References
“Nanopore Long-Reads Reveal Fine Structure Of Prokaryotic Communities In Mangrove Sediments, Like Illumina Short-Reads But With Twice More Taxa”. Biorxiv 10.1101/2023.06.06.541006. doi:10.1101/2023.06.06.541006.
. 2023. Text_Lemoinne2023_final_unrevised.pdf (1.19 MB)“The Neglected Role Of Intraspecific Variation In Plastic Pollution Research”. Anthropocene Science 2: 141-147. doi:https://doi.org/10.1007/s44177-023-00060-6.
. 2023. “New Insights Into The Diversity Of Cryptobenthic Cirripectes Blennies In The Mascarene Archipelago Sampled Using Autonomous Reef Monitoring Structures (Arms)”. Ecology And Evolution 13 (3). doi:10.1002/ece3.v13.310.1002/ece3.9850. https://onlinelibrary.wiley.com/toc/20457758/13/3.
. 2023. Couedel etal 2023 New insights into the diversity of cryptobenthic Cirripectes blennies.pdf (4.29 MB)“New Species Of Pavlovophyceae (Haptophyta) And Revision Of The Genera Exanthemachrysis, Rebecca And Pavlova”. European Journal Of Taxonomy 861: 21 - 47. doi:10.5852/ejt.2023.861.2063. https://europeanjournaloftaxonomy.eu/index.php/ejt/article/view/2063.
. 2023. 2023 - Véron et al. EJT.pdf (14.12 MB) . 2023.
“Physiological Condition Of The Warty Venus (Venus Verrucosa L. 1758) Larvae Modulates Response To Pile Driving And Drilling Underwater Sounds”. Frontiers In Marine Science 10. doi:https://doi.org/10.3389/fmars.2023.1117431. https://www.frontiersin.org/articles/10.3389/fmars.2023.1117431/full.
. 2023. fmars-10-1117431.pdf (2.5 MB)“Physiological Conditions Favorable To Domoic Acid Production By Three Pseudo-Nitzschia Species”. Journal Of Experimental Marine Biology And Ecology 559: 151851. doi:10.1016/j.jembe.2022.151851. https://linkinghub.elsevier.com/retrieve/pii/S0022098122001599.
. 2023. “Pile Driving And Drilling Underwater Sounds Impact The Metamorphosis Dynamics Of Pecten Maximus (L., 1758) Larvae”. Marine Pollution Bulletin 191: 114969. doi:10.1016/j.marpolbul.2023.114969. https://linkinghub.elsevier.com/retrieve/pii/S0025326X23004010.
. 2023. Gigot et al. 2023 Mar Pol Bull.pdf (2.02 MB)“Recruitment Dynamics Of Hiatella Arctica Within A High Arctic Site (Young Sound Fjord, Ne Greenland)”. Polar Biology 46 (12): 1275 - 1286. doi:10.1007/s00300-023-03201-0. https://link.springer.com/10.1007/s00300-023-03201-0.
. 2023. Recruitment_dynamics_of_Hiatella_arctica_within_a_.pdf (1.24 MB)Reference Module In Earth Systems And Environmental Sciencesmodelling Species Distribution, Ecosystem Structure And Function And Climate Change. Elsevier. doi:10.1016/B978-0-323-90798-9.00028-7. https://linkinghub.elsevier.com/retrieve/pii/B9780323907989000287.
. 2023. “Revision Of Hypseleotris (Teleostei: Eleotridae) From Indo-Pacific Islands Using Molecular And Morphometric Approaches, With Description Of One New Species”. Zoological Journal Of The Linnean Society. doi:10.1093/zoolinnean/zlad003. https://academic.oup.com/zoolinnean/advance-article/doi/10.1093/zoolinnean/zlad003/7150892.
. 2023. “Seasonal Lipid Dynamics Of Four Arctic Bivalves: Implications For Their Physiological Capacities To Cope With Future Changes In Coastal Ecosystemsabstract”. Ecology And Evolution 13 (11). doi:10.1002/ece3.v13.1110.1002/ece3.10691. https://onlinelibrary.wiley.com/toc/20457758/13/11.
. 2023. Ecology and Evolution - 2023 - Bridier - Seasonal lipid dynamics of four Arctic bivalves Implications for their.pdf (2.85 MB)“Sex-Specific Seasonal Variations In The Fatty Acid And Carotenoid Composition Of Sea Cucumber Gonads And Implications For Aquaculture”. Marine Biology 170 (4). doi:10.1007/s00227-023-04198-0. https://link.springer.com/10.1007/s00227-023-04198-0.
. 2023. “Size-Dependent Response Of The Mussel Collective Behaviour To Plastic Leachates And Predator Cues”. Science Of The Total Environment 888 (164037). doi:https://doi.org/10.1016/j.scitotenv.2023.164037.
. 2023. “Socio-Political Acceptability Of Floating Offshore Wind Farms In France: Challenges And Perspectives For Marine Governance Towards Sustainability”. Ocean & Coastal Management 236: 106513. doi:10.1016/j.ocecoaman.2023.106513. https://linkinghub.elsevier.com/retrieve/pii/S0964569123000388.
. 2023. “Spatial And Temporal Variability Of Common Cuttlefish, Sepia Officinalis, L. Spawning Grounds Off North Europe”. Fisheries Research 263: 106688. doi:10.1016/j.fishres.2023.106688. https://linkinghub.elsevier.com/retrieve/pii/S0165783623000814.
. 2023. “Spatio-Temporal Distribution Of Juvenile Fish Species In Guadeloupean Reefs (Lesser Antilles)”. Regional Studies In Marine Science 68: 103236. doi:10.1016/j.rsma.2023.103236.
. 2023. “Spatiotemporal Variations Of Chlamys Islandica Larval Shell Morphometry Between 2000 And 2018 In A Depleted Coastal Scallop Fishing Area”. Estuarine, Coastal And Shelf Science: 108322. doi:10.1016/j.ecss.2023.108322. https://linkinghub.elsevier.com/retrieve/pii/S0272771423001129.
. 2023. Poitevin et al. 2023 ECSS.pdf (2.53 MB)“Structural And Functional Characterization Of An Egg-Laying Hormone Signaling System In A Lophotrochozoan - The Pacific Oyster (Crassostrea Gigas).”. Gen Comp Endocrinol 346: 114417. doi:10.1016/j.ygcen.2023.114417.
. 2023. “Structure Of Planktonic Food Web In The Gulf Of Gabès (Southeastern Mediterranean): Potential Importance Of Heterotrophic And Mixotrophic Microzooplankton”. Aquatic Sciences 85 (2). doi:10.1007/s00027-023-00954-y. https://link.springer.com/10.1007/s00027-023-00954-y.
. 2023. “Symbiont-Induced Phenotypic Variation In An Ecosystem Engineer Mediates Thermal Stress For The Associated Community”. Journal Of Thermal Biology 112 (103428). doi:https://doi.org/10.1016/j.jtherbio.2022.103428.
. 2023. “Temporal Pesticide Dynamics Alter Specific Eukaryotic Taxa In A Coastal Transition Zone”. Science Of The Total Environment 866: 161205. doi:10.1016/j.scitotenv.2022.161205. https://linkinghub.elsevier.com/retrieve/pii/S0048969722083097.
. 2023. “Threatened Fish Species In The Northeast Atlantic Are Functionally Rare”. Global Ecology And Biogeography. doi:10.1111/geb.13731.
. 2023. Global Ecology and Biogeography - 2023 - Coulon - Threatened fish species in the Northeast Atlantic are functionally rare.pdf (5.21 MB)“Trace Elements In Bivalve Shells: How “Vital Effects” Can Bias Environmental Studies”. Chemical Geology: 121695. doi:10.1016/j.chemgeo.2023.121695. https://linkinghub.elsevier.com/retrieve/pii/S0009254123003959.
. 2023. “Transcriptome Wide Analyses Reveal Intraspecific Diversity In Thermal Stress Responses Of A Dominant Habitat‐Forming Species”. Scientific Reports 13 (5645). doi:https://doi.org/10.1038/s41598-023-32654-w.
. 2023. “Unmasking Pipefish Otolith Using Synchrotron-Based Scanning X-Ray Fluorescenceabstract”. Scientific Reports 13 (1). doi:10.1038/s41598-023-31798-z. https://www.nature.com/articles/s41598-023-31798-z.
. 2023. 2023 SciReportPipefish.pdf (1.98 MB)“Unmasking Pipefish Otolith Using Synchrotron-Based Scanning X-Ray Fluorescenceabstract”. Scientific Reports 13 (1). doi:10.1038/s41598-023-31798-z. https://www.nature.com/articles/s41598-023-31798-z.
. 2023. “Updated Checklist Of The Freshwater Shrimps (Decapoda: Caridea: Atyidae) Of Mindoro Island, The Philippines, With A Description Of A New Species Of Caridina”. Arthropoda 1 (4): 374 - 397. doi:10.3390/arthropoda1040015. https://www.mdpi.com/2813-3323/1/4/15.
. 2023. arthropoda-01-00015.pdf (2.27 MB)“The Usefulness Of Food Web Models In The Ecosystem Services Framework: Quantifying, Mapping, And Linking Services Supply”. Ecosystem Services 63: 101550. doi:10.1016/j.ecoser.2023.101550. https://linkinghub.elsevier.com/retrieve/pii/S2212041623000438.
. 2023. “What Are The Toxicity Thresholds Of Chemical Pollutants For Tropical Reef-Building Corals? A Systematic Review”. Environmental Evidence 12 (1). doi:10.1186/s13750-023-00298-y. https://environmentalevidencejournal.biomedcentral.com/articles/10.1186/s13750-023-00298-y.
. 2023. Ouédraogo etal 2023 What are the toxicity thresholds of chemical pollutants for corals.pdf (5.57 MB)“Why Several When One Can Unite Them All? Integrative Taxonomic Revision Of Indo-Pacific Freshwater Pipefish (Nerophinae)Abstract”. Zoological Journal Of The Linnean Society. doi:10.1093/zoolinnean/zlad007. https://academic.oup.com/zoolinnean/advance-article/doi/10.1093/zoolinnean/zlad007/7190493.
. 2023. . 2022.
“Analysing Economic Costs Of Invasive Alien Species With The Invacost R Package”. Methods In Ecology And Evolution 13 (9): 1930 - 1937. doi:10.1111/mee3.v13.910.1111/2041-210X.13929. https://doi.org/10.1111/2041-210X.13929.
. 2022. Methods Ecol Evol - 2022 - Leroy - Analysing economic costs of invasive alien species with the invacost r package.pdf (872.22 KB)“Anthropogenic Contaminants Shape The Fitness Of The Endangered European Eel: A Machine Learning Approach”. Fishes 7 (5): 274. doi:10.3390/fishes7050274. https://www.mdpi.com/2410-3888/7/5/274.
. 2022. “Arsenic And Chlordecone Contamination And Decontamination Toxicokinetics In Sargassum Sp.”. Environmental Science And Pollution Research 29 (1): 6 - 16. doi:10.1007/s11356-020-12127-7. https://link.springer.com/10.1007/s11356-020-12127-7.
. 2022. “Assessing The State Of Marine Biodiversity In The Northeast Atlantic”. Ecological Indicators 141: 109148. doi:10.1016/j.ecolind.2022.109148. https://linkinghub.elsevier.com/retrieve/pii/S1470160X22006203.
. 2022. McQuartters-Gollop et al 2022.pdf (3.01 MB)“Bi-Decadal Changes In Nutrient Concentrations And Ratios In Marine Coastal Ecosystems: The Case Of The Arcachon Bay, France”. Progress In Oceanography 201: 102740. doi:10.1016/j.pocean.2022.102740. https://linkinghub.elsevier.com/retrieve/pii/S0079661122000027.
. 2022. “Big Data Approaches To The Spatial Ecology And Conservation Of Marine Megafauna”. Ices Journal Of Marine Science. doi:10.1093/icesjms/fsac059. https://academic.oup.com/icesjms/advance-article/doi/10.1093/icesjms/fsac059/6564869.
. 2022. fsac059.pdf (1.56 MB)“Biologging Of Emperor Penguins – Attachment Techniques And Associated Deployment Performance”. Plos One. doi:10.1101/2021.06.08.446548. https://hal.archives-ouvertes.fr/hal-03409952.
. 2022. journal.pone_.0265849.pdf (1.94 MB)“Can Artificial Magnetic Fields Alter The Functional Role Of The Blue Mussel, Mytilus Edulis?”. Marine Biology 169 (6). doi:10.1007/s00227-022-04065-4. https://link.springer.com/10.1007/s00227-022-04065-4.
. 2022. “Carbon Dynamics Driven By Seawater Recirculation And Groundwater Discharge Along A Forest-Dune-Beach Continuum Of A High-Energy Meso-Macro-Tidal Sandy Coast”. Geochimica Et Cosmochimica Acta 317: 18 - 38. doi:10.1016/j.gca.2021.10.021. https://linkinghub.elsevier.com/retrieve/pii/S0016703721006244.
. 2022. “Careful Amendment Of Morphological Data Sets Improves Phylogenetic Frameworks: Re-Evaluating Placement Of The Fossil Amiskwia Sagittiformis”. Journal Of Systematic Palaeontology 20 (1): 1 - 14. doi:10.1080/14772019.2022.2109217. https://www.tandfonline.com/doi/full/10.1080/14772019.2022.2109217.
. 2022. “Cephalopod Palaeobiology: Evolution And Life History Of The Most Intelligent Invertebratesabstract”. Swiss Journal Of Palaeontology 141 (1). doi:10.1186/s13358-022-00247-1. https://sjpp.springeropen.com/articles/10.1186/s13358-022-00247-1.
. 2022. BoletzkyHonorKlug2022.pdf (1.63 MB)Chapter 6 - Fishes And Estuarine Environmental Health. 1st ed. Wiley. doi:10.1002/978111970534510.1002/9781119705345.ch6. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119705345.
. 2022. “Characterisation Of Long-Term Evolution (1950–2016) And Vulnerability Of Mayotte’s Shoreline Using Aerial Photographs And A Multidisciplinary Vulnerability Index”. Regional Studies In Marine Science 55: 102537. doi:10.1016/j.rsma.2022.102537. https://linkinghub.elsevier.com/retrieve/pii/S2352485522001918.
. 2022. “Chlordecone-Contaminated Epilithic Biofilms Show Increased Adsorption Capacities”. Science Of The Total Environment 825: 153942. doi:10.1016/j.scitotenv.2022.153942. https://linkinghub.elsevier.com/retrieve/pii/S0048969722010348.
. 2022. “Classification Of Underwater Photogrammetry Data For Temperate Benthic Rocky Reef Mapping”. Estuarine, Coastal And Shelf Science 270: 107833. doi:10.1016/j.ecss.2022.107833. https://linkinghub.elsevier.com/retrieve/pii/S0272771422000920.
. 2022. “Climate Change Influences Chlorophylls And Bacteriochlorophylls Metabolism In Hypersaline Microbial Mat”. Science Of The Total Environment 802: 149787. doi:10.1016/j.scitotenv.2021.149787. https://linkinghub.elsevier.com/retrieve/pii/S0048969721048622.
. 2022. “Co2 And Ch4 Emissions From Coastal Wetland Soils”. In Carbon Mineralization In Coastal Wetlands, 55–91. Elsevier. doi:10.1016/B978-0-12-819220-7.00006-6. https://linkinghub.elsevier.com/retrieve/pii/B9780128192207000066.
. 2022. “Coastal Ocean Acidification In Brazil: A Brief Overview And Perspectives”. Arquivos De Ciências Do Mar 55 (Especial): 345 - 368. doi:10.32360/acmar.v55iEspecial10.32360/acmar.v55iEspecial.78514. http://periodicos.ufc.br/arquivosdecienciadomar/issue/view/1159.
. 2022. Cotovicz_et_al_2022_ Arq. Ciên. Mar.pdf (783.02 KB)