial Communities Colonizing Broods Of The Vent Shrimp Rimicaris Exoculata During Embryonic Development”. Frontiers In Microbiology 10. doi:10.3389/fmicb.2019.00808. https://www.frontiersin.org/article/10.3389/fmicb.2019.00808/full.
. 2019. “Are Shallow-Water Shrimps Proxies For Hydrothermal-Vent Shrimps To Assess The Impact Of Deep-Sea Mining?”. Marine Environmental Research 151: 104771. doi:10.1016/j.marenvres.2019.104771. https://linkinghub.elsevier.com/retrieve/pii/S0141113619303216.
. 2019. “Is The Deep-Sea Crab Chaceon Affinis Able To Induce A Thermal Stress Response?”. Comp Biochem Physiol A Mol Integr Physiol 181: 54-61. doi:10.1016/j.cbpa.2014.11.015.
. 2015. “Effects Of Co2, Nutrients And Light On Coastal Plankton: Ii. Metabolic Rates. Aquatic Biology”. Aquatic Biology 22: 43-57.
. 2014. Mercado et al 2014.pdf (529.23 KB)“Evidence Of Two Species Currently Under The Name Of Eleotris Fusca (Gobioidei: Eleotridae) In The Indian Ocean”. Cybium 41 (2): 213-220.
. 2017. 11-Mennesson [Cybium 2017, 412]213-220.pdf (1002.76 KB)“Phylogeography Of Eleotris Fusca (Teleostei: Gobioidei: Eleotridae) In The Indo-Pacific Area Reveals A Cryptic Species In The Indian Ocean.”. Conservation Genetics 19 (5): 1025-1038.
. 2018. “A New Species Of Eleotris (Teleostei: Gobioidei: Eleotridae) From The Solomon Islands”. Pacific Science in press.
. 2016. “Amphidromous Life Cycle Of Eleotris Fusca (Teleostei: Gobioidei: Eleotridae) A Widespread Species From The Indo-Pacific Studied By Otolith Analyses.”. Cybium 39 (4): 249-260.
. 2015. 2-Mennesson [394]249-260.pdf (2.3 MB)“Eleotris (Teleostei: Eleotridae) From Indonesia With Description Of Three News Species”. Pacific Science 75 (4): 469-496. doi:https://doi.org/10.2984/75.4.2.
. 2021. “Evolutionary Aspects Of Cephalic Sensory Papillae Of The Indo‐ Pacific Species Of Eleotris (Teleostei: Eleotridae)”. Zoologica Scripta. doi:DOI: 10.1111/zsc.12366.
. 2019. . 2020.
“Planktonic Foraminiferal Biogeography In The Indian Sector Of The Southern Ocean: Contribution From Cpr Data”. Deep Sea Research Part I: Oceanographic Research Papers 110: 75 - 89. doi:10.1016/j.dsr.2015.12.014. https://linkinghub.elsevier.com/retrieve/pii/S0967063716300280.
. 2016. “Assessing The State Of Marine Biodiversity In The Northeast Atlantic”. Ecological Indicators 141: 109148. doi:10.1016/j.ecolind.2022.109148. https://linkinghub.elsevier.com/retrieve/pii/S1470160X22006203.
. 2022. McQuartters-Gollop et al 2022.pdf (3.01 MB)“Disentangling Tropicalization And Deborealization In Marine Ecosystems Under Climate Change”. Current Biology. doi:https://doi.org/10.1016/j.cub.2021.08.034. https://www.sciencedirect.com/science/article/pii/S0960982221011386.
. 2021.